首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 338 毫秒
1.
We have attempted to purify endogenous substrate proteins for casein kinases I and II from the cytosol of AH-66 hepatoma cells. Utilizing the fact that only a few substrates are concentrated in the fraction eluted from DEAE-cellulose between 0.3 and 0.6 M NaCl, two substrates were purified from this fraction by DEAE-cellulose chromatography, hydroxyapatite chromatography, and HPLC on a DEAE-5PW column. The purified substrate proteins had molecular masses of 30.5 kDa and 31 kDa. The 31-kDa protein substrate was markedly phosphorylated by casein kinase II, but only slightly by casein kinase I. The radioactive phosphate incorporated into 31-kDa substrate by casein kinase II was 0.2 mol/mol of the protein and phosphorylation occurred on both threonine and serine residues. The 30.5 kDa protein was only slightly phosphorylated by casein kinase II, but not at all by casein kinase I.  相似文献   

2.
We have attempted to purify endogenous substrate proteins for casein kinases I and II from the cytosol of AH-66 hepatoma cells. Utilizing the fact that only a few substrates are concentrated in the fraction eluted from DEAE-cellulose between 0.3 and 0.6 M NaCl, two substrates were purified from this fraction by DEAE-cellulose chromatography, hydroxyapatite chromatography, and HPLC on a DEAE-5PW column. The purified substrate proteins had molecular masses of 30.5 kDa and 31 kDa. The 31-kDa protein substrate was markedly phosphorylated by casein kinase II, but only slightly by casein kinase I. The radioactive phosphate incorporated into 31-kDa substrate by casein kinase II was 0.2 mol/mol of the protein and phosphorylation occurred on both threonine and serine residues. The 30.5 kDa protein was only slightly phosphorylated by casein kinase II, but not at all by casein kinase I.  相似文献   

3.
Summary Membrane proteins of human erythrocytes can be phosphorylated not only by membrane casein kinase (MS) but also by cytosolic casein kinases CS and CTS, resembling casein kinase I and II, respectively.Casein kinase CS, like membrane casein kinase MS, preferentially phosphorylates membrane proteins such as band 2 (spectrin, -subunit) and band 3, which are the major phosphate-acceptor proteins in the endogenous phosphorylation of isolated ghosts in the presence of [-32P]ATP.By contrast, cytosolic casein kinase CTS phosphorylates, in addition to band 2, some membrane proteins, whose endogenous phosphorylation in isolated ghosts under the same conditions is negligible, if any.The CS- and CTS-catalyzed phosphorylations exhibit different response to increasing NaCl (or KCI) concentrations up to physiological levels (140 mM KCI, 20 mM NaCI); i.e. CS-and MS-catalyzed phosphorylations are strongly inhibited by 75–150 mM KCI (or NaCl), while CTS-catalyzed phosphorylation is practically unaffected.In the absence of added NaCl, CS- and MS-catalyzed phosphorylations are markedly inhibited by 1.5-3 mM 2,3-bisphosphoglycerate, whereas CTS-catalyzed phosphorylation appears to be practically unaffected.Finally, CS- and MS-catalyzed phosphorylations are slightly inhibited also by 1 mM spermine, while CTS-catalyzed phosphorylation is enhanced by this polycation concentration.  相似文献   

4.
Administration of T3 (20 micrograms/100 g BW) for 3 days increases phosphorylation of several proteins in rat liver cytosol in vitro. To help elucidate the mechanism of T3-induced phosphorylation, we studied which protein kinase(s) mediate phosphorylation of endogenous cytosolic proteins. Five different protein kinases were obtained by DEAE+ cellulose column chromatographic fractionation of liver cytosol. When their ability to phosphorylate heat-inactivated cytosol was investigated, casein kinase, a cAMP independent protein kinase, showed the strongest effect. Casein kinase, purified by phosphocellulose chromatography, phosphorylated more than 10 cytosolic proteins. Several T3-dependent (and cAMP independent) phosphoproteins were included among these. One protein with Mr 39 X 10(3), of which phosphorylation is stimulated by T3 within five hours after injection, was the most active substrate for casein kinase. The results suggest that casein kinase is the enzyme responsible for phosphorylation of many rat liver cytosolic proteins and that several phosphoproteins, apparently under T3-regulation, might be phosphorylated by this enzyme.  相似文献   

5.
Casein kinase 1 (CK 1) and casein kinase 2 (CK 2) were purified from the cytosol fraction of AH-66 cells to electrophoretic homogeneity by a simple procedure based on our finding that CK 1 and CK 2 are chromatographically distinct on phosvitin-Sepharose. The amino acid composition of CK 2 resembles those of cyclic AMP-dependent and cyclic GMP-dependent protein kinases but is considerably different from that of CK 1. Both CK 1 and CK 2 were markedly stimulated by low concentrations of spermine and spermidine but were practically unaffected by putrescine. When CK 1 and CK 2 were added back to AH-66 cytosol, they promoted the phosphorylation of the same cytosolic proteins that were phosphorylated endogenously. Although most of the cytosolic proteins phosphorylated by CK 1 and CK 2 were common, some proteins were preferentially phosphorylated by either CK 1 or CK 2. Interestingly, CK 1 was able to phosphorylate the plasma membrane proteins of AH-66 cells. In contrast, enhancement of the phosphorylation of the membrane proteins by CK 2 was practically undetectable.  相似文献   

6.
A cyclic nucleotide-independent protein kinase of human platelets, which phosphorylated histones, myelin basic protein and protamine and did not catalyze the phosphorylation of acidic proteins such as casein, phosvitin and myosin light chain, has been purified approx. 1,500-fold from the crude extract by steps of DEAE-cellulose, Sephadex G-200, hydroxylapatite and phosphoryl cellulose column chromatography. The substrate phosphorylation by this kinase was markedly enhanced by calmodulin even in the absence of Ca2+, when mixed histone was used as a substrate. The interaction of the kinase with mixed histone resulted in an irreversible inactivation of the enzyme. Calmodulin prevented this inactivation, and this compound produced an apparent increase in histone phosphorylation by the kinase. It should be noted that acidic polypeptides such as troponin-C, phospholipids and nucleic acids have a similar ability. The addition of Ca2+ reduced the effect of calmodulin more than the effects of other acidic compounds.  相似文献   

7.
A study is presented of the cAMP-dependent phosphorylation in bovine heart mitochondria of three proteins of 42, 16 and 6.5 kDa associated to the inner membrane. These proteins are also phosphorylated by the cytosolic cAMP-dependent protein kinase and by the purified catalytic subunit of this enzyme. In the cytosol, proteins of 16 and 6.5 kDa are phosphorylated by the cAMP-dependent kinase. It is possible that cytosolic and mitochondrial cAMP-dependent kinases phosphorylate the same proteins in the two compartments.  相似文献   

8.
The isolated plasma membranes of AH-66 hepatoma cells were phosphorylated by casein kinase 1 purified from the cytosol fraction of AH-66 cells. Casein kinase 2 purified from the same source had little effect on the phosphorylation of the plasma membranes. Two-dimensional gel electrophoresis and autoradiography showed that casein kinase 1 enhanced the phosphorylation of approx. 10 plasma membrane proteins that are phosphorylated only faintly in the isolated plasma membranes by endogenous protein kinase. Among these phosphoproteins, tubulin was identified as judged from their molecular weights and isoelectric points. These results suggest that one of the physiological functions of casein kinase 1 is phosphorylation of plasma membrane and plasma membrane-associated proteins.  相似文献   

9.
Differential effects of polyamines on rat thyroid protein kinase activities   总被引:1,自引:0,他引:1  
Ornithine decarboxylase, the rate-limiting enzyme in polyamine biosynthesis, has been shown to be regulated in thyroid by thyrotropin both in vivo and in vitro. Little, however, is known of the role of polyamines in thyroid cell function. Since studies in other tissues suggest that polyamines may influence protein phosphorylation, we studied the effect of the polyamines on various protein kinase activities in rat thyroid. Putrescine, spermidine, and spermine inhibit cyclic-AMP-dependent histone H1 kinase activity when measured in the cytosol fraction of rat thyroid; this effect is largely reproduced by NaCl concentrations of equivalent ionic strength. Both spermidine and spermine effect a 1.6-2.4-fold increase in cytosolic cyclic-AMP-independent (messenger-independent) casein kinase activity; stimulation by both polyamines is maximal at 5mM. A similar profile of stimulation is observed for messenger-independent casein kinase activity in crude nuclear preparations. Sodium chloride fails to stimulate both cytosolic and nuclear messenger-independent casein kinase activities at ionic strength equivalent to the spermine concentrations used. Spermine, but not putrescine, spermidine, or sodium chloride, inhibits calcium/phospholipid-dependent protein kinase C activity in cytosol extracts partially purified by DEAE chromatography. These findings suggest that regulation of protein kinase(s) by polyamines may represent a proximal locus (i) of action of thyrotropin-regulated ornithine decarboxylase activity in thyroid.  相似文献   

10.
1. Two cyclic AMP independent protein kinases phosphorylating preferentially acidic substrates have been identified in soluble extract from human, rat and pig thyroid glands/ Both enzymes were retained on DEAE-cellulose. The first enzyme activity eluted between 60 and 100 mM phosphate (depending on the species), phosphorylated both casein and phosvitin and was retained on phosphocellulose; this enzyme likely corresponds to a casein kinase already described in many tissues. The second enzyme activity eluted from DEAE-cellulose at phosphate concentrations higher than 3000 mM, phosphorylated only phosvitin and was not retained on phophocellulose. These enzymes were neither stimulated by cyclic AMP, cyclic GMP and calcium, nor inhbiited by the inhibitor of the cyclic AMP dependent protein kinases. 2. The second enzyme activity was purified from pig thyroid gland by the association of affinity chromatography on insolubilized phosvitin and DEAE-cellulose chromatography. Its specific activity was increased by 8400. 3. The purified enzyme (phosvitin kinase) was analyzed for biochemical and enzymatic properties. Phosvitin kinase phosphorylated phosvitin with an apparent Km of 100 μg/ml; casein, histone, protamine and bovine serum albumin were not phosphorylated. The enzyme utilized ATP as well as GTP as phosphate donor with an apparent Km of 25 and 28 μM, respectively. It had an absolute requirement for Mg2+ with a maximal activity at 4 mM and exhibited an optimal activity at pH 7.0. The molecular weight of the native enzyme was 110 000 as determined by Sephacryl S300 gel filtration. The analysis by SDS-polyacrylamide gel electrophoresis revealed a major band with a molecualr weight of 35 000 suggesting a polymeric structure of the enzyme.  相似文献   

11.
Summary A cyclic nucleotide-independent protein kinase which phoshorylates preferentially acidic proteins such as casein or phosvitin was isolated from cytosol of chick duodenal mucosa. The enzyme was purified more than 633 fold to apparent homogeneity by ammonium sulfate fractionation, column chromatography on DEAE-cellulose, phosphocellulose, hydroxylapatite and by sucrose density gradient centrifugation. The native enzyme has a molecular weight of 131000 as measured by gel filtration. The enzyme is a complex protein containing three polypeptides of molecular weight of 39 000, 36 000 and 27 000. It behaves as a complex throughout its purification and gel filtration but its components are readily separated by electrophoresis in denaturing buffer. The 27 000 molecular weight band was selectively autophosphorylated when the enzyme was incubated in the presence of [-32P]ATP.When casein was used as substrate, physiological concentrations of naturally occurring polyamines such as spermine and spermidine markedly stimulated enzyme activity. However with phosvitin as substrate polyamines were strong inhibitors of the enzyme activity. This contrasting effect on intestinal kinase activity was also apparent using cytoplasmic proteins as endogenous phosphate acceptors. A characterization of this differential effect is presented and some possible physiological implications are discussed.  相似文献   

12.
The effect of oleate on the subcellular distribution of protein kinase C (PKC) was studied in isolated hepatocytes and in perfused rat liver in the presence of physiological concentrations of serum albumin. A time- and dose-dependent translocation of PKC from the cytosol towards the membranes was observed at oleate concentrations that fell within the range of concentrations reached under several physiological conditions. Analysis of the membrane-bound isoenzymes of PKC by hydroxylapatite chromatography revealed that the beta isoenzyme was preferentially translocated to this compartment in hepatocytes incubated with oleate. Activation of PKC after incubation of hepatocytes with oleate involved at least three different effectors of the enzyme: the fatty acid itself, the diacylglycerol synthesized from oleate, and the rise in the cytosolic calcium concentration elicited by oleate. As a result of PKC activation, protein phosphorylation of intact hepatocytes in response to oleate exhibited an enhancement in the phosphate content of a protein of 82 kDa, similar to that phosphorylated in the presence of phorbol dibutyrate.  相似文献   

13.
A protein kinase, specific for 60S ribosomal proteins, has been isolated from Saccharomyces cerevisiae cells, purified to almost homogeneity and characterized. The isolated enzyme is not related to other known protein kinases. Enzyme purification comprised three chromatography steps; DEAE-cellulose, phosphocellulose and heparin-Sepharose. SDS/PAGE analysis of the purified enzyme, indicated a molecular mass of around 71 kDa for the stained single protein band. The specific activity of the protein kinase was directed towards the 60S ribosomal proteins L44, L44', L45 and a 38 kDa protein. All the proteins are phosphorylated only at the serine residues. None of the 40S ribosomal proteins were phosphorylated in the presence of the kinase. For that reason we have named the enzyme the 60S kinase. An analysis of the phosphopeptide maps of acidic ribosomal proteins, phosphorylated at either the 60S kinase or casein kinase II, showed almost identical patterns. Using the immunoblotting technique, the presence of the kinase has been detected in extracts obtained from intensively growing cells. These findings suggest an important role played by the 60S kinase in the regulation of ribosomal activity during protein synthesis.  相似文献   

14.
Importance of higher polyamines, spermidine, and spermine, in relation to the mechanism and adaptation to combat abiotic stress has been well established in cereals. Owing to their polycationic nature at physiological pH, polyamines bind strongly to negative charges in cellular components such as nucleic acids, various proteins, and phospholipids. To study the physiological role of polyamine during salinity stress, phosphorylation study was carried out in cytosolic soluble protein fraction isolated from the roots of salt tolerant (Nonabokra) and salt sensitive (M-1-48) rice cultivars treated with none (control), NaCl (150 mM, 16 h), spermidine (1 mM, 16 h) or with abscisic acid (100 μM, 16 h). A calcium independent auto regulatory 42 kDa protein kinase was found to phosphorylate myelin basic protein and casein but not histone. Interestingly, this was the only protein to be phosphorylated in root cytosolic fraction during NaCl/abscisic acid/spermidine treatment indicating its importance in salinity mediated signal transduction. This is the first report of polyamine as well as abscisic acid induced protein kinase activity in rice root in response to salinity stress.  相似文献   

15.
1. Two cyclic AMP independent protein kinases phosphorylating preferentially acidic substrates have been identified in soluble extract from human, rat and pig thyroid glands. Both enzymes were retained on DEAE-cellulose. The first enzyme activity eluted between 60 and 100 mM phosphate (depending on the species), phosphorylated both casein and phosvitin and was retained on phosphocellulose; this enzyme likely corresponds to a casein kinase already described in many tissues. The second enzyme activity eluted from DEAE-cellulose at phosphate concentrations higher than 300 mM, phosphorylated only phosvitin and was not retained on phosphocellulose. These enzymes were neither stimulated by cyclic AMP, cyclic GMP and calcium, nor inhibited by the inhibitor of the cyclic AMP dependent protein kinases. 2. The second enzyme activity was purified from pig thyroid gland by the association of affinity chromatography on insolubilized phosvitin and DEAE-cellulose chromatography. Its specific activity was increased by 8400. 3. The purified enzyme (phosvitin kinase) was analyzed for biochemical and enzymatic properties. Phosvitin kinase phosphorylated phosvitin with an apparent Km of 100 micrograms/ml; casein, histone, protamine and bovine serum albumin were not phosphorylated. The enzyme utilized ATP as well as GTP as phosphate donor with an apparent Km of 25 and 28 microM, respectively. It had an absolute requirement for Mg2+ with a maximal activity at 4 mM and exhibited an optimal activity at pH 7.0. The molecular weight of the native enzyme was 110 000 as determined by Sephacryl S300 gel filtration. The analysis by SDS-polyacrylamide gel electrophoresis revealed a major band with a molecular weight of 35000 suggesting a polymeric structure of the enzyme.  相似文献   

16.
The nuclear protein kinase NI (NI kinase) was purified from NB-15 mouse neuroblastoma cells by phosphocellulose column and casein affinity column chromatography. The purified NI kinase exhibited (i) an apparent subunit molecular weight of about 37,000, (ii) autophosphorylation, and (iii) insensitivity to inhibition by heparin. When NI kinase was added to heat-treated neuroblastoma nuclei in the presence of [gamma-32P] ATP, two proteins with apparent subunit molecular weights of 11,000 and 10,000 were prominently phosphorylated. Other protein kinases tested including the nuclear protein kinase NII, Type I cAMP-dependent protein kinase, and protein kinase C did not catalyze the phosphorylation of these two proteins. The NI kinase-catalyzed phosphorylation of these two proteins was completely inhibited by 1 mM spermine. In contrast, 10 mM putrescine, 2 mM spermidine, 5 mM arginine, and 10 mM NH4Cl, had no inhibitory effect on this phosphorylation reaction. Our study also indicated that the phosphorylation of the 11,000- and 10,000-dalton proteins occurred in the nuclear matrix fraction but not in heterogeneous nuclear ribonucleoproteins, high mobility group proteins, or histone fractions. We have previously reported that spermine specifically inhibits the endogenous phosphorylation of an 11,000-dalton nuclear protein in various mammalian cell lines (Chen, K. Y., and Verma, R. (1984) Biochem. Biophys. Res. Commun. 118, 710-716). The present study suggests that the 11,000- and 10,000-dalton nuclear proteins may be native substrates of nuclear protein kinase NI and that their phosphorylation can be affected by physiological concentrations of spermine.  相似文献   

17.
M M Piras  A Horenstein  R Piras 《Enzyme》1977,22(4):219-229
The protein kinase activity of a 10,000 g supernatant of purified human lymphocytes can be resolved by DEAE-cellulose chromatography into six protein kinase fractions: three of them phosphorylate casein preferentially, and three histones. The same procedure with the corresponding nuclear fraction yields only two casein kinases. All these fractions, except one casein kinase of the cytosol, have been studied with respect to protein and nucleotide specificity, effect of salts and of cyclic nucleotides, sedimentation, etc. The results obtained indicate that the enzyme fractions of the cytosol have distinct characteristics, suggesting that they are different protein kinases, and that the nuclear kinases are similar to the two main casein kinases of the cytosol.  相似文献   

18.
The cytosolic fraction of goat cauda epididymis possesses a protein kinase (PKx) activity which is stimulated by a number of unsaturated fatty acids of which arachidonic acid is the best activator in absence of cAMP or Ca(2+). Phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine and diacylglycerol have no effect either alone or in combination. The membrane fraction does not show any appreciable kinase activity even after detergent treatment. PKx migrates as a single band of apparent molecular mass of 116 kDa on 10% SDS-PAGE after sequential chromatographic separation on DEAE-cellulose, phenyl-Sepharose, high-Q anion exchange and protamine-agarose affinity column. PKx phosphorylates histone H1, histone IIIs and protamine sulfate, but not casein. However, the best phosphorylation was obtained with a substrate based on PKC pseudosubstrate sequence (RFARKGSLRQKNV). The kinase phosphorylates two endogenous cytosolic proteins of 60 and 68 kDa. Ser residues are primarily phosphorylated although a low level of phosphorylation is observed on Thr residues also. Ca(2+) and Mn(2+) inhibit PKx activity in the micromolar range. Staurosporine is found to inhibit the PKx activity to a significant level at sub-nanomolar concentration. Lyso-phosphatidylcholine and certain detergents at very low concentrations (<0.05%) stimulate enzyme activity to some extent. The immuno-crossreactivity study with antibody against different PKC isotypes suggests that the protein kinase under study is not related to any known PKC family. Even the antibody against PKN (a related protein kinase reported in rat testis found to be activated by arachidonic acid) does not cross-react with this protein kinase. Hence we believe that the protein kinase (PKx) reported here is different even from the PKN of rat testis. The phosphorylation of endogenous proteins by the protein kinase may be involved in cell regulation including fertility regulation and signal transduction.  相似文献   

19.
A nuclear system for studying nuclear protein phosphorylation is characterized, using as phosphate donor either low levels of [γ-32P]GTP, low levels of [γ-32P]ATP, or low levels of labeled ATP plus excess unlabeled GTP. Since nuclear casein kinase II is the only described nuclear protein kinase to use GTP with high affinity, low levels of GTP should specifically assay this enzyme. ATP should measure all kinases, and ATP plus unlabeled GTP should measure all kinases except nuclear casein kinase II (ATP-specific kinases). The results are consistent with these predictions. In contrast with the ATP-specific activity, endogenous phosphorylation with GTP was enhanced by 100 mM NaCl, inhibited by heparin and quercetin, stimulated by polyamines, and did not use exogenous histone as substrate. The GTP- and ATP-specific kinases phosphorylated different subsets of about 20 endogenous polypeptides each. Addition of purified casein kinase II enhanced the GTP-supported phosphorylation of the identical proteins that were phosphorylated by endogenous kinase. These results support the hypothesis that activity measured with GTP is catalyzed by nuclear casein kinase II, though other minor kinases which can use GTP are not ruled out. Preliminary observations with this system suggest that the major nuclear kinases exist in an inhibited state in nuclei, and that the effects of polyamines on nuclear casein kinase II activity are substrate specific. This nuclear system is used to determine if the C-proteins of hnRNP particles, previously shown to be substrates for nuclear casein kinase II in isolated particles, is phosphorylated by GTP in intact nuclei. The results demonstrate that the C-proteins are effectively phosphorylated by GTP, but in addition they are phosphorylated by ATP-specific kinase activity.  相似文献   

20.
S Levasseur  T Poleck  M Shaw  P Guinan  G Burke 《Life sciences》1987,41(14):1679-1683
The effects of two inhibitors of ornithine decarboxylase activity, alpha-difluoromethylornithine (DMFO) and (2R,5R) 6-heptyne-2,5 diamine (HDA), and an inhibitor of S-adenosylmethionine decarboxylase, methylglyoxal bis-guanylhydrazone (MGBG), were tested on casein kinase activity and endogenous phosphorylation in the cytosol fractions of mouse thyroid and a rat prostate tumor model, Dunning R 3327 MAT LyLu subline. When tested at 5 mM, spermine, DMFO, HDA, and MGBG stimulated mouse thyroid casein kinase activity by 230%, 14%, 65% and 106%, respectively. Similar responses were observed in prostate tumor cytosol. In mouse thyroid cytosol, spermine stimulates 32P incorporation primarily into 3 proteins (MW: 107, 88, and 56 kDa). At 5 mM, MGBG partially reproduces the effects of spermine; HDA is less effective and DMFO is without effect. Similar effects were observed on 3 proteins in prostate tumor cytosol with molecular weights of 91, 41, and 32 kDa. These data provide additional support for the hypothesis that the observed synergistic inhibitory effect of DMFO and MGBG on cell growth may not be due solely to the inhibition of polyamine biosynthesis. Our findings suggest that MGBG-mediated reduction in the phosphorylation of casein kinase substrate should be considered as one locus of action.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号