首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 54 毫秒
1.
NADH:ubiquinone reductase, the respiratory chain complex I of mitochondria, consists of some 25 nuclear-encoded and seven mitochondrially encoded subunits, and contains as redox groups one FMN, probably one internal ubiquinone and at least four iron-sulphur clusters. We are studying the assembly of the enzyme in Neurospora crassa. The flux of radioactivity in cells that were pulse-labelled with [35S]methionine was followed through immunoprecipitable assembly intermediates into the holoenzyme. Labelled polypeptides were observed to accumulate transiently in a Mr 350,000 intermediate complex. This complex contains all mitochondrially encoded subunits of the enzyme as well as subunits encoded in the nucleus that have no homologous counterparts in a small, merely nuclear-encoded form of the NADH:ubiquinone reductase made by Neurospora crassa cells poisoned with chloramphenicol. With regard to their subunit compositions, the assembly intermediate and small NADH:ubiquinone reductase complement each other almost perfectly to give the subunit composition of the large complex I. These results suggest that two pathways exist in the assembly of complex I that independently lead to the preassembly of two major parts, which subsequently join to form the complex. One preassembled part is related to the small form of NADH:ubiquinone reductase and contributes most of the nuclear-encoded subunits, FMN, three iron-sulphur clusters and the site for the internal ubiquinone. The other part is the assembly intermediate and contributes all mitochondrially encoded subunits, one iron-sulphur cluster and the catalytic site for the substrate ubiquinone. We discuss the results with regard to the evolution of the electron pathway through complex I.  相似文献   

2.
The NADH:ubiquinone oxidoreductase (complex I) of mitochondria is constructed from two arms arranged perpendicular to each other. The peripheral arm protruding into the matrix contains the proximal section of the electron pathway, and the membrane arm with all mitochondrially encoded subunits contains the distal section of the electron pathway. When Neurospora crassa is grown under manganese limitation the formation of the peripheral arm is disturbed, but the membrane arm containing the iron-sulfur cluster N-2, is accumulated. An extra-polypeptide, assumed to be a chaperone, is found to be associated with this pre-assembled membrane arm.  相似文献   

3.
We determined the primary structure of a 9.6-kDa subunit of the respiratory chain NADH:ubiquinone reductase (complex I) from Neurospora crassa mitochondria and found a close relationship between this subunit and the bacterial or chloroplast acyl-carrier protein. The degree of sequence identity amounts to 80% in a region of 19 residues around the serine to which the phosphopantetheine is bound. The N-terminal presequence of the subunit has the characteristic features of a mitochondrial import sequence. We cultivated the auxotroph pan-2 mutant of N. crassa in the presence of [14C]pantothenate and recovered all radioactivity incorporated into mitochondrial protein in the 9.6-kDa subunit of complex I. We cultivated N. crassa in the presence of chloramphenicol to accumulate the nuclear-encoded peripheral arm of complex I. This pre-assembled arm also contains the 9.6-kDa subunit. These results demonstrate that an acyl-carrier protein with pantothenate as prosthetic group is a constituent part of complex I in N. crassa.  相似文献   

4.
NADH:ubiquinone oxidoreductase (complex I) of the mitochondrial inner membrane is a multi-subunit protein complex containing eight iron-sulphur (Fe-S) clusters. Little is known about the assembly of complex I and its Fe-S clusters. Here, we report the identification of a mitochondrial protein with a nucleotide-binding domain, named Ind1, that is required specifically for the effective assembly of complex I. Deletion of the IND1 open reading frame in the yeast Yarrowia lipolytica carrying an internal alternative NADH dehydrogenase resulted in slower growth and strongly decreased complex I activity, whereas the activities of other mitochondrial Fe-S enzymes, including aconitase and succinate dehydrogenase, were not affected. Two-dimensional gel electrophoresis, in vitro activity tests and electron paramagnetic resonance signals of Fe-S clusters showed that only a minor fraction (approximately 20%) of complex I was assembled in the ind1 deletion mutant. Using in vivo and in vitro approaches, we found that Ind1 can bind a [4Fe-4S] cluster that was readily transferred to an acceptor Fe-S protein. Our data suggest that Ind1 facilitates the assembly of Fe-S cofactors and subunits of complex I.  相似文献   

5.
The NADH:ubiquinone oxidoreductase (complex I) is made up of a peripheral part and a membrane part. The two parts are arranged perpendicular to each other and give the complex an unusual L-shaped structure. The peripheral part protrudes into the matrix space and constitutes the proximal segment of the electron pathway with the NADH-binding site, the FMN and at least three iron-sulfur clusters. The membrane part constitutes the distal segment of the electron pathway with at least one iron-sulfur cluster and the ubiquinone-binding site. Both parts are assembled separately and relationships of the major structural modules of the two parts with different bacterial enzymes suggest, that both parts also emerged independently in evolution. This assumption is further supported by the conserved order of bacterial complex I genes, which correlates with the topological arrangement of the corresponding subunits in the two parts of complex I.  相似文献   

6.
The nuclear gene coding for the 20.8-kDa subunit of the membrane arm of respiratory chain NADH:ubiquinone reductase (Complex I) fromNeurospora crassa, nuo-20.8, was localized on linkage group I of the fungal genome. A genomic DNA fragment containing this gene was cloned and a duplication was created in a strain ofN. crassa by transformation. To generate RIP (repeat-induced point) mutations in the duplicated sequence, the transformant was crossed with another strain carrying an auxotrophic marker on chromosome I. To increase the chance of finding an isolate with a non-functionalnuo-20.8 gene, random progeny from the cross were selected against this auxotrophy since RIP of the target gene will only occur in the nucleus carrying the duplication. Among these, we isolated and characterised a mutant strain that lacks the 20.8 kDa mitochondrial protein, indicating that this cysteine-rich polypeptide is not essential. Nevertheless, the absence of the 20.8-kDa subunit prevents the full assembly of complex I. It appears that the peripheral arm and two intermediates of the membrane arm of the enzyme are still formed in the mutant mitochondria. The NADH:ubiquinone reductase activity of sonicated mitochondria from the mutant is rotenone insensitive. Electron microscopy of mutant mitochondria does not reveal any alteration in the structure or numbers of the organelles.  相似文献   

7.
The nuclear gene coding for the 20.8-kDa subunit of the membrane arm of respiratory chain NADH:ubiquinone reductase (Complex I) fromNeurospora crassa, nuo-20.8, was localized on linkage group I of the fungal genome. A genomic DNA fragment containing this gene was cloned and a duplication was created in a strain ofN. crassa by transformation. To generate RIP (repeat-induced point) mutations in the duplicated sequence, the transformant was crossed with another strain carrying an auxotrophic marker on chromosome I. To increase the chance of finding an isolate with a non-functionalnuo-20.8 gene, random progeny from the cross were selected against this auxotrophy since RIP of the target gene will only occur in the nucleus carrying the duplication. Among these, we isolated and characterised a mutant strain that lacks the 20.8 kDa mitochondrial protein, indicating that this cysteine-rich polypeptide is not essential. Nevertheless, the absence of the 20.8-kDa subunit prevents the full assembly of complex I. It appears that the peripheral arm and two intermediates of the membrane arm of the enzyme are still formed in the mutant mitochondria. The NADH:ubiquinone reductase activity of sonicated mitochondria from the mutant is rotenone insensitive. Electron microscopy of mutant mitochondria does not reveal any alteration in the structure or numbers of the organelles.  相似文献   

8.
Respiratory chains of bacteria and mitochondria contain closely related forms of the proton-pumping NADH:ubiquinone oxidoreductase, or complex I. The bacterial complex I consists of 14 subunits, whereas the mitochondrial complex contains some 25 extra subunits in addition to the homologues of the bacterial subunits. One of these extra subunits with a molecular mass of 40 kDa belongs to a heterogeneous family of reductases/isomerases with a conserved nucleotide binding site. We deleted this subunit in Neurospora crassa by gene disruption. In the mutant nuo 40, a complex I lacking the 40 kDa subunit is assembled. The mutant complex I does not contain tightly bound NADPH present in wild-type complex I. This NADPH cofactor is not connected to the respiratory electron pathway of complex I. The mutant complex has normal NADH dehydrogenase activity and contains the redox groups known for wild-type complex I, one flavin mononucleotide and four iron-sulfur clusters detectable by electron paramagnetic resonance spectroscopy. In the mutant complex these groups are all readily reduced by NADH. However, the mutant complex is not capable of reducing ubiquinone. A recently described redox group identified in wild-type complex I by UV-visible spectroscopy is not detectable in the mutant complex. We propose that the reductase/isomerase subunit with its NADPH cofactor takes part in the biosynthesis of this new redox group.  相似文献   

9.
《BBA》2020,1861(12):148286
Energy converting NADH:ubiquinone oxidoreductase, complex I, is the first enzyme of respiratory chains in most eukaryotes and many bacteria. The complex comprises a peripheral arm catalyzing electron transfer and a membrane arm involved in proton-translocation. In Escherichia coli, the peripheral arm features a non-covalently bound flavin mononucleotide and nine iron-sulfur (Fe/S)-clusters. Very little is known about the incorporation of the Fe/S-clusters into the E. coli complex I. ErpA, an A-type carrier protein is discussed to act as a Fe/S-cluster carrier protein. To contribute to the understanding of ErpA for the assembly of E. coli complex I, we analyzed an erpA knock-out strain. Deletion of erpA decreased the complex I content in cytoplasmic membranes to approximately one third and the NADH oxidase activity to one fifth. EPR spectroscopy showed the presence of all Fe/S-clusters of the complex in the membrane but only in minor quantities. Sucrose gradient centrifugation and native PAGE revealed the presence of a marginal amount of a stable and fully assembled complex extractable from the membrane. Thus, ErpA is not essential for the assembly of complex I but its absence leads to a strong decrease of a functional complex in the cytoplasmic membrane due to a major lack of all EPR-detectable Fe/S-clusters.  相似文献   

10.
The respiratory chain of the mitochondrial inner membrane includes a proton-pumping enzyme, complex I, which catalyses electron transfer from NADH to ubiquinone. This electron pathway occurs through a series of protein-bound prosthetic groups, FMN and around eight iron-sulfur clusters. The high number of polypeptide subunits of mitochondrial complex I, around 40, have a dual genetic origin. Neurospora crassa has been a useful genetic model to characterise complex I. The characterisation of mutants in specific proteins helped to understand the elaborate processes of the biogenesis, structure and function of the oligomeric enzyme. In the fungus, complex I seems to be dispensable for vegetative growth but required for sexual development. N. crassa mitochondria also contain three to four nonproton-pumping alternative NAD(P)H dehydrogenases. One of them is located in the outer face of the inner mitochondrial membrane, working as a calcium-dependent oxidase of cytosolic NADPH.  相似文献   

11.
The existence of specific respiratory supercomplexes in mitochondria of most organisms has gained much momentum. However, its functional significance is still poorly understood. The availability of many deletion mutants in complex I (NADH:ubiquinone oxidoreductase) of Neurospora crassa, distinctly affected in the assembly process, offers unique opportunities to analyze the biogenesis of respiratory supercomplexes. Herein, we describe the role of complex I in assembly of respiratory complexes and supercomplexes as suggested by blue and colorless native polyacrylamide gel electrophoresis and mass spectrometry analyses of mildly solubilized mitochondria from the wild type and eight deletion mutants. As an important refinement of the fungal respirasome model, we found that the standard respiratory chain of N. crassa comprises putative complex I dimers in addition to I-III-IV and III-IV supercomplexes. Three Neurospora mutants able to assemble a complete complex I, lacking only the disrupted subunit, have respiratory supercomplexes, in particular I-III-IV supercomplexes and complex I dimers, like the wild-type strain. Furthermore, we were able to detect the I-III-IV supercomplexes in the nuo51 mutant with no overall enzymatic activity, representing the first example of inactive respirasomes. In addition, III-IV supercomplexes were also present in strains lacking an assembled complex I, namely, in four membrane arm subunit mutants as well as in the peripheral arm nuo30.4 mutant. In membrane arm mutants, high-molecular-mass species of the 30.4-kDa peripheral arm subunit comigrating with III-IV supercomplexes and/or the prohibitin complex were detected. The data presented herein suggest that the biogenesis of complex I is linked with its assembly into supercomplexes.  相似文献   

12.
Two related forms of the respiratory chain NADH dehydrogenase (NADH:ubiquinone reductase or complex I) are synthesized in the mitochondria of Neurospora crassa. Normally growing cells make a large form that consists of 25 subunits encoded by nuclear DNA and six to seven subunits encoded by mitochondrial DNA. Cells grown in the presence of chloramphenicol, however, make a smaller form comprising only 13 subunits, all encoded by nuclear DNA. When the large enzyme is dissected by chaotropic agents (such as NaBr), all those subunits of the large form that are missing in the small form can be isolated as a distinct, so-called hydrophobic fragment. The small enzyme and the hydrophobic fragment make up, with regard to their redox groups, subunit composition and function, two complementary parts of the large-form NADH dehydrogenase. Averaging of electron microscope images of single particles of the large enzyme was carried out, revealing an unusual L-shaped structure with two domains or "arms" arranged at right angles. The hydrophobic fragment obtained by the NaBr treatment corresponds in size and appearance to one of these arms. A three-dimensional reconstruction from images of negatively stained membrane crystals of the large-form NADH dehydrogenase shows a peripheral domain, protruding from the membrane, with weak unresolved density within the membrane. This peripheral domain was removed by washing the crystals in situ with 2 M-NaBr, exposing a large membrane-buried domain, which was reconstructed in three dimensions. A three-dimensional reconstruction of the small enzyme from negatively stained membrane crystals, also described here, shows only a peripheral domain. These results suggest that the membrane protruding arm of the large form corresponds to the small enzyme, whereas the arm lying within the membrane can be identified as the hydrophobic fragment. The two parts of NADH dehydrogenase that can be defined by the separate genetic origin of (most of) their subunits, their independent assembly, and their distinct contributions to the electron pathway can thus be assigned to the two arms of the L-shaped complex I.  相似文献   

13.
Respiratory chain complex I of the fungus Neurospora crassa contains at least 39 polypeptide subunits, of which 35 are conserved in mammals. The 11.5 kDa and 14 kDa proteins, homologues of bovine IP15 and B16.6, respectively, are conserved among eukaryotes and belong to the membrane domain of the fungal enzyme. The corresponding genes were separately inactivated by repeat-induced point-mutations, and null-mutant strains of the fungus were isolated. The lack of either subunit leads to the accumulation of distinct intermediates of the membrane arm of complex I. In addition, the peripheral arm of the enzyme seems to be formed in mutant nuo14 but, interestingly, not in mutant nuo11.5. These results and the analysis of enzymatic activities of mutant mitochondria indicate that both polypeptides are required for complex I assembly and function.  相似文献   

14.
We have cloned the nuclear gene encoding the 24-kDa iron-sulphur subunit of complex I from Neurospora crassa. The gene was inactivated in vivo by repeat-induced point-mutations, and mutant strains lacking the 24-kDa protein were isolated. Mutant nuo24 appears to assemble an almost intact complex I only lacking the 24-kDa subunit. However, we also found reduced levels of the NADH-binding, 51-kDa subunit of the enzyme. Surprisingly, the complex I from the nuo24 strain lacks NADH:ferricyanide reductase activity. In agreement with this, the respiration of intact mitochondria or mitochondrial membranes from the mutant strain is insensitive to rotenone inhibition. These results suggest that the nuo24 complex is not functioning in electron transfer and the 24-kDa protein is absolutely required for complex I activity. This phenotype may explain the findings that the 24-kDa iron-sulphur protein is reduced or absent in human mitochondrial diseases. In addition, selected substitutions of cysteine to alanine residues in the 24-kDa protein suggest that binding of the iron-sulphur centre is a requisite for protein assembly.  相似文献   

15.
The primary structure of a nuclear-encoded subunit of the respiratory chain NADH:ubiquinone reductase (complex I) from Neurospora crassa was determined by sequencing cDNA, genomic DNA and the N-terminus of the protein. The sequence correlates to a protein of 200 amino acids and a molecular mass of 21349 Da. The protein is synthesized without a cleavable presequence. It contains two alpha-helices predicted to traverse the bilayer and is a constituent of the membrane part of complex I.  相似文献   

16.
The proton-pumping NADH:ubiquinone oxidoreductase, respiratory complex I, couples the electron transfer from NADH to ubiquinone with the translocation of protons across the membrane. In Escherichia coli the complex is made up of 13 different subunits encoded by the so-called nuo-genes. Mutants, in which each of the nuo-genes was individually disrupted by the insertion of a resistance cartridge were unable to assemble a functional complex I. Each disruption resulted in the loss of complex I-mediated activity and the failure to extract a structurally intact complex. Thus, all nuo-genes are required either for the assembly or the stability of a functional E. coli complex I. The three subunits comprising the soluble NADH dehydrogenase fragment of the complex were detected in the cytoplasm of several nuo-mutants as one distinct band after BN-PAGE. It is discussed that the fully assembled NADH dehydrogenase fragment represents an assembly intermediate of the E. coli complex I. A partially assembled complex I bound to the membrane was detected in the nuoK and nuoL mutants, respectively. Overproduction of the ΔNuoL variant resulted in the accumulation of two populations of a partially assembled complex in the cytoplasmic membranes. Both populations are devoid of NuoL. One population is enzymatically active, while the other is not. The inactive population is missing cluster N2 and is tightly associated with the inducible lysine decarboxylase. This article is part of a Special Issue entitled: Biogenesis/Assembly of Respiratory Enzyme Complexes.  相似文献   

17.
The proton-pumping NADH:ubiquinone oxidoreductase, the respiratory complex I, couples the transfer of electrons from NADH to ubiquinone with the translocation of protons across the membrane. Electron microscopy revealed the two-part structure of the complex with a peripheral arm involved in electron transfer and a membrane arm most likely involved in proton translocation. It was proposed that the quinone binding site is located at the joint of the two arms. Most likely, proton translocation in the membrane arm is enabled by the energy of the electron transfer reaction in the peripheral arm transmitted by conformational changes. For the detection of the conformational changes and the localization of the quinone binding site, we set up a combination of site-directed spin labeling and EPR spectroscopy. Cysteine residues were introduced to the surface of the Escherichia coli complex I. The spin label (1-oxyl-2,2,5,5-tetramethyl-Δ3-pyrroline-3-methyl)-methanethiosulfonate (MTSL) was exclusively bound to the engineered positions. Neither the mutation nor the labeling had an effect on the NADH:decyl-ubiquinone oxidoreductase activity. The characteristic signals of the spin label were detected by EPR spectroscopy, which did not change by reducing the preparation with NADH. A decyl-ubiquinone derivative with the spin label covalently attached to the alkyl chain was synthesized in order to localize the quinone binding site. The distance between a MTSL labeled complex I variant and the bound quinone was determined by continuous-wave (cw) EPR allowing an inference on the location of the quinone binding site. The distances between the labeled quinone and other complex I variants will be determined in future experiments to receive further geometry information by triangulation.  相似文献   

18.
The NADH:ubiquinone oxidoreductase, respiratory complex I, couples the transfer of electrons from NADH to ubiquinone with a translocation of protons across the membrane. The complex consists of a peripheral arm catalyzing the electron transfer reaction and a membrane arm involved in proton translocation. The recently published X-ray structures of the complex revealed the presence of a unique 110 ? "horizontal" helix aligning the membrane arm. On the basis of this finding, it was proposed that the energy released by the redox reaction is transmitted to the membrane arm via a conformational change in the horizontal helix. The helix corresponds to the C-terminal part of the most distal subunit NuoL. To investigate its role in proton translocation, we characterized the electron transfer and proton translocation activity of complex I variants lacking either NuoL or parts of the C-terminal domain. Our data suggest that the H+/2e- stoichiometry of the ΔNuoL variant is 2, indicating a different stoichiometry for proton translocation as proposed from structural data. In addition, the same H+/e- stoichiometry is obtained with the variant lacking the C-terminal transmembraneous helix of NuoL, indicating its role in energy transmission.  相似文献   

19.
We have cloned cDNAs encoding the last iron-sulphur protein of complex I from Neurospora crassa. The cDNA sequence contains an open reading frame that codes for a precursor polypeptide of 226 amino acid residues with a molecular mass of 24972 Da. Our results indicate that the mature protein belongs probably to the peripheral arm of complex I and is rather unstable when not assembled into the enzyme. The protein is highly homologous to the PSST subunit of bovine complex I, the most likely candidate to bind iron-sulphur cluster N-2. All the amino acid residues proposed to bind such a cluster are conserved in the fungal protein.  相似文献   

20.
The mitochondrial complex I is the first component of the respiratory chain coupling electron transfer from NADH to ubiquinone to proton translocation across the inner membrane of the organelle. The enzyme from the fungus Neurospora crassa is similar to that of other organisms in terms of protein and prosthetic group composition, structure, and function. It contains a high number of polypeptide subunits of dual genetic origin. Most of its subunits were cloned, including those binding redox groups. Extensive gene disruption experiments were conducted, revealing many aspects of the structure, function, and biogenesis of complex I. Complex I is essential for the sexual phase of the life cycle of N. crassa, but not for the asexual stage. In addition to complex I, the fungal mitochondria contain at least three nonproton-pumping alternative NAD(P)H dehydrogenases feeding electrons to the respiratory chain from either matrix or cytosolic substrates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号