首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 533 毫秒
1.
Summary Rat and tupaia 41° C temperature variant cell clones were derived from parental embryonic cells, cloned and established in tissue cultures. Both variant cell clones grew permanently at 41° C. The morphology of these cell clones was altered in comparison to the original fibroblast cell clones. The cell biological characterization of the rat and tupaia 41° C temperature variant cell clones showed that both cell clones were stable. After abolishing the selection pressure (incubation at 41° C) for more than 10 further cell passages by incubation at 37°C and then raising the temperature again to 41° C, neither of the cell clones lost their newly acquired property of prowing at 41° C. This fact demonstrates that the newly acquired property is certain to be genetically manifest in both cell clones. The modal number of chromosomes of the rat 41° C temperature variant cell clone was increased, and the case of the tupaia variant cell clone, bimodality was observed. The plating efficiency of both cell clones did not rise significantly in comparison to the parental cells. Neither of the 41° C temperature variant cell clones grew in semi-solid medium. This work was partially supported by the Deutsche Forschungsgemeinschaft, Sonderforschungsbereich 136.  相似文献   

2.
To understand the different responses of recombinant Chinese hamster ovary (rCHO) cells to low culture temperature regarding specific productivity (q), 12 parental clones and their corresponding amplified clones producing a humanized antibody were cultivated at 32 and 37 degrees C. The specific growth rate of all clones, including both parental and amplified clones, decreased by 30-63% at 32 degrees C, compared to rates at 37 degrees C. In contrast, their specific antibody productivity (qAb) was significantly enhanced at 32 degrees C. Furthermore, the degree of qAb enhancement at 32 degrees C varied a lot from 4- to 25-fold among the parental clones. At 32 degrees C, most of the amplified clones, regardless of methotrexate (MTX) levels, also showed enhanced qAb but to a lesser extent than their parental clones. However, clone 14 amplified at 0.32 microM MTX (clone 14-0.32) and clone 20 amplified at 1 microM MTX (clone 20-1.00), unlike their parental clones, did not show enhanced qAb at 32 degrees C. Thus, it was found that the enhancing effect of low culture temperature on q of rCHO cells depends on clones. Taken together, the results obtained here emphasize the importance of clonal selection for the successful application of low culture temperature to the enhanced foreign protein production in rCHO cells.  相似文献   

3.
To investigate clonal variations of recombinant Chinese hamster ovary (rCHO) clones in response to culture pH and temperature, serum-free suspension cultures of two antibody-producing CHO clones (clones A and B), which were isolated from the same parental clone by the limiting dilution method, were performed in a bioreactor at pH values in the range of 6.8-7.6, and two different temperatures, 33 degrees C and 37 degrees C. In regard to cell growth, clone A and clone B displayed similar responses to temperature, although their degree of response differed. In contrast, clones A and B displayed different responses to temperature in regard to antibody production. In the case of clone A, no significant increase in maximum antibody concentration was achieved by lowering the culture temperature. The maximum antibody concentration obtained at 33 degrees C (pH 7.4) and 37 degrees C (pH 7.0) were 82.0 +/- 2.6 and 73.2 +/- 4.1 microg/ml, respectively. On the other hand, in the case of clone B, an approximately 2.5-fold increase in maximum antibody concentration was achieved by lowering the culture temperature. The enhanced maximum antibody concentration of clone B at 33 degrees C (132.6 +/- 14.9 microg/ml at pH 7.2) was due to not only enhanced specific antibody productivity but also to prolonged culture longevity. At 33 degrees C, the culture longevity of clone A also improved, but not as much as that of clone B. Taken together, CHO clones derived from the same parental clone displayed quite different responses to culture temperature and pH with regards antibody production, suggesting that environmental parameters such as temperature and pH should be optimized for each CHO clone.  相似文献   

4.
Induction of cellular deoxyribonucleic acid synthesis by infection with bovine adenovirus type 3 was examined in 7 clones of a mouse cell line. Cellular DNA synthesis was induced by infection both at 37C and at 41C in 5 clones. In the other 2 clones, however, cellular DNA synthesis was induced only at 41C and not at 37C. In a clone non-inducible at 37C, the incubation at 41C prior to infection resulted in induction of cellular DNA synthesis at 37C. The preincubation effect was not inhibited by cycloheximide during the incubation at 41C. In an other clone non-inducible at 37C, the preincubation effect was not observed. The existence of a temperature-dependent cellular factor(s) regulating the induction of cellular DNA synthesis was suggested.  相似文献   

5.
Two HSV-1 strains were used in the study: McIntyre laboratory strain and "eye" strain isolated from a patient. Temperature-sensitive clone of HSV-1 was isolated from McIntyre strain as a consequence of virus replication carried out at lowered temperature (28 degrees C). Temperature-resistant clones were obtained from both strains through passages at 39 degrees C and through heating for four times at 45 degrees C. Pathogenic properties of the temperature clones obtained were determined in inbred mice Balb/c and CFw/Pzh. A loss of pathogenicity for mice of temperature-sensitive clone and an increase of pathogenicity of temperature-resistant clones were noted as compared to parental strains. It was found that an introduction of temperature-sensitive clone, with lowered virulence immunizes against highly virulent temperature-resistant clone.  相似文献   

6.
We have generated temperature-sensitive (ts) mutants for steroid-regulated anchorage-independent cell growth. Androgen-responsive S115+A mouse mammary tumor cells were mutagenized with ethyl methane sulfonate and the variants which were growth-arrested in suspension at the nonpermissive temperature of 41 degrees C were selected by killing dividing wild-type cells with the DNA synthesis inhibitors 5-fluoro-2'-deoxyuridine or cytosine arabinoside. Fifteen clones were isolated and characterized for morphology and growth properties. Three (ts21, ts27, ts33) of the phenotypic variants were ts for androgen-maintained anchorage-independent growth, two of them (ts27 and ts33) also for growth in monolayer. Growth arrest at 41 degrees C was not due to a defect in androgen receptor function in any of the mutant cell lines as shown by steroid binding assays and by the androgen-stimulated expression of both endogenous MMTV RNA and the transiently transfected LTR-CAT gene at the nonpermissive temperature. It remains to be determined for clone ts33 whether the defect is in postreceptor events of steroid action or in genes affecting general mechanisms of cell growth. However, since in clones ts21 and ts27 general cell growth remains functional at 41 degrees C under serum stimulation, defects may be in postreceptor steroid-related pathways. It is hoped that these mutants will provide a useful tool for study of steroid regulation of cell growth and in particular of the property of anchorage-independent growth.  相似文献   

7.
Human skin fibroblast cells derived from a juvenile patient with nephropathic cystinosis were transformed by simian virus 40. Transformed cell clones were isolated and established in tissue culture. In comparison to the parental cystinotic cells, the newly isolated, transformed cell clones had a higher plating efficiency, a modal chromosome number of 68, grew in soft agar, and showed a nuclear immunofluorescence typical for SV 40-specific tumor (T) antigen. The content of intracellular, unbound cystine in the transformed cell clone was of the same level (6.1 nmol 1/2 cystine/mg protein) as in the parental cystinotic cells (7.4 nmol). Control cells (SV 80 and WI-38) contained normal levels of cystine (0.31 and 0.47 nmol 1/2 cystine/mg protein). The growth characteristics make the transformed cystinotic cell clone suitable for large scale preparation of cellular constituents, i.e. lysosomes which seem to be affected in cystinotic patients.  相似文献   

8.
Chinese hamster ovary (CHO · K1 · PRO) cell growth was inhibited by addition of a gram-negative bacterial lipopolysaccharide (LPS) to the cell culture medium. Growth inhibition began after three or four days of incubation, was dose-dependent up to a maximum at an LPS concentration of 500 μg/ml and was accompanied by cell shape changes and enhanced cytoplasmic vacuolization. Formation of bizarre CHO · K1 · PRO cell shapes and vacuole formation were most pronounced after seven days of incubation with LPS and could be observed by light and electron microscopy. An LPS-resistant cell population was obtained by intermittent in vitro exposure to high levels of LPS; these variant cells or clones derived from them failed to display growth inhibition in the presence of LPS. A clone from the LPS-resistant variant population showed altered cell properties compared to the parental cell line which included changes in cell morphology, adhesion, and endocytosis. Parental cells were markedly density-inhibited, whereas the variant clone exhibited considerable growth after confluency. The LPS-resistant variant cells showed a more elongated morphology than the parental line. No significant differences were observed between rates of detachment of parental and variant cells when sparse cultures of either line were removed from tissue culture dishes by ethylenediaminetetracetate (EDTA). However, at confluency approximately 100% of the variant cells versus 35% of the parental cells were removed by EDTA in one hour. Measurements of 125I-ferritin uptake by parental and variant cells showed approximately twenty-fold and twofold increases, respectively, in uptake induced by LPS when compared to untreated control cultures.  相似文献   

9.
Eukaryotic DNA polymerases delta and epsilon, both of which are required for chromosomal DNA replication, contain proofreading 3'-->5'exonuclease activity. DNA polymerases lacking proofreading activity act as strong mutators. Here we report isolation of thermotolerant mutants by using a proofreading-deficient DNA polymerase delta variant encoded by pol3-01 in the yeast Saccharomyces cerevisiae. The parental pol3-01 strain grew only poorly at temperatures higher than 38 degrees C. By stepwise elevation of the incubation temperature, thermotolerant mutants that could proliferate at 40 degrees C were successfully obtained; however, no such mutants were isolated with the isogenic POL3 strain. The recessive hot1-1 mutation was defined by genetic analysis of a weak thermotolerant mutant. Strong thermotolerance to 40 degrees C was attained by multiple mutations, at least one of which was recessive. These results indicate that a proofreading-deficient DNA delta polymerase variant is an effective mutator for obtaining yeast mutants that have gained useful characteristics, such as the ability to proliferate in harsh environments.  相似文献   

10.
Three temperature-sensitive cell-cycle mutants of rat 3Y1 fibroblasts (3Y1tsD123, 3Y1tsG125, and 3Y1tsH203, each belonging to distinct complementation groups) were transformed with plasmid DNA carrying Harvey murine sarcoma virus cDNA. The criteria for transformation were increase in saturation cell density, capability to clone in soft agar, and alteration in the cellular morphology. At 39.8 degrees C (restrictive temperature of the parental cell lines), all the transformed sublines of each mutant ceased to proliferate and were arrested reversibly in the G1 phase of the cell cycle like the parental lines. At both 39.8 degrees C and 33.8 degrees C (permissive temperature for the parental lines), all the untransformed parental lines synthesized p21ras at low rate. At 33.8 degrees C, all the transformed sublines synthesized p21ras at much higher rate and expressed the morphological phenotype characteristic to v-H-ras-induced transformation. At 39.8 degrees C, the rate of p21ras synthesis was not changed in the transformed sublines of 3Y1tsD123 and 3Y1tsG125, and the morphology of transformed phenotype also remained intact. In the transformed subline of 3Y1tsH203, the rate of p21ras synthesis was lowered at 39.8 degrees C to that seen in the untransformed parental line, and the transformed phenotype in morphology disappeared. In all of the transformed sublines, the amount of v-H-ras mRNA markedly expressed at both 33.8 degrees C and 39.8 degrees C.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
A heat-sensitive (hs, arrested at 39.5 degrees C, termed 21-Ta) and a cold-sensitive (cs, arrested at 33 degrees C, termed 21-Fb) clonal cell cycle variant were isolated from the same clone of the P-815 murine mastocytoma line. At the respective nonpermissive temperatures, both the hs and the cs variant were reversibly arrested in G1 phase, and numbers of cells forming colonies upon reincubation at the permissive temperature remained nearly constant for at least 6 days. Cells arrested in G1 by incubation at the respective nonpermissive temperatures were fused to cells of another P-815 clone (31-S) that had been arrested by serum deprivation. Upon reincubation in medium containing 10% serum for 48 h at 39.5 degrees C, 21-Ta x 31-S heterokaryons, similar to 31-S x 31-S homokaryons, entered the S phase, whereas at 33 degrees C, 21-Fb x 31-S heterokaryons, similar to 21-Fb x 21-Fb homokaryons, remained arrested in G1, indicating a recessive expression of the hs and a dominant expression of the cs phenotype.  相似文献   

12.
Summary A tumor model system of clones of myeloproliferative sarcoma virus (MPV)-transformed rat fibroblasts (NRK) with different growth properties and metastatic potential was studied. The relationship between metastatic behavior and composition of carbohydrate-binding proteins (lectins) was analyzed by affinity chromatography. The metastatic variant differs qualitatively from its parental clone in the presence of galactoside-binding proteins at apparent molecular weights of 80 kDa, 70 kDa, 22 kDa, 18 kDa and 16 kDa and of a fucose-binding protein at apparent molecular weight of 42 kDa. The -glucosyl-binding proteins at apparent molecular weights of 67 kDa and 53 kDa and a galactoside-binding protein of apparent molecular weight of 34 kDa, however, are not detectable in the metastatic variant in comparison to its parental clone. In this respect the parental clone shows closer resemblance to the clone 5–8#1 with different growth properties and low metastatic potential than to its own metastatic variant. Furthermore, only the parental clone has a melibiose- and a mannan-binding protein of an apparent molecular weight of 64 kDa and 14 kDa, respectively. Rosette formation as model system for intercellular interaction reveals differences in the inhibition pattern with sugar between the two clones 5–8#1 and 5–20#20, whereas the metastatic variant 5–20#20 (s) exhibits drastically reduced capability to form rosettes. Initial experiments demonstrate the feasibility of drug targeting to transformed fibroblasts via carbohydrate-binding proteins.  相似文献   

13.
We have constructed interspecific somatic cell hybrids between a temperature-sensitive (ts) mutant cell line of mouse FM3A cells, ts85, that has a heat-labile ubiquitin-activating enzyme (E1) and a human diploid fibroblast cell line, IMR-90. A hybrid clone that could grow stably at a nonpermissive temperature (39 degrees C) was obtained. Segregation of the hybrid cells at a permissive temperature (33 degrees C) gave rise to temperature-sensitive clones. The electrophoresis of extracted histones and karyotype analysis of the segregants revealed a close correlation of the ability to grow at 39 degrees C, the presence of uH2A (ubiquitin-H2A semihistone) at 39 degrees C, and the presence of the human X chromosome. One of the hybrid clones that could grow at the nonpermissive temperature contained the X chromosome as the only human chromosome. The sodium dodecyl sulfate-polyacrylamide gel electrophoretic pattern of affinity-purified E1 showed that this hybrid clone contained both human and mouse type E1. Thus we conclude that the functional gene for human E1 is located on the X chromosome.  相似文献   

14.
Chicken muscle cell cultures were incubated at 41 degrees C, the physiological chicken body temperature, and compared with cultures incubated at 37 degrees C, the typical cell culture incubation temperature. The cultures incubated at 41 degrees C show not only an increase in creatine kinase (CK)-specific activity but also a marked increase in the percentage of adult muscle CK isozyme (MM-CK) in 7-day muscle cultures. Muscle cell cultures incubated in the presence of cytosine arabinoside (ara-C), a cell proliferation inhibitor, do not have the mononucleated cell overgrowth seen at 41 degrees C and thus exhibit a further increase in creatine kinase-specific activity compared with cultures incubated at 41 degrees C in the absence of ara-C. These results suggest that muscle cell cultures incubated at 41 degrees C are more highly differentiated than those incubated at 37 degrees C.  相似文献   

15.
tsJT60 is a nonlethal temperature-sensitive (ts) mutant of a Fischer rat cell line (3Y1) classified as a G0 mutant; i.e., the ts defect is not expressed within the cell growth cycle but is expressed only between the G0 and S phase. tsJT60 clones transformed with oncogenes such as adenovirus E1A, polyoma large T, polyoma middle T, v-Ki-ras, and LTR activated c-myc, or with a chemical carcinogen N-methyl-N'-nitro-N-nitrosoguanidine, grew well at 34 degrees C. However, most of these clones grew slowly at 40 degrees C, producing many floating dead cells, and some clones were killed at 40 degrees C. When they were cultured under conditions inadequate for growth of untransformed cells, such as high cell density or serum restriction, they were killed at 40 degrees C. These and previous results from SV40- and adenovirus-transformed tsJT60 clones favour the idea that transformed tsJT60 cells occasionally enter the G0 phase and are metabolically imbalanced at 40 degrees C during self-stimulation from the G0 to S phase. We propose that a drug which exclusively block, G0-G1 transition would be cytocidal to transformed cells but cytostatic to normal cells.  相似文献   

16.
NIH/3T3 mouse fibroblasts were transfected with the cDNA for manganese superoxide dismutase (MnSOD), and two clones overexpressing MnSOD activity were subsequently characterized by comparison with parental and control plasmid-transfected cells. One clone with a 1.8-fold increase in MnSOD activity had a 1.5-fold increase in glutathione peroxidase (GPX) activity (increased GPX-adapted clone), while a second clone with a 3-fold increase in MnSOD activity had a 2-fold decrease in copper, zinc superoxide dismutase (CuZnSOD) activity (decreased CuZnSOD-adapted clone). Increased reactive oxygen species (ROS) levels compared with parental or control plasmid-transfected cells were observed in nonsynchronous cells in the increased GPX-adapted clone, but not in the decreased CuZnSOD-adapted clone. The two MnSOD-overexpressing clones showed different sensitivities to agents that generate oxidative stress. Flow cytometry analysis of the cell cycle showed altered cell cycle progression in both MnSOD-overexpressing clones. During logarithmic growth, both MnSOD-overexpressing clones showed increased mitochondrial membrane potential compared with parental and control plasmid-transfected cells. Both MnSOD-overexpressing clones showed a decrease in mitochondrial mass at the postconfluent phase of growth, suggesting that mitochondrial mass may be regulated by MnSOD and/or ROS levels. Our results indicate that adaptation of fibroblasts to overexpression of MnSOD can involve more than one mechanism, with the resultant cell phenotype dependent on the adaptation mechanism utilized by the cell. J. Cell. Physiol. 175:359–369, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

17.
Previously, we found no segregation in F2 obtained from crosses between two Dileptus anser clones differing (under the same culture conditions) in their serotypes, i.e. in their immobilization antigens (i-antigens); indeed, all the F2 clones had mixed, i.e. hybrid serotype, being immobilized simultaneously with both immune sera developed against either parental clone (Uspenskaya, Yudin, 2000). Presently, experiments were carried out to see if this unusual phenotype would be re-expressed after a temporary switching off. To switch off both expressed i-antigens, serotype transformation was induced in the F2 clones by shifting the culture temperature from 25 to 17 degrees C. Two weeks later, when the clones returned to the initial temperature conditions, each of them was seen to re-express both parental i-antigens. This result is discussed with reference to the role of i-antigens in regulation of their own expression as has been suggested by some authors.  相似文献   

18.
tsJT60, a temperature-sensitive (ts) mutant cell line of Fischer rat, is viable at both permissive (34 degrees C) and non-permissive (39.5 degrees C) temperatures. The cells grow normally in exponential growth phase at both temperatures, but when stimulated with fetal bovine serum (FBS) from G0 phase they re-enter S phase at 34 degrees C but not at 39.5 degrees. When tsJT60 cells were transformed with adenovirus (Ad) 5 wild type, they grew well at both temperatures, expressed E1A and E1B genes, and formed colonies in soft agar. When tsJT60 cells were transformed with Ad5 dl313, that lacks E1B gene, the transformed cells grew well at 34 degrees C but failed to form colony in soft agar. They died very soon at 39.5 degrees C. 3Y1 cells (a parental line of tsJT60) transformed with dl313 grew well at both temperatures, although neither expressed E1B gene nor formed colonies in soft agar. The phenotype of being lethal at 39.5 degrees C of dl313-transformed tsJT60 cells was complemented by cell fusion with 3Y1BUr cells (5-BrdU-resistant 3Y1), but not with tsJT60TGr cells (6-thioguanine resistant tsJT60). These results indicate that the lethal phenotype is related to the ts mutation of tsJT60 cells and also to the deletion of E1B gene of Ad5.  相似文献   

19.
Stress response is a universal phenomenon. However, a rat histiocytic cell line, BC-8, showed no heat shock response and failed to synthesize heat shock protein 70 (hsp70) upon heat shock at 42 degrees C for 30 min. BC-8 is a clone of AK-5, a rat macrophage tumor line that is adapted to grow in culture and has the same chromosome number and tumorigenic potential as AK-5. An increase in either the incubation temperature or time or both to BC-8 cells leads to loss of cell viability. In addition, heat shock conditions activated apoptotic cell death in these cells as observed by cell fragmentation, formation of nuclear comets, apoptotic bodies, DNA fragmentation and activation of ICE-like cysteine proteases. Results presented here demonstrate that BC-8 cells cannot mount a typical heat shock response unlike all other eukaryotic cells and that in the absence of induction of hsps upon stress, these cells undergo apoptosis at 42 degrees C.  相似文献   

20.
Soil temperatures in Italian rice fields typically range between about 15 and 30 degrees C. A change in the incubation temperature of anoxic methanogenic soil slurry from 30 degrees C to 15 degrees C typically resulted in a decrease in the CH4 production rate, a decrease in the steady-state H2 partial pressure, and a transient accumulation of acetate. Previous experiments have shown that these changes were due to an alteration of the carbon and electron flow in the methanogenic degradation pathway of organic matter caused by the temperature shift (K. J. Chin and R. Conrad, FEMS Microbiol. Ecol. 18:85-102, 1995). To investigate how temperature affects the structure of the methanogenic archaeal community, total DNA was extracted from soil slurries incubated at 30 and 15 degrees C. The archaeal small-subunit (SSU) rRNA-encoding genes (rDNA) of these environmental DNA samples were amplified by PCR with an archaeal-specific primer system and used for the generation of clone libraries. Representative rDNA clones (n = 90) were characterized by terminal restriction fragment length polymorphism (T-RFLP) and sequence analysis. T-RFLP analysis produced for the clones terminally labeled fragments with a characteristic length of mostly 185, 284, or 392 bp. Sequence analysis allowed determination of the phylogenetic affiliation of the individual clones with their characteristic T-RFLP fragment lengths and showed that the archaeal community of the anoxic rice soil slurry was dominated by members of the families Methanosarcinaceae (185 bp) and Methanosaetaceae (284 bp), the kingdom Crenarchaeota (185 or 284 bp), and a novel, deeply branching lineage of the (probably methanogenic) kingdom Euryarchaeota (392 bp) that has recently been detected on rice roots (R. Grosskopf, S. Stubner, and W. Liesack, Appl. Environ. Microbiol. 64:4983-4989, 1998). The structure of the archaeal community changed when the temperature was shifted from 30 degrees C to 15 degrees C. Before the temperature shift, the clones (n = 30) retrieved from the community were dominated by Crenarchaeota (70%), "novel Euryarchaeota" (23%), and Methanosarcinacaeae (7%). Further incubation at 30 degrees C (n = 30 clones) resulted in a relative increase in members of the Methanosarcinaceae (77%), whereas further incubation at 15 degrees C (n = 30 clones) resulted in a much more diverse community consisting of 33% Methanosarcinaceae, 23% Crenarchaeota, 20% Methanosaetaceae, and 17% novel Euryarchaeota. The appearance of Methanosaetaceae at 15 degrees C was conspicuous. These results demonstrate that the structure of the archaeal community in anoxic rice field soil changed with time and incubation temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号