首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Behavioral responses of juveniles and adults of the mangrove crab Aratus pisonii (H. Milne Edwards, 1837) to black geometric shapes of equal surface area was measured. Crabs were tested either in presence or absence of chemicals generated from two common predator species, the portunid crab Callinectes ornatus Ordway, and the soapfish Haemulon aurolineatum Cuvier, 1830. The present study tested the hypothesis that A. pisonii (1) has the capacity to orient to visual cues; (2) it discriminates between different visual objects based on a combination of chemical and visual information and (3) this behavior changes with age. When presented with single black targets in background water, juveniles oriented toward all shapes. This behavioral response was interpreted as visual orientation toward potential shelter. Among shapes, juveniles showed preference for the vertical rectangle, probably due to the recognition of natural visual elements like mangrove roots. In predator conditioned water, juveniles exhibited a stronger response than in background water. Thus, juveniles were able to detect by odor the potential presence of predators. Change in responsiveness between adults and juveniles was also demonstrated.  相似文献   

2.
Behavioural responses of the gastropod Nerita fulgurans Gmelin, 1791 to flat black rectangles and intraspecific mucus trails were measured in a circular arena. Snails were tested in water either in the presence or absence of chemicals generated from a predator gastropod, Chicoreus brevifrons (Lamarck, 1822). The test hypothesis was that this snail has different behavioural responses as result of visual and chemical cue integration. Nerita fulgurans has the capacity to orient to solid targets subtending angles larger than 10° and follow its own mucus trails. In water conditioned by the predator C . brevifrons, snails exhibited an avoidance response when 10°, 20° and 45° sectors were presented, demonstrating an integration of chemical and visual information. The simultaneous presentation of two orienting cues (black sectors and mucus trails) was tested to determine the nature of the interaction. When the two cues were oriented in the same direction there was no effect. When the two cues were presented from directions 180° apart a preference for visual cues over mucus trail cues was evident when the visual angle of the visual cue subtended angles greater than 90°. This result demonstrates a hierarchical usage of the orienting references.  相似文献   

3.
Behavioural responses of the gastropod Nerita fulgurans Gmelin, 1791 to flat black rectangles and intraspecific mucus trails were measured in a circular arena. Snails were tested in water either in the presence or absence of chemicals generated from a predator gastropod, Chicoreus brevifrons (Lamarck, 1822). The test hypothesis was that this snail has different behavioural responses as result of visual and chemical cue integration. Nerita fulgurans has the capacity to orient to solid targets subtending angles larger than 10° and follow its own mucus trails. In water conditioned by the predator C . brevifrons , snails exhibited an avoidance response when 10°, 20° and 45° sectors were presented, demonstrating an integration of chemical and visual information. The simultaneous presentation of two orienting cues (black sectors and mucus trails) was tested to determine the nature of the interaction. When the two cues were oriented in the same direction there was no effect. When the two cues were presented from directions 180° apart a preference for visual cues over mucus trail cues was evident when the visual angle of the visual cue subtended angles greater than 90°. This result demonstrates a hierarchical usage of the orienting references.  相似文献   

4.
The climbing crab Sesarma leptosoma colonizes the mangrove roots and canopy of East African mangrove swamps, an intricate three-dimensional habitat in which it orients itself visually. To ascertain if vision helps this tree crab to detect dangers such as predators, we used dummy objects: (1) a preserved specimen of its predator, the crab Epixanthus dentatus in its typical ambush posture; (2) a piece of wood with real E. dentatus claws attached to it, the same size as, and painted to resemble (to the human eye), this predator; and (3) a piece of wood the same size and colour as a live crab but without claws. When these dummies were presented to migrating S. leptosoma in the field, they stopped their normal migratory flow only when they were able to see the open claws of the predator. Thus S. leptosoma showed a considerable ability to perceive shape, being able to distinguish motionless objects of different shapes but similar size and to associate the detected shapes with the presence of danger.  相似文献   

5.
Does Mangrove Leaf Chemistry Help Explain Crab Herbivory Patterns?   总被引:3,自引:0,他引:3  
We examined feeding by the mangrove tree crab Aratus pisonii in Tampa Bay, Florida, in relation to the percent dry weight of carbohydrate, protein, phenolics, condensed tannins, ash, carbon, nitrogen, carbonmitrogen ratio, water content, and sclerophylly for leaves of the red mangrove Rhizophora mangle. Comparisons of leaf chemistry were made among leaves that experienced variable levels of crab damage. Because R. mangle is the crab's preferred food source based on damage patterns in the field, comparisons of R. mangle leaf chemistry were made in relation to that of the black mangrove Avicennia germinans and the white mangrove Laguncularia racemosa. We observed a negative relationship between level of leaf damage and percent dry weight of nitrogen, carbohydrates, condensed tannins, and sclerophylly. In contrast, a positive relationship was found between leaf damage and the carbon:nitrogen ratio. The chemical constituents that provided the best explanation for differences in damage among the three mangrove species include condensed tannins, nitrogen, carbon:nitrogen ratio, carbohydrates, phenolics, water content, and ash. The results from this study suggest that chemistry only partially explains food preference by A. pisonii. It appears that A. pisonii feeding behavior and preference may be influenced by a more complex series of factors and interactions, which may include reproduction by, predation on, and interspecific competition with A. pisonii.  相似文献   

6.
Antipredator defenses in many species have been shown to exhibitphenotypic plasticity in response to variable predation risk.Some evidence suggests that in certain species adults act asproxy predators, triggering the development of adaptive defensesin juveniles where interaction with a predator is unlikely tooccur. However, almost nothing is known about how adult/juvenileinteractions mediate plasticity. Here, we examine the natureof the antipredator defenses that develop in Trinidadian guppiesas a function of early social experience and investigate theimportance of different types of cue (physical, visual, andolfactory) by rearing juveniles under 3 different social conditions.In the first, only juveniles are present; in the second, onlyvisual and olfactory interaction occurs between adults and juveniles;and in the third, adults physically interact with juveniles.Our analyses show that juveniles reared in the physical presenceof adults spend significantly less time shoaling with adultsthan fish from other treatments in an adult versus juvenileshoal-choice trial. Further, we show that juveniles with experienceof adult aggression have a decreased response latency to a simulatedavian predation attempt and travel a greater distance in thefirst 5 frames of movement after the simulated strike. Finally,juveniles reared with physical experience of adults developedrelatively deeper bodies and were significantly shorter in standardlength than guppies reared without physical experience of adults.  相似文献   

7.
Settlement is a key process for meroplanktonic organisms as it determines distribution of adult populations. Starvation and predation are two of the main mortality causes during this period; therefore, settlement tends to be optimized in microhabitats with high food availability and low predator density. Furthermore, brachyuran megalopae actively select favorable habitats for settlement, via chemical, visual and/or tactile cues. The main objective in this study was to assess the settlement of Metacarcinus edwardsii and Cancer plebejus under different combinations of food availability levels and predator presence. We determined, in the field, which factor is of greater relative importance when choosing a suitable microhabitat for settling. Passive larval collectors were deployed, crossing different scenarios of food availability and predator presence. We also explore if megalopae actively choose predator-free substrates in response to visual and/or chemical cues. We tested the response to combined visual and chemical cues and to each individually. Data was tested using a two-way factorial design ANOVA. In both species, food did not cause significant effect on settlement success, but predator presence did, therefore there was not trade-off in this case and megalopae respond strongly to predation risk by active aversion. Larvae of M. edwardsii responded to chemical and visual cues simultaneously, but there was no response to either cue by itself. Statistically, C. plebejus did not exhibit a differential response to cues, but reacted with a strong similar tendency as M. edwardsii. We concluded that crab megalopae actively select predator-free microhabitat, independently of food availability, using chemical and visual cues combined. The findings in this study highlight the great relevance of predation on the settlement process and recruitment of marine invertebrates with complex life cycles.  相似文献   

8.
The effect of size, predator types and presence of multiple predators on the microhabitat use of larvae and juveniles of a sublittoral, semipelagically schooling fish, the two-spotted goby (Gobiusculus flavescens), was tested in two experiments. Larvae (15 and 25 days old, Experiment I) and juveniles (mean ± 1 S.E.: small, 15.9 mm ± 1.28; medium, 19.2 mm ± 1.43; and large, 23.4 mm ± 1.67, Experiment II) were allowed to choose between two sections of the tanks; an upper, representing a water column habitat, and a lower, artificially vegetated, representing the hyperbenthic habitat. Position of larvae or juveniles and the activity level of juveniles were recorded. Predator treatments were: (I) no predators (control), (II) a pelagic predator, the jellyfish Aurelia aurita L., (III) a hyperbenthic predator, the mysid Praunus flexuosus O.F. Müller or (VI) both predator types simultaneously. In Experiment I predators were restricted to the habitat which they were chosen to represent, while goby larvae could move freely. In Experiment II both predators and juvenile gobies were allowed to move freely between compartments.Increasing age caused larval gobies, but not juveniles to shift downwards. Only 25-day-old larvae and small juveniles avoided the mysid by shifting upwards. Larval response to A. aurita was also size dependant: 25-day-old larvae avoided medusae by shifting downwards, while 15 day olds did not. Emergent multiple predator effects were found for the vertical distribution of 15-day-old larvae and small juveniles. Larger juveniles were more active than smaller, both in the upper and the lower sections of tanks. P. flexuosus caused juvenile gobies in their vicinity (i.e. in the lower section) to increase their activity level, while small juveniles (but not medium-sized or large) increased their activity level even when further away (i.e. in the upper section). The presence of A. aurita led to a reduction in activity of small juveniles in its vicinity (i.e. in the upper section), while no response was observed among older juveniles or juveniles further away from the predator (i.e. in the lower section). Emergent multiple predator effects on the activity level of juveniles were not observed.  相似文献   

9.
When animals detect predators they modify their behavior to avoid predation. However, less is known about whether prey species modify their behavior in response to predator body and behavioral cues. Recent studies indicated that tufted titmice, a small songbird, decreased their foraging behavior and increased their calling rates when they detected a potential predator facing toward a feeder they were using, compared to a potential predator facing away from that feeder. Here, we tested whether related Carolina chickadees, Poecile carolinensis, were also sensitive not just to the presence of a predator model, but to its facial/head orientation. Although chickadees are closely related to titmice, recent studies in different populations suggest chickadees respond to risky contexts involving predators differently than titmice. We conducted two field studies near feeders the birds were exploiting. In Study One, a mask‐wearing human observer stood near the feeder. In Study Two, a model of a domestic cat was positioned near the feeder. In both studies, the potential threatening stimulus either faced toward or faced away from the feeder. Chickadees avoided the feeder more in both studies when the potential predator was present, and showed strongest feeder avoidance when the potential predator faced toward the feeder. Chickadee calling behavior was also affected by the facial orientation of the potential predator in Study 1. These results suggest that, like titmice, chickadees exhibit predation‐risk‐sensitive foraging and calling behavior, in relation to facial and head orientation of potential threats. These small birds seem to attend to the likely visual space of potential predators. Sensitivity to predator cues like behavior and body posture must become more central to our theories and models of anti‐predator behavioral systems.  相似文献   

10.
Predator body size often indicates predation risk, but its significance in non-consumptive effects (NCEs) and predator risk assessment has been largely understudied. Although studies often recognize that predator body size can cause differing cascading effects, few directly examine prey foraging behavior in response to individual predator sizes or investigate how predator size is discerned. These mechanisms are important since perception of the risk imposed by predators dictates behavioral responses to predators and subsequent NCEs. Here, we evaluate the role of predator body size and biomass on risk assessment and the magnitude of NCEs by investigating mud crab foraging behavior and oyster survival in response to differing biomasses of blue crab predators using both laboratory and field methods. Cues from high predator biomass treatments including large blue crab predators and multiple small blue crab predators decreased mud crab foraging and increased oyster survival, whereas mud crab foraging in response to a single small blue crab did not differ from controls. Mud crabs also increased refuge use in the presence of large and multiple small, but not single small, blue crab predators. Thus, both predator biomass and aggregation patterns may affect the expression of NCEs. Understanding the impact of predator biomass may therefore be necessary to successfully predict the role of NCEs in shaping community dynamics. Further, the results of our laboratory experiments were consistent with observed NCEs in the field, suggesting that data from mesocosm environments can provide insight into field situations where flow and turbulence levels are moderate.  相似文献   

11.
Recent literature has suggested aggression may be context dependent. The purpose of this investigation was to examine aggressive and predator avoidance behaviors in juvenile blue crabs of two populations. Furthermore, we wanted to determine whether aggression persisted into the adult stages. Juvenile blue crabs collected from an impacted estuary, the Hackensack Meadowlands (HM), were found to attack a threatening stimulus significantly more often (70%) than conspecifics from a less impacted estuary (Tuckerton—TK). TK juveniles responded significantly more often with a flight (~35%) or mixed response (~30%). Additionally, HM juveniles were significantly more successful than TK juveniles at avoiding an adult blue crab predator when sandy substrate was present in laboratory experiments. However, the video clarity made it impossible to determine which interactions were allowing survival. To determine if “aggression” exhibited by the HM juveniles was the reason for their enhanced survival, follow-up predator avoidance experiments were conducted without substrate and videotaped. The results of these experiments suggest that aggression per se is not the reason since aggressive juveniles were no more successful than non-aggressive individuals. The aggressive behavior exhibited by HM juveniles continues into the adult stages. This behavior may be important to recognize when estimating population size as well as local fishery efforts.  相似文献   

12.
Predators can influence prey abundance and traits by direct consumption, as well as by non-consumptive effects of visual, olfactory, or tactile cues. The strength of these non-consumptive effects (NCEs) can be influenced by a variety of factors, including predator foraging mode, temporal variation in predator cues, and the density of competing prey. Testing the relative importance of these factors for determining NCEs is critical to our understanding of predator-prey interactions in a variety of settings. We addressed this knowledge gap by conducting two mesocosm experiments in a tri-trophic intertidal oyster reef food web. More specifically, we tested how a predatory fish (hardhead catfish, Ariopsis felis) directly influenced their prey (mud crabs, Panopeus spp.) and indirectly affected basal resources (juvenile oysters, Crassostrea virginica), as well as whether these direct and indirect effects changed across a density gradient of competing prey. Per capita crab foraging rates were inversely influenced by crab density, but they were not affected by water-borne predator cues. As a result, direct consumptive effects on prey foraging rates were stronger than non-consumptive effects. In contrast, predator cue and crab density interactively influenced indirect predator effects on oyster mortality in two experiments, with trait-mediated and density-mediated effects of similar magnitude operating to enhance oyster abundance. Consistent differences between a variable predator cue environment and other predator cue treatments (no cue and constant cue) suggests that an understanding of the natural risk environment experienced by prey is critical to testing and interpreting trait-mediated indirect interactions. Further, the prey response to the risk environment may be highly dependent on prey density, particularly in prey populations with strong intra-specific interactions.  相似文献   

13.

Background

Photoreceptors have evolved numerous times giving organisms the ability to detect light and respond to specific visual stimuli. Studies into the visual abilities of the Asteroidea (Echinodermata) have recently shown that species within this class have a more developed visual sense than previously thought and it has been demonstrated that starfish use visual information for orientation within their habitat. Whereas image forming eyes have been suggested for starfish, direct experimental proof of true spatial vision has not yet been obtained.

Results

The behavioural response of the coral reef inhabiting crown-of-thorns starfish (Acanthaster planci) was tested in controlled aquarium experiments using an array of stimuli to examine their visual performance. We presented starfish with various black-and-white shapes against a mid-intensity grey background, designed such that the animals would need to possess true spatial vision to detect these shapes. Starfish responded to black-and-white rectangles, but no directional response was found to black-and-white circles, despite equal areas of black and white. Additionally, we confirmed that starfish were attracted to black circles on a white background when the visual angle is larger than 14°. When changing the grey tone of the largest circle from black to white, we found responses to contrasts of 0.5 and up. The starfish were attracted to the dark area’s of the visual stimuli and were found to be both attracted and repelled by the visual targets.

Conclusions

For crown-of-thorns starfish, visual cues are essential for close range orientation towards objects, such as coral boulders, in the wild. These visually guided behaviours can be replicated in aquarium conditions. Our observation that crown-of-thorns starfish respond to black-and-white shapes on a mid-intensity grey background is the first direct proof of true spatial vision in starfish and in the phylum Echinodermata.
  相似文献   

14.
The contribution made by saltmarsh to the production of estuarine zooplankton was examined through a comparison of inputs and outputs of tidal water at a site on Towra Point, NSW, Australia. Saltmarsh proved to be a net exporter of crab and gastropod larvae, although it functioned as a sink for copepods and amphipods. Further, the highest density of zooplankton in estuarine nearshore habitats (saltmarsh, mangrove, seagrass, and open water) during a high tide event was found in the saltmarsh. The presence of high concentrations of zooplankton, predominantly crab and gastropod larvae, in the saltmarsh and lesser extent in the mangrove represents a source of food for estuarine fish.  相似文献   

15.
We investigated the potential for ontogenetic resource partitioning within a population of the Texas earless lizard Cophosaurus texanus Results from focal samples, line transects, haphazard observations, and stomach flushes compiled in summer (July 1993) and autumn (September 1995) revealed differences in microhabitat use and diet between adults and juveniles Juveniles use rock perches more frequently than adult males, and consume smaller prey than adults No ontogenetic differences in thermal ecology were observed Diet differences between juveniles and adults may be attributed to the inability of juveniles to handle large prey items Differences between juveniles and adults in prey size and microhabitat use suggest ontogenetic variation in foraging, predator avoidance, and territory defense  相似文献   

16.
Animals can engage in visual displays, which may target conspecifics, heterospecifics or both. Here we studied the function of the flamboyant crest‐raising display of hoopoes Upupa epops in experiments performed with males in captivity. Males were exposed to sounds of a conspecific (male hoopoe song), a potential predator (human voice), and two controls (the song of a blackbird Turdus merula, and background noise). These stimuli were presented to males in the presence and absence of females. Males raised the crest with a significantly higher probability when confronted with stimuli indicating potential threats (rival mate or predator) than with controls. The crest display was frequent when confronted with both kinds of threats independently of the presence of a female, suggesting that it was directed to the predator and the rival male. The probability of raising the crest was not related to body condition, and there was a marginally but not significant negative relationship between probability of raising the crest and the number of black spots on the crest feathers, which may suggest that crest display could be informing about male quality. Therefore, male hoopoes display the crest in a heterospecific context in response to detection of potential threats, which could be a deceptive or pursuit‐deterrent signal. The results also support a role of the crest in sexual selection, suggesting that crest display in male hoopoes may serve multiple functions.  相似文献   

17.
Shoals of hatchery‐reared and wild sea bass juveniles Dicentrarchus labrax were tested for differences in their antipredator responses towards a potential live predator, the eel Anguilla anguilla . Eight experimental shoals ( i.e . replicates), each composed of 15 individuals from the same stock of juveniles ( i.e . wild or hatchery), were video recorded for 5 min before and after predator exposure. A set of behavioural variables were measured during the pre‐stimulus and stimulus phases of each test and compared between the two groups of replicates. Results showed that in both hatchery‐reared and wild juveniles predator exposure elicited a significant increase in the mean level of shoal cohesiveness and mean shoal distance from the predator, and a significant decrease in the mean shoal distance from the bottom. Shoals of wild juveniles, however, aggregated more quickly and reached higher shoal cohesiveness within the first 20 s of the stimulus period than shoals of hatchery‐reared fish. During this period, the wild fish also reached the highest peak in shoal cohesiveness, which then decreased gradually towards the levels observed before predator exposure. Another component of the antipredator response, the predator inspection behaviour, was fully developed in both wild and hatchery fish. Wild fish, however, tended to inspect the predator at a closer distance than hatchery fish.  相似文献   

18.
The mosquito Skusea pembaensis Theobald inhabits mangrove habitats in East Africa, where the adults oviposit on crabs and the larvae undergo development in the water at the bottom of crab burrows. In Tanga, Tanzania, Sk. pembaensis adults were observed in and around the burrows of the land crab Cardisoma carnifex Herbst, a previously unreported association. C. carnifex adults were transported from the mangrove to a laboratory holding container, immersed in tap water, and released 2 days later. Larvae of Skusea pembaensis were recovered from 91 % of C. carnifex of diverse sizes and both sexes, preliminary evidence of the close association between these two species in coastal Northeastern Tanzania. Sk. pembaensis is a neglected species but may be a vector of medical importance.  相似文献   

19.
Diverse functions have been assigned to the visual appearance of webs, spiders and web decorations, including prey attraction, predator deterrence and camouflage. Here, we review the pertinent literature, focusing on potential camouflage and mimicry. Webs are often difficult to detect in a heterogeneous visual environment. Static and dynamic web distortions are used to escape visual detection by prey, although particular silk may also attract prey. Recent work using physiological models of vision taking into account visual environments rarely supports the hypothesis of spider camouflage by decorations, but most often the prey attraction and predator confusion hypotheses. Similarly, visual modelling shows that spider coloration is effective in attracting prey but not in conveying camouflage. Camouflage through colour change might be used by particular crab spiders to hide from predator or prey on flowers of different coloration. However, results obtained on a non-cryptic crab spider suggest that an alternative function of pigmentation may be to avoid UV photodamage through the transparent cuticle. Numerous species are clearly efficient locomotory mimics of ants, particularly in the eyes of their predators. We close our paper by highlighting gaps in our knowledge.  相似文献   

20.
Several recent studies have shown that food web coupling by ontogenetic niche shifts can generate alternative stable states (ASS). However, these studies mainly considered cases where juvenile and adult stages are the top level consumers. The conditions under which ASS occur in more structurally diverse food web configurations have not been explored. In this study, I examine the influence of food-chain length and the trophic positions of juveniles and adults on the existence of ASS. Comprehensive model analysis showed that if both juveniles and adults are top predators, ASS are possible irrespective of their trophic level, because of overcompensation in reproduction and maturation due to strong density dependence, as previously predicted. However, the following potential food-web effects were found: ASS potential (1) disappears if either or both the juveniles and adults have a predator and (2) is once again observed if another predator is added on the stage-specific predator. These mechanisms involve (1) top–down control that relaxes intrastage food competition and (2) top–down cascade that intensifies the intrastage competition, respectively. Furthermore, it was illustrated that the environmental conditions under which ASS occurred varied in complex ways with the coupled food-web configurations. My results provide a novel concept that anthropogenic changes in local community structure (e.g., species extinction and invasion) propagate through space and may cause or prevent regime shifts in broad-scale community structure by altering the resilience to environmental perturbations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号