首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
J M Pages  J M Bolla  A Bernadac  D Fourel 《Biochimie》1990,72(2-3):169-176
Various monoclonal antibodies (MoF) directed against cell-surface-exposed epitopes of OmpF, one major outer membrane pore protein of Escherichia coli B and K-12, have been used to study the assembly and the topology of the protein. This paper firstly describes the characterization of the OmpF epitopes recognized by the various monoclonal antibodies. A comparison between OmpC, OmpF and PhoE porins with respect to their primary amino acid sequence and their cell-surface exposed regions allows us to propose a rough model including 2 antigenic sites. The second part is focused on the assembly of the OmpF protein in the outer membrane. Various forms, precursor, unassembled monomer, metastable oligomer (pre-trimer) and trimer are detected with immunological probes directed against OmpF during a kinetic analysis of the process. The requirement for a concomitant lipid synthesis during the trimerization has been demonstrated by investigating the presence of a specific native epitope. The role of lipopolysaccharide during the stabilization of the conformation is discussed with regard to the various steps of assembly.  相似文献   

2.
The different conformations of the outer membrane protein OmpF of Escherichia coli B were studied with immunological probes. The antigenic determinants recognized by one monoclonal (MoF3) and two polyclonal antibodies were investigated under various conditions of solubilization which modify the association of OmpF with other membrane components, such as lipopolysaccharide. Several polymeric forms of the protein could be detected after extraction at 37 degrees C or 56 degrees C. The monoclonal antibody, which is specific to an exposed region of native OmpF, recognized various trimeric forms in an immunoprecipitation assay. Under the same conditions, the binding of polyclonal antibodies apparently induced strong conformational rearrangements, since the pattern of trimeric forms detected was greatly modified. The conversion of newly synthesized monomers of OmpF to the various trimer forms was investigated using these antibodies. The trimerization occurred rapidly but the appearance of the native conformation of OmpF was delayed. Some additional step was required to expose the MoF3-specific antigenic site at the surface of the trimeric form. These results are discussed in relation to the structure of OmpF and its association with lipopolysaccharide in the outer membrane.  相似文献   

3.
Determinants of OmpF porin antigenicity and structure.   总被引:10,自引:0,他引:10  
Sixty-six murine hybridomas raised to Escherichia coli B/r porin were used to identify and differentiate the epitopes of this outer membrane protein. Anti-porin monoclonal antibodies (mAb) were raised against outer membrane fragments, purified native trimeric porin (trimer), and purified sodium dodecyl sulfate-denatured monomeric porin (monomer). Immunochemical and flow cytometric methods identified five distinct cell surface-exposed determinants on OmpF. The peptide composition of porin epitopes was determined by analysis of mAb reactivity with cyanogen bromide-generated peptide fragments. Four of 43 anti-monomer mAb reacted with surface exposed sites on OmpF, defining epitopes that consist of residues within CNBr peptides d2, d3, and B. The anti-porin mAb panel was also used to evaluate changes in porin antigenic structure in strains with short ompF deletions. Flow cytometric experiments indicated that despite changes in porin permeability, little if any alteration of surface epitopes occurred in these strains. Western immunoblot analysis of the mutant porins showed loss of reactivity with numerous mAb, which was caused by changes in three spatially distinct epitopes at residues 108-111, 118-123, and 124-129. Our findings indicate that in these ompF mutants the residues responsible for altering porin permeability are not exposed on the cell surface, but are buried within the tertiary structure of the protein. One of these regions, which is apparently involved in the determination of channel permeability characteristics, is conserved among 15 of 16 different porin molecules which were screened with the anti-OmpF mAb panel.  相似文献   

4.
A method is presented for the efficient location of antigenic determinants using a series of chimeric proteins. By means of in vivo homologous recombination between the ompC and ompF genes coding for OmpC and OmpF, homologous proteins of the Escherichia coli outer membrane, a series of ompF-ompC chimeric genes was constructed (Nogami, T., Mizuno, T., & Mizushima, S. (1985) J. Bacteriol. 164, 797-801, and this work). The OmpF-OmpC chimeric proteins expressed by these genes were successfully used to locate antigenic determinants recognized by monoclonal antibodies, which specifically react with either the OmpC or OmpF protein. Interaction between monoclonal antibodies and the chimeric proteins was examined by means of either enzyme-linked immunosorbent assay or immunoblot analysis. The antigenic determinants recognized by three anti-OmpC antibodies and one anti-OmpF antibody were thus located. Finally, the polypeptides covering these regions were chemically synthesized for two of them and then tested as to their reactivity with the antibodies. The peptides reacted with the corresponding antibodies when the former were chemically coupled with bovine serum albumin. Most of the monoclonal antibodies isolated in this work were highly specific to the unfolded monomer of the protein against which the antibody was raised. But they did not react with the trimer, the native form. These results are discussed in relation to the structures and functions of the OmpC and OmpF proteins. The use of a series of monoclonal antibodies for studying the mechanism of protein translocation across the cytoplasmic membrane is also discussed.  相似文献   

5.
A large-scale purification scheme was developed for lipopolysaccharide-free protein P, the phosphate-starvation-inducible outer-membrane porin from Pseudomonas aeruginosa. This highly purified protein P was used to successfully form hexagonal crystals in the presence of n-octyl-beta-glucopyranoside. Amino-acid analysis indicated that protein P had a similar composition to other bacterial outer membrane proteins, containing a high percentage (50%) of hydrophilic residues. The amino-terminal sequence of this protein, although not homologous to either outer membrane protein, PhoE or OmpF, of Escherichia coli, was found to have an analogous protein-folding pattern. Protein P in the native trimer form was capable of maintaining a stable functional trimer after proteinase cleavage. This suggested the existence of a strongly associated tertiary and quaternary structure. Circular dichroism studies confirmed these results in that a large proportion of the protein structure was determined to be beta-sheet and resistant to acid pH and heating in 0.1% sodium dodecyl sulphate.  相似文献   

6.
The binding of lactoferrin, an iron-binding glycoprotein found in secretions and leukocytes, to the outer membrane of Gram-negative bacteria is a prerequisite to exert its bactericidal activity. It was proposed that porins, in addition to lipopolysaccharides, are responsible for this binding. We studied the interactions of human lactoferrin with the three major porins of Escherichia coli OmpC, OmpF, and PhoE. Binding experiments were performed on both purified porins and porin-deficient E. coli K12 isogenic mutants. We determined that lactoferrin binds to the purified native OmpC or PhoE trimer with molar ratios of 1.9 +/- 0.4 and 1.8 +/- 0.3 and Kd values of 39 +/- 18 and 103 +/- 15 nM, respectively, but not to OmpF. Furthermore, preferential binding of lactoferrin was observed on strains that express either OmpC or PhoE. It was also demonstrated that residues 1-5, 28-34, and 39-42 of lactoferrin interact with porins. Based on sequence comparisons, the involvement of lactoferrin amino acid residues and porin loops in the interactions is discussed. The relationships between binding and antibacterial activity of the protein were studied using E. coli mutants and planar lipid bilayers. Electrophysiological studies revealed that lactoferrin can act as a blocking agent for OmpC but not for PhoE or OmpF. However, a total inhibition of the growth was only observed for the PhoE-expressing strain (minimal inhibitory concentration of lactoferrin was 2.4 mg/ml). These data support the proposal that the antibacterial activity of lactoferrin may depend, at least in part, on its ability to bind to porins, thus modifying the stability and/or the permeability of the bacterial outer membrane.  相似文献   

7.
The interaction of colicins with target cells is a paradigm for protein import. To enter cells, bactericidal colicins parasitize Escherichia coli outer membrane receptors whose physiological purpose is the import of essential metabolites. Colicins E1 and E3 initially bind to the BtuB receptor, whose beta-barrel pore is occluded by an N-terminal globular "plug". The x-ray structure of a complex of BtuB with the coiled-coil BtuB-binding domain of colicin E3 did not reveal displacement of the BtuB plug that would allow passage of the colicin (Kurisu, G., S. D. Zakharov, M. V. Zhalnina, S. Bano, V. Y. Eroukova, T. I. Rokitskaya, Y. N. Antonenko, M. C. Wiener, and W. A. Cramer. 2003. Nat. Struct. Biol. 10:948-954). This correlates with the inability of BtuB to form ion channels in planar bilayers, shown in this work, suggesting that an additional outer membrane protein(s) is required for colicin import across the outer membrane. The identity and interaction properties of this OMP were analyzed in planar bilayer experiments.OmpF and TolC channels in planar bilayers were occluded by colicins E3 and E1, respectively, from the trans-side of the membrane. Occlusion was dependent upon a cis-negative transmembrane potential. A positive potential reversibly opened OmpF and TolC channels. Colicin N, which uses only OmpF for entry, occludes OmpF in planar bilayers with the same orientation constraints as colicins E1 and E3. The OmpF recognition sites of colicins E3 and N, and the TolC recognition site of colicin E1, were found to reside in the N-terminal translocation domains. These data are considered in the context of a two-receptor translocon model for colicin entry into cells.  相似文献   

8.
A hybrid gene consisting of the ompF promoter, the coding regions for the signal peptide, and the Ala-Glu residue of the OmpF NH2 terminus and the coding region for the major outer membrane lipoprotein devoid of the NH2-terminal cysteine residue was constructed. Escherichia coli carrying the cloned gene produced the predicted hybrid protein that is the same as the major lipoprotein except that the diacyl glycerylcysteine residue at the NH2 terminus is replaced by the Ala-Glu residue. The hybrid protein was localized in the periplasmic space as a trimer with a noncovalent interaction in addition to the previously known covalent interaction with the peptidoglycan. These results strongly indicate that the major lipoprotein exists as a trimer in the periplasmic space with covalent and noncovalent interactions with the peptidoglycan layer through the protein domain on one side and with the hydrophobic interaction with the outer membrane through the lipid domain on the other side. The trimeric structure of the lipoprotein was directly demonstrated by the chemical cross-linking of the native lipoprotein with both cleavable and uncleavable reagents. The cross-linking study also revealed interaction between the lipoprotein and the OmpA protein, a major outer membrane protein.  相似文献   

9.
Zakharov SD  Zhalnina MV  Sharma O  Cramer WA 《Biochemistry》2006,45(34):10199-10207
The crystal structure previously obtained for the complex of BtuB and the receptor binding domain of colicin E3 forms a basis for further analysis of the mechanism of colicin import through the bacterial outer membrane. Together with genetic analysis and studies on colicin occlusion of OmpF channels, this implied a colicin translocon consisting of BtuB and OmpF that would transfer the C-terminal cytotoxic domain (C96) of colicin E3 through the Escherichia coli outer membrane. This model does not, however, explain how the colicin attains the unfolded conformation necessary for transfer. Such a conformation change would require removal of the immunity (Imm) protein, which is bound tightly in a complex with the folded colicin E3. In the present study, it was possible to obtain reversible removal of Imm in vitro in a single column chromatography step without colicin denaturation. This resulted in a mostly unordered secondary structure of the cytotoxic domain and a large decrease in stability, which was also found in the receptor binding domain. These structure changes were documented by near- and far-UV circular dichroism and intrinsic tryptophan fluorescence. Reconstitution of Imm in a complex with C96 or colicin E3 restored the native structure. C96 depleted of Imm, in contrast to the native complex with Imm, efficiently occluded OmpF channels, implying that the presence of tightly bound Imm prevents its unfolding and utilization of the OmpF porin for subsequent import of the cytotoxic domain.  相似文献   

10.
A novel OmpY porin was predicted based on the Yersinia pseudotuberculosis genome analysis. Whereas it has the different genomic annotation such as "outer membrane protein N" (ABS46310.1) in str. IP 31758 or "outer membrane protein C2, porin" (YP_070481.1) in str. IP32953, it might be warranted to rename the OmpN/OmpC2 to OmpY, "outer membrane protein Y", where letter "Y" pertained to Yersinia. Both phylogenetic analysis and genomic localization clearly support that the OmpY porin belongs to a new group of general bacterial porins. The recombinant OmpY protein with its signal sequence was overexpressed in porin-deficient Escherichia coli strain. The mature rOmpY was shown to insert into outer membrane as a trimer. The OmpY porin, isolated from the outer membrane, was studied employing spectroscopic, electrophoretic and bilayer lipid membranes techniques. The far UV CD spectrum of rOmpY was essentially identical to that of Y. pseudotuberculosis OmpF. The near UV CD spectrum of rOmpY was weaker and smoother than that of OmpF. The rOmpY single-channel conductance was 180 ± 20 pS in 0.1 M NaCl and was lower than that of the OmpF porin. As was shown by electrophoretic and bilayer lipid membrane experiments, the rOmpY trimers were less thermostable than the OmpF trimers. The porins differed in the trimer-monomer transition temperature by about 20°C. The three-dimensional structural models of the Y. pseudotuberculosis OmpY and OmpF trimers were generated and the intra- and intermonomeric interactions stabilizing the porins were investigated. The difference in the thermal stability of OmpY and OmpF trimers was established to correlate with the difference in intermonomeric polar contacts.  相似文献   

11.
12.
Inducible hybrid genes encoding two large domains, a periplasmic domain consisting of the PhoS sequence and an outer membrane domain corresponding to various lengths of the OmpF mature sequence were constructed. The synthesized hybrid polypeptides are correctly processed during the early times of induction, their precursor forms being accumulated at later times. These hybrids restore sensitivity toward colicin A to ompF E coli B strain which suggests an outer membrane location. At least 2 of them are indeed localized in the outer membrane after immunogold labelling on ultrathin cryosections. Insertion of a hydrophobic sequence between PhoS and OmpF improves the trimerization and the assembly of the OmpF part. Only the hybrids presenting the last C-terminal 29 residues of OmpF are able to promote the colicin N killing action and to exhibit a trimeric conformation which is recognized by specific antibodies. Moreover, the deletion of the C-terminal region impairs the functional insertion of the OmpF domain; this indicates that the last membrane-spanning region of OmpF is necessary for the correct folding and orientation of the protein in the outer membrane.  相似文献   

13.
Escherichia coli outer membrane protein K is a porin.   总被引:6,自引:5,他引:1       下载免费PDF全文
Protein K is an outer membrane protein found in pathogenic encapsulated strains of Escherichia coli. We present evidence here that protein K is structurally and functionally related to the E. coli K-12 porin proteins (OmpF, OmpC, and PhoE). Protein K was found to cross-react with antibody to OmpF protein and to share 8 out of 17 peptides in common with the OmpF protein. Strains that are OmpC porin- and OmpF porin- and contain protein K as their major outer membrane protein have increased rates of uptake of nutrients and a faster growth rate relative to the parental porin- strain. The protein K-containing strains are at least 1,000-fold more sensitive to colicins E2 and E3 than is the porin -deficient strain. These data suggest that protein K is a functional porin in E. coli. The porin function of protein K was also demonstrated in vitro, using black lipid membranes. Protein K increased the conductance in these membranes in discrete, uniform steps characteristic of channels with a size of about 2 nS.  相似文献   

14.
Outer membrane protein F, a major component of the Escherichia coli outer membrane, was crystallized for the first time in lipidic mesophase of monoolein in novel space groups, P1 and H32. Due to ease of its purification and crystallization OmpF can be used as a benchmark protein for establishing membrane protein crystallization in meso, as a "membrane lyzozyme". The packing of porin trimers in the crystals of space group H32 is similar to natural outer membranes, providing the first high-resolution insight into the close to native packing of OmpF. Surprisingly, interaction between trimers is mediated exclusively by lipids, without direct protein-protein contacts. Multiple ordered lipids are observed and many of them occupy identical positions independently of the space group, identifying preferential interaction sites of lipid acyl chains. Presence of ordered aliphatic chains close to a positively charged area on the porin surface suggests a position for a lipopolysaccharide binding site on the surface of the major E. coli porins.  相似文献   

15.
16.
Bdellovibrio bacteriovorus 109D andBdellovibrio stolpii derive one of their major outer membrane proteins from the outer membrane of their prey. This prey-derived protein corresponds to the OmpF protein ofEscherichia coli. Bdellovibrios cultivated onSalmonella typhimurium prey acquire theSalmonella OmpF protein; this protein is distinguishable electrophoretically from the OmpF protein ofE. coli. Bdellovibrios containing the prey-derived OmpF protein are sensitive to killing by colicin A but not colicin E1, whereas bdellovibrios without this protein are completely resistant to colicin killing.  相似文献   

17.
We recently reported the cloning and sequencing of the gene encoding a 31-kDa Treponema pallidum subsp. pallidum rare outer membrane porin protein, designated Tromp1 (D. R. Blanco, C. I. Champion, M. M. Exner, H. Erdjument-Bromage, R. E. W. Hancock, P. Tempst, J. N. Miller, and M. A. Lovett, J. Bacteriol. 177:3556-3562, 1995). Here, we report the stable expression of recombinant Tromp1 (rTromp1) in Escherichia coli. rTromp1 expressed without its signal peptide and containing a 22-residue N-terminal fusion resulted in high-level accumulation of a nonexported soluble protein that was purified to homogeneity by fast protein liquid chromatography (FPLC). Specific antiserum generated to the FPLC-purified rTromp1 fusion identified on immunoblots of T. pallidum the native 31-kDa Tromp1 protein and two higher-molecular-mass oligomeric forms of Tromp1 at 55 and 80 kDa. rTromp1 was also expressed with its native signal peptide by using an inducible T7 promoter. Under these conditions, rTromp1 fractionated predominantly with the E. coli soluble and outer membrane fractions, but not with the inner membrane fraction. rTromp1 isolated from the E. coli outer membrane and reconstituted into planar lipid bilayers showed porin activity based on average single-channel conductances of 0.4 and 0.8 nS in 1 M KCl. Whole-mount immunoelectron microscopy using infection-derived immune serum against T. pallidum indicated that rTromp1 was surface exposed when expressed in E. coli. These findings demonstrate that rTromp1 can be targeted to the E. coli outer membrane, where it has both porin activity and surface antigenic exposure.  相似文献   

18.
The 315-residue N-terminal T domain of colicin E3 functions in translocation of the colicin across the outer membrane through its interaction with outer membrane proteins including the OmpF porin. The first 83 residues of the T domain are known from structure studies to be disordered. This flexible translocation subdomain contains the TolB box (residues 34 to 46) that must cross the outer membrane in an early translocation event, allowing the colicin to bind to the TolB protein in the periplasm. In the present study, it was found that cytotoxicity of the colicin requires a minimum length of 19 to 23 residues between the C terminus (residue 46) of the TolB box and the end of the flexible subdomain (residue 83). Colicin E3 molecules of sufficient length display normal binding to TolB and occlusion of OmpF channels in vitro. The length of the N-terminal subdomain is critical because it allows the TolB box to cross the outer membrane and interact with TolB. It is proposed that the length constraint is a consequence of ordered structure in the downstream segment of the T domain (residues 84 to 315) that prevents its insertion through the outer membrane via a translocation pore that includes OmpF.  相似文献   

19.
In this study we demonstrate that most members of the family Enterobacteriaceae possess a maltose-inducible outer membrane protein homologous to the LamB protein of Escherichia coli K-12. These proteins react with polyclonal antibodies raised against the LamB protein of E. coli K-12. We compared the antigenic structure of the LamB protein in members of the family Enterobacteriaceae with six monoclonal antibodies raised against the LamB protein of E. coli K-12. Four of them reacted with epitopes located at the outer face of the membrane, and two reacted with epitopes located at the inner face of the membrane. A great degree of variability was observed for the external epitopes. Even in a single species, such as E. coli, an important polymorphism was present. In contrast, the internal epitopes were more conserved.  相似文献   

20.
Colicins kill Escherichia coli after translocation across the outer membrane. Colicin N displays an unusually simple translocation pathway, using the outer membrane protein F (OmpF) as both receptor and translocator. Studies of this binary complex may therefore reveal a significant component of the translocation pathway. Here we show that, in 2D crystals, colicin is found outside the porin trimer, suggesting that translocation may occur at the protein-lipid interface. The major lipid of the outer leaflet interface is lipopolysaccharide (LPS). It is further shown that colicin N binding displaces OmpF-bound LPS. The N-terminal helix of the pore-forming domain, which is not required for pore formation, rearranges and binds to OmpF. Colicin N also binds artificial OmpF dimers, indicating that trimeric symmetry plays no part in the interaction. The data indicate that colicin is closely associated with the OmpF-lipid interface, providing evidence that this peripheral pathway may play a role in colicin transmembrane transport.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号