首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 179 毫秒
1.
Dinshaw J. Patel 《Biopolymers》1977,16(8):1635-1656
We have monitored the helix-coil transition of the self-complementary d-CpCpGpG and d-GpGpCpC sequences (20mM strand concentration) at the base pairs, sugar rings, and backbone phosphates by 360-MHz proton and 145.7-MHz phosphorus nmr spectroscopy in 0.1M phosphate solution between 5 and 95°C. The guanine 1-imino Watson-Crick hydrogen-bonded protons, characteristic of the duplex state, are observed below 10°C, with solvent exchange occurring by transient opening of the tetranucleotide duplexes. The cytosine 4-amino Watson-Crick hydrogen-bonded protons resonate 1.5 ppm downfield from the exposed protons at the same position in the tetranucleotide duplexes, with slow exchange indicative of restricted rotation about the C-N bond below 15°C. The guanine 2-amino exchangeable protons in the tetranucleotide sequence exhibit very broad resonances at low temperatures and narrow average resonances above 20°C, corresponding to intermediate and fast rotation about the C-N bond, respectively. Solvent exchange is slower at the amino protons compared to the imino protons since the latter broaden out above 10°C. The well-resolved nonexchangeable base proton chemical shifts exhibit helix-coil transition midpoints between 37 and 42°C. The transition midpoints and the temperature dependence of the chemical shifts at low temperatures were utilized to differentiate between resonances located at the terminal and internal base pairs while the H-5 and H-6 doublets of individual cytosines were related by spin decoupling studies. For each tetranucleotide duplex, the cytosine H-5 resonances exhibit the largest chemical shift change associated with the helix-coil transition, a result predicted from calculations based on nearest-neighbor atomic diamagnetic anisotropy and ring current contributions for a B-DNA duplex. There is reasonable agreement between experimental and calculated chemical shift changes for the helix-coil transition at the internal base pairs but the experimental shifts exceed the calculated values at the terminal base pairs due to end-to-end aggregation at low temperatures. Since the guanine H-8 resonances of the CpCpGpG and d-CpCpGpG sequences exhibit upfield shifts of 0.6–0.8 and <0.1 ppm, respectively, on duplex formation, these RNA and DNA tetranucleotides with the same sequence must adopt different base-pair overlap geometries. The large chemical shift changes associated with duplex formation at the sugar H-1′ triplets are not detected at the other sugar protons and emphasize the contribution of the attached base at the 1′ position. The coupling sum between the H-1′ and the H-2′ and H-2″ protons equals 15–17 Hz at all four sugar rings for the d-CpCpGpG and d-GpGpCpC duplexes (25°C), consistent with a C-3′ exo sugar ring pucker for the deoxytetranucleotides in solution. The temperature dependent phosphate chemical shifts monitor changes in the ω,ω′ angles about the O-P backbone bonds, in contrast to the base-pair proton chemical shifts, which monitor stacking interactions.  相似文献   

2.
In order to elucidate the conformational properties of base-deleted oligodeoxyribonucleotides, the molecules d-CpS(pCpG)n (n = 1,2; S = sugar) were synthesized by the phosphotriester method and characterized by 1H-NMR spectroscopy. Complete assignment of all non-exchangeable proton resonances of both compounds was obtained by 1D- and 2D-NMR techniques. In combination with computer simulation, these spectra yielded proton-proton and proton-phosphorus coupling constants of high accuracy. These data provide valuable information about the sugar and the backbone conformation. It appears that d-Cp1Sp2Cp3G4 does not form a duplex under any of the conditions studied. On the contrary, the base-deleted hexamer d-Cp1Sp2Cp3Gp4Cp5G6 occurs as a right-handed' staggered' DNA duplex at 280 K: the core of this duplex is formed by the residues C(3)-G(6); two 'dangling' residues C(1) and S(2) are located at the two 5'-ends of the duplex. The assignment of the corresponding imino proton resonances for [d-CpS(pCpG)2]2 was based on their thermal behavior: the line broadening of these resonances was studied as a function of temperature. The chemical shift and the number of imino proton resonances accord well with the number and type of Watson-Crick base pairs which can be formed in the staggered duplex described above. Thermodynamic parameters of duplex formation were obtained from an analysis of the chemical shift versus temperature profiles of aromatic base and H-1' protons. It is suggested that the cytosine ring of C(1) stacks, at least part of the time, with the guanine ring on the nucleotide residue, G(6), situated in the complementary strand. The binding of Lys-Trp-Lys to [d-CpS(pCpG)2]2 as well as to [d-CpGpCpG]1 was investigated. It is concluded that the indole ring of the tryptophan residue probably stacks on top of the 3'-terminal guanine base of both duplexes, but not on the nucleic acid bases next to the apurinic (AP) site.  相似文献   

3.
In order to assess the geometric changes caused when the antitumor drug cis-diammine-dichloroplatinum(II) (cis-DDP) binds to DNA, molecular mechanics calculations were performed on two double-stranded and two single-stranded oligonucleotides and their adducts with cis-{Pt(NH3)2}2+. For the platinated duplexes, three model structures have been derived, one involving only local disruption of base pairing with retention of the helix directionality, and two models showing pronounced kinking of the double helix. One of the kinked models is stabilized by bridging sodium ions. The other kinked duplex model shows retention of all Watson–Crick base pairing, including that of the coordinated guanines. All models exhibit hydrogen bonds connecting one ammine ligand of platinum with one or two phosphate groups located at the 5′ side of the platinated strand.  相似文献   

4.
The acyclic chiral nucleic acid analogue, Glycol Nucleic Acid (GNA), displayed exceptional structural simplicity and atom economy while forming self-paired duplexes, using canonical Watson–Crick base pairing. We disclose here that the replacement of phosphodiester linker in GNA with somewhat rigid and shorter carbamate linker in Glycol Carbamate Nucleic Acid (GCNA) backbone allows unprecedented stability to the antiparallel self-paired duplexes. The R-GCNA oligomers were further found to form cross-paired antiparallel duplexes with cDNA and RNA following Watson–Crick base pairing. The stability of cross-paired GCNA:DNA and GCNA:RNA duplexes was higher than the corresponding DNA:DNA and DNA:RNA duplexes. The chiral (R) and (S) precursors were easily accessible from naturally occurring l-serine.  相似文献   

5.
P A Mirau  D R Kearns 《Biopolymers》1985,24(4):711-724
1H-nmr relaxation has been used to study the effect of sequence and conformation on imino proton exchange in adenine–thymine (A · T) and adenine–uracil (A · U) containing DNA and RNA duplexes. At low temperature, relaxation is caused by dipolar interactions between the imino and the adenine amino and AH2 protons, and at higher temperature, by exchange with the solvent protons. Although room temperature exchange rates vary between 3 and 12s?1, the exchange activation energies (Eα) are insensitive to changes in the duplex sequence (alternating vs homopolymer duplexes), the conformation (B-form DNA vs A-form RNA), and the identity of the pyrimidine base (thymine vs uracil). The average value of the activation energy for the five duplexes studied, poly[d(A-T)], poly[d(A) · d(T)], poly[d(A-U)], Poly[d(A) · d(U)], and poly[r(A) · r(U)], was 16.8 ± 1.3 kcal/mol. In addition, we find that the average Eα for the A.T base pairs in a 43-base-pair restriction fragment is 16.4 ± 1.0 kcal/mol. This result is to be contrasted with the observation that the Eα of cytosine-containing duplexes depends on the sequence, conformation, and substituent groups on the purine and pyrimidine bases. Taken together, the data indicate that there is a common low-energy pathway for the escape of the thymine (uracil) imino protons from the double helix. The absolute values of the exchange rates in the simple sequence polymers are typically 3–10 times faster than in DNAs containing both A · T and G · C base pairs.  相似文献   

6.
31P- and 1H-nmr and laser Raman spectra have been obtained for poly[d(G-T)]·[d(C-A)] and poly[d(A-T)] as a function of both temperature and salt. The 31P spectrum of poly[d(G-T)]·[d(C-A)] appears as a quadruplet whose resonances undergo separation upon addition of CsCl to 5.5M. 1H-nmr measurements are assigned and reported as a function of temperature and CsCl concentration. One dimensional nuclear Overhauser effect (NOE) difference spectra are also reported for poly[d(G-T)]·[d(C-A)] at low salt. NOE enhancements between the H8 protons of the purines and the C5 protons of the pyrimidines, (H and CH3) and between the base and H-2′,2″ protons indicate a right-handed B-DNA conformation for this polymer. The NOE patterns for the TH3 and GH1 protons in H2O indicate a Watson–Crick hydrogen-bonding scheme. At high CsCl concentrations there are upfield shifts for selected sugar protons and the AH2 proton. In addition, laser Raman spectra for poly[d(A-T)] and poly[d(G-T)]·[d(C-A)] indicate B-type conformations in low and high CsCl, with predominantly C2′-endo sugar conformations for both polymers. Also, changes in base-ring vibrations indicate that Cs+ binds to O2 of thymine and possibly N3 of adenine in poly[d(G-T)]·[d(C-A)] but not in poly[d(A-T)]. Further, 1H measurements are reported for poly[d(A-T)] as a function of temperature in high CsCl concentrations. On going to high CsCl there are selective upfield shifts, with the most dramatic being observed for TH1′. At high temperature some of the protons undergo severe changes in linewidths. Those protons that undergo the largest upfield shifts also undergo the most dramatic changes in linewidths. In particular TH1′, TCH3, AH1′, AH2, and TH6 all undergo large changes in linewidths, whereas AH8 and all the H-2′,2″ protons remain essentially constant. The maximum linewidth occurs at the same temperature for all protons (65°C). This transition does not occur for d(G-T)·d(C-A) at 65°C or at any other temperature studied. These changes are cooperative in nature and can be rationalized as a temperature-induced equilibrium between bound and unbound Cs+, with duplex and single-stranded DNA. NOE measurements for poly[d(A-T)] indicate that at high Cs+ the polymer is in a right-handed B-conformation. Assignments and NOE effects for the low-salt 1H spectra of poly[d(A-T)] agree with those of Assa-Munt and Kearns [(1984) Biochemistry 23 , 791–796] and provide a basis for analysis of the high Cs+ spectra. These results indicate that both polymers adopt a B-type conformation in both low and high salt. However, a significant variation is the ability of the phosphate backbone to adopt a repeat dependent upon the base sequence. This feature is common to poly[d(G-T)]·[d(C-A)], poly[d(A-T)], and some other pyr–pur polymers [J. S. Cohen, J. B. Wouten & C. L Chatterjee (1981) Biochemistry 20 , 3049–3055] but not poly[d(G-C)].  相似文献   

7.
D J Patel  L Shapiro  D Hare 《Biopolymers》1986,25(4):693-706
The base and sugar protons of the d(G-G-T-A-T-A-C-C) duplex have been assigned from two-dimensional correlated (COSY) and nuclear Overhauser effect (NOESY) measurements in D2O solution at 25°C. The nucleic acid protons have been assigned from NOEs between protons on adjacent bases on the same and partner strands, as well as from NOEs between the base protons and their own and 5′-flanking H1′, H2′, H2″, H3′, and H4′ sugar protons. These assignments are confirmed from coupling constant and NOE connectivities within the sugar protons of a given residue. Several of these NOEs exhibit directionality and demonstrate that the d(G-G-T-A-T-A-C-C) duplex is a right-handed helix. The relative magnitude of the NOEs between the base protons and the sugar H2′ protons of its own and 5′-flanking sugar demonstrate that the TATA segment of the d(G-G-T-A-T-A-C-C) duplex adopts a B-DNA type helix geometry in solution, in contrast to the previous observation of a A-type helix for the same octanucleotide duplex in the crystalline state.  相似文献   

8.
DNA dodecamers have been designed with two cytosines on each end and intervening A and T stretches, such that the oligomers have fully complementary A:T base pairs when aligned in the parallel orientation. Spectroscopic (UV, CD and IR), NMR and molecular dynamics studies have shown that oligomers having the sequences d(CCATAATTTACC) and d(CCTATTAAATCC) form a parallel-stranded duplex when dissolved at 1:1 stoichiometry in aqueous solution. This is due to the C:C+ clamps on either end and extensive mismatches in the antiparallel orientation. The structure is stable at neutral and acidic pH. At higher temperatures, the duplex melts into single strands in a highly cooperative fashion. All adenine, cytosine and thymine nucleotides adopt the anti conformation with respect to the glycosidic bond. The A:T base pairs form reverse Watson–Crick base pairs. The duplex shows base stacking and NOEs between the base protons T(H6)/A(H8) and the sugar protons (H1′/H2′/H2″) of the preceding nucleotide, as has been observed in antiparallel duplexes. However, no NOEs are observed between base protons H2/H6/H8 of sequential nucleotides, though such NOEs are observed between T(CH3) and A(H8). A three-dimensional structure of the parallel-stranded duplex at atomic resolution has been obtained using molecular dynamics simulations under NMR constraints. The simulated structures have torsional angles very similar to those found in B-DNA duplexes, but the base stacking and helicoid parameters are significantly different.  相似文献   

9.
The binding of di- and tetranucleotides with tri- and tetrapeptides containing Tyr, Trp, Phe having lysine on both ends has been studied using a 500 MHz proton NMR. The results show that d-CpG exists as a right-handed B-DNA structure with both sugars in 01'-endo sugar conformation and glycosidic bond angle as in anti domain. On binding to tripeptide Lys-Tyr-Lys, the Tyr ring protons shift upfield by 0.015 ppm at 285 degrees K, while the conformation of d-CpG remains unchanged. Change in chemical shift of Tyr and nucleotide protons decreases with temperature. This upfield shift is attributed to stacking with bases/base-pairs. The presence of intermolecular NOE's also supports this. Results of binding of d-CpG to Lys-Phe-Lys are similar to those with Lys-Tyr-Lys except that the chemical shift changes occur to a lesser extent. On comparing the results obtained with three different peptides, it is found that interaction decreases in the order Trp > Tyr > Phe which is similar to that found by theoretical energy calculations (reported elsewhere) and fluorescence measurements. The results also exhibit a specificity in recognition of these amino acid residues by dinucleotides.  相似文献   

10.
Molecular-mechanics calculations have been carried out on the base-paired hexanucleoside pentaphosphates d(TATATA)2, d(ATATAT)2, d(A6)·d(T6), d(CGCGCG)2, d(GCGCGC)2, and d(C6)·d(G6) in both A- and B-DNA geometries. The calculated relative energies of these polymers are consistent with the relative stabilities of the polymers found experimentally. In particular, the results of our calculations support the observation that the homopolymer d(A)n·d(T)n is more stable in a B-DNA conformation, while the homopolymer d(G)n·d(C)n is more stable in an A-DNA conformation. The molecular interactions responsible for these differential stabilities include both inter- and intrastrand base stacking, as well as base–phosphate interactions. While definitive experiments on the heteropolymer stabilities have not yet been carried out, the results of our calculations also suggest a greater stability of the purine-3′,5′-pyrimidine sequence over the pyrimidine-3′,5′-purine sequence in both the A- and B-conformations. The reason for this greater stability lies in the importance of the inherent directionality (5′ → 3′ vs 3′ → 5′) of phosphate–base and base–base interactions. The largest conformation change observed on energy refinement is sugar repuckering, which occurs mainly on pyrimidine-attched sugars and only in the B-DNA geometry. We suggest a molecular mechanism, specifically, differential base–sugar steric interactions involving neighboring sugars, to explain why this repuckering occurs more with d(A6)·d(T6) than with other isomers.  相似文献   

11.
The intrinsic capability of the homo-purine DNA base mispairs to perform wobble?Watson–Crick/Topal–Fresco tautomeric transitions via the sequential intrapair double proton transfer was discovered for the first time using QM (MP2/DFT) and QTAIM methodologies that are crucial for understanding the microstructural mechanisms of the spontaneous transversions.  相似文献   

12.
Acrolein, a cell metabolic product and main component of cigarette smoke, reacts with DNA generating α‐OH‐PdG lesions, which have the ability to pair with dATP during replication thereby causing G to T transversions. We describe the solution structure of an 11‐mer DNA duplex containing the mutagenic α‐OH‐PdG·dA base pair intermediate, as determined by solution nuclear magnetic resonance (NMR) spectroscopy and retrained molecular dynamics (MD) simulations. The NMR data support a mostly regular right‐handed helix that is only perturbed at its center by the presence of the lesion. Undamaged residues of the duplex are in anti orientation, forming standard Watson‐Crick base pairs alignments. Duplication of proton signals at and near the damaged base pair reveals the presence of two enantiomeric duplexes, thus establishing the exocyclic nature of the lesion. The α‐OH‐PdG adduct assumes a syn conformation pairing to its partner dA base that is protonated at pH 6.6. The three‐dimensional structure obtained by restrained molecular dynamics simulations show hydrogen bond interactions that stabilize α‐OH‐PdG in a syn conformation and across the lesion containing base pair. We discuss the implications of the structures for the mutagenic bypass of acrolein lesions. © 2010 Wiley Periodicals, Inc. Biopolymers 93: 391–401, 2010. This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com  相似文献   

13.
The novel hybrid duplex alpha-5'-d[TACACA]-3'.beta-5'-r[AUGUGU]-3' was analyzed extensively by 1D and 2D NMR methods. Two forms of the duplex exist in about an 80:20 ratio. Analysis of the exchangeable imino protons of the major component revealed that three AU and one AT base pair are present in addition to two GC base pairs, confirming that the duplex anneals in parallel orientation. The presence of the AT base pair, which can only be accounted for by a parallel duplex, was confirmed by a selective INEPT experiment, which correlated the thymidine imino proton to its C5 carbon. The lesser antiparallel form could be detected by exchangeable and nonexchangeable proton resonances in both strands. An exchange peak was observed in the NOESY spectrum for the thymidine methyl group resonance in both the predominant and lesser conformations, indicating the lifetime of the individual structures was on the millisecond time scale. The nonexchangeable protons of the predominant duplex were assigned by standard methods. The sugar pucker of the ribonucleosides was determined to be of the "S" type by a pseudorotation analysis according to Altona, with the J-couplings measured from the multiplet components of the phase-sensitive COSY experiment. The NOE pattern observed for the alpha-deoxynucleosides also suggested an S-type sugar pucker. The adoption of an S-type sugar pucker for both strands indicates that, in contrast to RNA.DNA duplexes formed exclusively from beta-nucleotides, the alpha-DNA.beta-RNA duplex may form a B-type helix. The 31P resonances of the alpha and beta strands have very different chemical shifts in the hybrid duplex and the difference persists above the helix melting temperature, indicating an intrinsic difference in 31P chemical shift for nucleotides differing only in the configuration about the glycosidic bond.  相似文献   

14.
The titled complex, obtained by co-crystallization (EtOH/25 °C), is apparently the only known complex of the free bases. Its crystal structure, as determined by X-ray diffraction at both 90 K and 313 K, showed that one A–T pair involves a Hoogsteen interaction, and the other a Watson–Crick interaction but only with respect to the adenine unit. The absence of a clear-cut Watson–Crick base pair raises intriguing questions about the basis of the DNA double helix.  相似文献   

15.
yDNA is a base‐modified nucleic acid duplex containing size‐expanded nucleobases. Base‐modified nucleic acids could expand the genetic alphabet and thereby enhance the functional potential of DNA. Unrestrained 100 ns MD simulations were performed in explicit solvent on the yDNA NMR sequence [5′(yA T yA yA T yA T T yA T)2] and two modeled yDNA duplexes, [5′(yC yC G yC yC G G yC G G)2] and [(yT5′ G yT A yC yG C yA yG T3′)?(yA5′ C T C yG C G yT A yC A3′)]. The force field parameters for the yDNA bases were derived in consistent with the well‐established AMBER force field. Our results show that DNA backbone can withstand the stretched size of the bases retaining the Watson‐Crick base pairing in the duplexes. The duplexes retained their double helical structure throughout the simulations accommodating the strain due to expanded bases in the backbone torsion angles, sugar pucker and helical parameters. The effect of the benzo‐expansion is clearly reflected in the extended C1′‐C1′ distances and enlarged groove widths. The size expanded base modification leads to reduction in base pair twist resulting in larger overlapping area between the stacked bases, enhancing inter and intra strand stacking interactions in yDNA in comparison with BDNA. This geometry could favour enhanced interactions with the groove binders and DNA binding proteins., 2016. © 2015 Wiley Periodicals, Inc. Biopolymers 105: 55–64, 2016  相似文献   

16.
17.
We report on proton and phosphorus high resolution NMR investigations of the self-complementary dodecanucleotide d(C1-G2-N3-G4-A5-A6-T7-T8-C9-O6meG10-C11-G12) duplexes (henceforth called O6 meG.N 12-mers), N = C, T, A and G, which contain N3.O6meG10 interactions in the interior of the helix. These sequences containing a single modified O6meG per strand were prepared by phosphoamidite synthesis and provide an excellent model for probing the structural basis for covalent carcinogenic lesions in DNA. Distance dependent nuclear Overhauser effect (NOE) measurements and line widths of imino protons demonstrate that the N3 and O6meG.10 bases stack into the duplex and are flanked by stable Watson-Crick base pairs at low temperature for all four O6meG.N 12-mer duplexes. The imino proton of T3 in the O6meG.T 12-mer and G3 in the O6meG.N 12-mer helix, which are associated with the modification site, resonate at unusually high field (8.5 to 9.0 ppm) compared to imino protons in Watson-Crick base pairs (12.5 to 14.5 ppm). The nonexchangeable base and sugar protons have been assigned from two dimensional correlated (COSY) and nuclear Overhauser effect (NOESY) measurements on the O6meG.N 12-mer helices. The directionality of the distance dependent NOEs establish all O6meG.N duplexes to be right-handed helices in solution. The glycosidic torsion angles are in the anti range at the N3.O6meG10 modification site except for O6meG10 in the O6meG.G 12-mer duplex which adopts a syn configuration. This results in altered NOEs between the G3 (anti).O6meG10 (syn) pair and flanking G2.C11 and G4.C9 base pairs in the O6meG.G 12-mer duplex. We observe pattern reversal for cross peaks in the COSY spectrum linking the sugar H1' protons with the H2',2" protons at the G2 and O6meG10 residues in the O6meG.N 12-mer duplexes with the effect least pronounced for the O6meG.T 12-mer helix. The proton chemical shift and NOE data have been analyzed to identify regions of conformational perturbations associated with N3.O6meG10 modification sites in the O6meG.N 12-mer duplexes. The proton decoupled phosphorus spectrum of O6meG.T 12-mer duplex exhibits an unperturbed phosphodiester backbone in contrast to the phosphorus spectra of the O6meG.C 12-mer, O6meG.G 12-mer and O6meG.A 12-mer duplexes which exhibit phosphorus resonances dispersed over 2 ppm characteristic of altered phosphodiester backbones at the modification site. Tentative proposals are put forward for N3.O6meG10 pairing models based on the available NMR data and serve as a guide for the design of future experiments.  相似文献   

18.
High-resolution proton and phosphorus nuclear magnetic resonance studies are reported on the self-complementary d(C1-G2-N3-G4-A5-A6-T7-T8-C9-O6meG10-C11-G12) duplexes (henceforth called O6meG X A 12-mer when N3 = A3 and O6meG X G 12-mer when N3 = G3), which contain symmetry-related A3 X O6meG10 and G3 X O6meG10 interactions in the interior of the helices. We observe inter-base-pair nuclear Overhauser effects (NOE) between the base protons at the N3 X O6meG10 modification site and protons of flanking G2 X C11 and G4 X C9 base-pairs, indicative of the stacking of N3 and O6meG10 bases in both O6meG X A 12-mer and O6meG X G 12-mer duplexes. We have assigned all the base and a majority of the sugar protons from two-dimensional proton-correlated and nuclear Overhauser effect experiments on the O6meG X A 12-mer duplex and O6meG X G 12-mer duplex in solution. The observed NOEs establish that the A3 and O6meG10 at the modification site and all other residues adopt the anti configuration about the glycosidic bond, and that the O6meG X A 12-mer forms a right-handed duplex. The interaction between the bulky purine A3 and O6meG10 residues in the anti orientation results in large proton chemical shift perturbations at the (G2-A3-G4) X (C9-O6meG10-C11) segments of the helix. By contrast, we demonstrate that the O6meG10 residue adopts a syn configuration, while all other bases adopt an anti configuration about the glycosidic bond in the right-handed O6meG X G 12-mer duplex. This results in altered NOE patterns between the base protons of O6meG10 and the base and sugar protons of flanking C9 and C11 residues in the O6meG X G 12-mer duplex. The phosphorus backbone is perturbed at the modification site in both duplexes, since the phosphorus resonances are dispersed over 2 parts per million in the O6meG X A 12-mer and over 1 part per million in the O6meG X G 12-mer compared to a 0.5 part per million dispersion for an unperturbed DNA helix. We propose tentative pairing schemes for the A3 X O6meG10 and G3 X O6meG10 interactions in the above dodecanucleotide duplexes.  相似文献   

19.
A Pardi  K M Morden  D J Patel  I Tinoco 《Biochemistry》1982,21(25):6567-6574
The relaxation lifetimes of imino protons from individual base pairs were measured in (I) a perfect helix, d(C-G-C-G-A-A-T-T-C-G-C-G), (II) this helix with a G . C base pair replaced with a G . T base pair, d(C-G-T-G-A-A-T-T-C-G-C-G), and (III) the perfect helix with an extra adenine base in a mismatch, d(C-G-C-A-G-A-A-T-T-C-G-C-G). The lifetimes were measured by saturation recovery proton nuclear magnetic resonance experiments performed on the imino protons of these duplexes. The measured lifetimes of the imino protons were shown to correspond to chemical exchange lifetimes at higher temperatures and spin-lattice relaxation times at lower temperatures. Comparison of the lifetimes in these duplexes showed that the destabilizing effect of the G . T base pair in II affected the opening rate of only the nearest-neighbor base pairs. For helix III, the extra adenine affected the opening rates of all the base pairs in the helix and thus was a larger perturbation for opening of the base pairs than the G . T base pair. The temperature dependence of the exchange rates of the imino proton in the perfect helix gives values of 14-15 kcal/mol for activation energies of A . T imino protons. These relaxation rates were shown to correspond to exchange involving individual base pair opening in this helix, which means that one base-paired imino proton can exchange independent of the others. For the other two helices that contain perturbations, much larger activation energies for exchange of the imino protons were found, indicating that a cooperative transition involving exchange of at least several base pairs was the exchange mechanism of the imino protons. The effects of a perturbation in a helix on the exchange rates and the mechanisms for exchange of imino protons from oligonucleotide helices are discussed.  相似文献   

20.
Two-dimensional (2D) nmr methods (correlated spectroscopy, nuclear Overhauser enhancement spectroscopy, and relayed correlated spectroscopy) have been used to obtain resonance assignment of the nonexchangeable base and sugar protons of a double-helical DNA segment, d-(CG)6 in D2O solutions under conditions of low ionic strength. Detailed information about the glycosidic torsion angle, sugar geometry, stacking patterns of the bases, and the overall solution structure of the dodecanucleotide has been obtained from the relative intensities of cross-peaks in the 2D spectra. The molecule shows general features of B-DNA under the experimental conditions employed. However, in spite of the repeating base sequence, there are subtle and detectable variations in the structure along the double helix. The terminal residues show considerable conformational flexibility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号