首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Coumarins are inhibitors of the ATP hydrolysis and DNA supercoiling reactions catalysed by DNA gyrase. Their target is the B subunit of gyrase (GyrB), encoded by the gyrB gene. The exact mode and site of action of the drugs is unknown. We have identified four mutations conferring coumarin resistance to Escherichia coli: Arg-136 to Cys, His or Ser and Gly-164 to Val. In vitro, the ATPase and supercoiling activities of the mutant GyrB proteins are reduced relative to the wild-type enzyme and show resistance to the coumarin antibiotics. Significant differences in the susceptibility of mutant GyrB proteins to inhibition by either chlorobiocin and novobiocin or coumermycin have been found, suggesting wider contacts between coumermycin and GyrB. We discuss the significance of Arg-136 and Gly-164 in relation to the notion that coumarin drugs act as competitive inhibitors of the ATPase reaction.  相似文献   

2.
Abstract

DNA gyrase supercoils DNA in bacteria. The fact that it is essential in all bacteria and absent from eukaryotes makes it an ideal drug target. We discuss the action of coumarin and quinolone drugs on gyrase. In the case of coumarins, the drugs are known to be competitive inhibitors of the gyrase ATPase reaction. From a combination of structural and biochemical studies, the molecular details of the gyrase-coumarin complex are well established. In the case of quinolones, the drugs are thought to act by stabilising a cleavage complex between gyrase and DNA that arrests polymerases in vivo. The exact nature of the gyrase-quinolone-DNA complex is not known; we propose a model for this complex based on structural and biochemical data.  相似文献   

3.
The coumarin antibiotics are potent inhibitors of DNA replication whose target is the enzyme DNA gyrase, an ATP-dependent bacterial type II topoisomerase. The coumarin drugs inhibit gyrase action by competitive binding to the ATP-binding site of DNA gyrase B protein. The production of new biologically active products has stimulated additional studies on coumarin-gyrase interactions. In this regard, a 4.2 kDa peptide mimic of DNA gyrase B protein from Escherichia coli has been designed and synthesized. The peptide sequence includes the natural fragment 131-146 (coumarin resistance-determining region) and a segment containing the gyrase-DNA interaction region (positions 753-770). The peptide mimic binds to novobiocin (Ka = 1.4+/-0.3 x 10(5) M(-1)), plasmid (Ka = 1.6+/-0.5 x 10(6) M(-1)) and ATP (Ka = 1.9+/-50.4 x 10(3) M(-1)), results previously found with the intact B protein. On the other hand, the binding to novobiocin was reduced when a mutation of Arg-136 to Leu-136 was introduced, a change previously found in the DNA gyrase B protein from several coumarin-resistant clinical isolates of Escherichia coli In contrast, the binding to plasmid and to ATP was not altered. These results suggest that synthetic peptides designed in a similar way to that described here could be used as mimics of DNA gyrase in studies which seek a better understanding of the ATP, as well as coumarin, binding to the gyrase and also the mechanism of action of this class of antibacterial drugs.  相似文献   

4.
DNA gyrase supercoils DNA in bacteria. The fact that it is essential in all bacteria and absent from eukaryotes makes it an ideal drug target. We discuss the action of coumarin and quinolone drugs on gyrase. In the case of coumarins, the drugs are known to be competitive inhibitors of the gyrase ATPase reaction. From a combination of structural and biochemical studies, the molecular details of the gyrase-coumarin complex are well established. In the case of quinolones, the drugs are thought to act by stabilising a cleavage complex between gyrase and DNA that arrests polymerases in vivo. The exact nature of the gyrase-quinolone-DNA complex is not known; we propose a model for this complex based on structural and biochemical data.  相似文献   

5.
A number of lines of evidence suggest that the N-terminal sub-domain of the DNA gyrase B protein contains the binding site for the coumarin antibiotics. We have engineered a clone which encodes a 24 kDa protein which represents this domain. Bacteria which overproduce this protein show an elevated level of resistance to coumarins, suggestive of binding of the 24 kDa protein to the drugs In vivo. In vitro we find that the 24 kDa protein does not interact with the gyrase A or B proteins or with DNA, and fails to hydrolyse ATP or show significant binding to ATP, ADP or ADPNP. However, we show that the 24 kDa protein binds coumarin drugs as tightly as the Intact B protein. A number of experiments suggest that the Interaction of the coumarins with the protein is predominantly hydrophobic in nature.  相似文献   

6.
This study describes the first crystal structures of a complex between a DNA topoisomerase and a drug. We present the structures of a 24 kDa N-terminal fragment of the Escherichia coli DNA gyrase B protein in complexes with two different inhibitors of the ATPase activity of DNA gyrase, namely the coumarin antibiotic, novobiocin, and GR122222X, a member of the cyclothialidine family. These structures are compared with the crystal structure of the complex with an ATP analogue, adenylyl-beta-gamma-imidodiphosphate (ADPNP). The likely mechanism, by which mutant gyrase B proteins become resistant to inhibition by novobiocin are discussed in light of these comparisons. The three ligands are quite dissimilar in chemical structure and bind to the protein in very different ways, but their binding is competitive because of a small degree of overlap of their binding sites. These crystal structures consequently describe a chemically well characterized ligand binding surface and provide useful information to assist in the design of novel ligands.  相似文献   

7.
The DNA dependence of the ATPase activity of DNA gyrase   总被引:20,自引:0,他引:20  
We have studied the ATPase activity of DNA gyrase both in the absence and presence of DNA. In the absence of DNA we show that the gyrase B protein alone has a very low level of ATPase activity which can be increased many-fold by pretreatment of the B protein with heat or urea. When both the gyrase A protein and linear DNA are also present, the ATPase activity of the untreated B protein is greatly stimulated. We find that the extent of stimulation is dependent upon the length of the DNA but largely independent of DNA sequence. DNA molecules greater than 100 base pairs in length are much more effective in stimulating the gyrase ATPase than those of 70 base pairs or less, although short DNA molecules will stimulate the ATPase at high concentrations. The behavior of long and short DNA molecules with respect to ATPase stimulation is also reflected in their abilities to bind DNA gyrase. To account for these data we propose a model for the interaction of gyrase with ATP and DNA in which ATP hydrolysis requires the binding of DNA to two sites on the enzyme.  相似文献   

8.
The rise in bacterial resistance to antibiotics demonstrates the medical need for new antibacterial agents. One approach to this problem is to identify new antibacterials that act through validated drug targets such as bacterial DNA gyrase. DNA gyrase uses the energy of ATP hydrolysis to introduce negative supercoils into plasmid and chromosomal DNA and is essential for DNA replication. Inhibition of the ATPase activity of DNA gyrase is the mechanism by which coumarin-class antibiotics such as novobiocin inhibit bacterial growth. Although ATPase inhibitors exhibit potent antibacterial activity against gram-positive pathogens, no gyrase ATPase activity from a gram-positive organism is described in the literature. To address this, we developed and optimized an enzyme-coupled phosphate assay and used this assay to characterize the ATPase kinetics of Streptococcus pneumoniae gyrase. The S. pneumoniae enzyme exhibits cooperativity with ATP and requires organic potassium salts. We also studied inhibition of the enzyme by novobiocin. Apparent inhibition constants for novobiocin increased linearly with ATP concentration, indicative of an ATP-competitive mechanism. Similar binding affinities were measured by isothermal titration calorimetry. These results reveal unique features of the S. pneumoniae DNA gyrase ATPase and demonstrate the utility of the assay for screening and kinetic characterization of ATPase inhibitors.  相似文献   

9.
The design, synthesis, and in vitro biological activity of a series of novel coumarin inhibitors of gyrase B is presented. Replacement of the 3-acylamino residue (3-NHCOR) of coumarin drugs with reversed isosteres C(=O)R, C(=N-OR)R', COOR, CONHR and CONHOR leads to highly potent analogues which displayed excellent inhibition of the negative supercoiling of the relaxed DNA and antibacterial activity.  相似文献   

10.
Characterization of quercetin binding site on DNA gyrase   总被引:1,自引:0,他引:1  
Gyrases are DNA topology modifying enzymes present only in prokaryotes which makes them an attractive target for antibacterial drugs. Quercetin, one of the most abundant natural flavonoids, inhibits supercoiling activity of bacterial gyrase and induces DNA cleavage. It has been generally assumed that the mechanism of flavonoid inhibition is based on interaction with DNA. We show that quercetin binds to the 24 kDa fragment of gyrase B of Escherichia coli with a K(D) value of 15 microM and inhibits ATPase activity of gyrase B. Its binding site overlaps with ATP binding pocket and could be competitively replaced by either ATP or novobiocin. The structural model of quercetin-gyrase complex was prepared, based on the close similarity with ATP and quercetin binding sites of the src family tyrosine kinase Hck. We propose that quercetin inhibits gyrases through two different mechanisms based either on interaction with DNA or with ATP binding site of gyrase.  相似文献   

11.
DNA gyrase is a DNA topoisomerase indispensable for cellular functions in bacteria. We describe a novel, hitherto unknown, mechanism of specific inhibition of Mycobacterium smegmatis and Mycobacterium tuberculosis DNA gyrase by a monoclonal antibody (mAb). Binding of the mAb did not affect either GyrA-GyrB or gyrase-DNA interactions. More importantly, the ternary complex of gyrase-DNA-mAb retained the ATPase activity of the enzyme and was competent to catalyse DNA cleavage-religation reactions, implying a new mode of action different from other classes of gyrase inhibitors. DNA gyrase purified from fluoroquinolone-resistant strains of M.tuberculosis and M.smegmatis were inhibited by the mAb. The absence of cross-resistance of the drug-resistant enzymes from two different sources to the antibody-mediated inhibition corroborates the new mechanism of inhibition. We suggest that binding of the mAb in the proximity of the primary dimer interface region of GyrA in the heterotetrameric enzyme appears to block the release of the transported segment after strand passage, leading to enzyme inhibition. The specific inhibition of mycobacterial DNA gyrase with the mAb opens up new avenues for designing novel lead molecules for drug discovery and for probing gyrase mechanism.  相似文献   

12.
DNA gyrase, a type II topoisomerase, is the sole supercoiling activity in the cell and is essential for cell survival. There are two proteinaceous inhibitors of DNA gyrase that are plasmid-borne and ensure maintenance of the plasmids in bacterial populations. However, the physiological role of GyrI, an inhibitor of DNA gyrase encoded by the Escherichia coli genome, has been elusive. Previously, we have shown that GyrI imparts resistance against microcin B17 and CcdB. Here, we find that GyrI provided partial/limited protection against the quinolone class of gyrase inhibitors but had no effect on inhibitors that interfere with the ATPase activity of the enzyme. Moreover, GyrI negated the effect of alkylating agents, such as mitomycin C and N-methyl-N-nitro-N-nitrosoguanidine, that act independently of DNA gyrase. Hence, in vivo, GyrI appears to be involved in reducing DNA damage from many sources. In contrast, GyrI is not effective against lesions induced by ultraviolet radiation. Furthermore, the expression of GyrI does not significantly alter the topology of DNA. Thus, although isolated as an inhibitor of DNA gyrase, GyrI seems to have a broader role in vivo than previously envisaged.  相似文献   

13.
14.
Pierrat OA  Maxwell A 《Biochemistry》2005,44(11):4204-4215
Microcin B17 (MccB17) is a DNA gyrase poison; in previous work, this bacterial toxin was found to slowly and incompletely inhibit the reactions of supercoiling and relaxation of DNA by gyrase and to stabilize the cleavage complex, depending on the presence of ATP and the DNA topology. We now show that the action of MccB17 on the gyrase ATPase reaction and cleavage complex formation requires a linear DNA fragment of more than 150 base pairs. MccB17 is unable to stimulate the ATPase reaction by stabilizing the weak interactions between short linear DNA fragments (70 base pairs or less) and gyrase, in contrast with the quinolone ciprofloxacin. However, MccB17 can affect the ATP-dependent relaxation of DNA by gyrase lacking its DNA-wrapping or ATPase domains. From these findings, we propose a mode of action of MccB17 requiring a DNA molecule long enough to allow the transport of a segment through the DNA gate of the enzyme. Furthermore, we suggest that MccB17 may trap a transient intermediate state of the gyrase reaction present only during DNA strand passage and enzyme turnover. The proteolytic signature of MccB17 from trypsin treatment of the full enzyme requires DNA and ATP and shows a protection of the C-terminal 47-kDa domain of gyrase, indicating the involvement of this domain in the toxin mode of action and consistent with its proposed role in the mechanism of DNA strand passage. We suggest that the binding site of MccB17 is in the C-terminal domain of GyrB.  相似文献   

15.
Novobiocin-Sepharose was prepared by coupling of novobiocin to Epoxy-activated Sepharose 6B and used as an affinity adsorbent. Four novobiocin-binding proteins were isolated from crude extracts of Escherichia coli with molecular weights of 105, 92, 85 and 40 kdal. The two larger proteins were identified as the A subunit (gyrA protein) and the B subunit (gyrB protein) of DNA gyrase topoisomerase II). By this method the two gyrase components can be easily separated and purified in high yield. Although both proteins are involved in the ATP-dependent supercoiling of relaxed plasmid DNA, only the gyrB protein is required for catalyzing the cleavage of ATP. The gyrB protein ATPase activity is competitively inhibited by novobiocin and related coumarin antibiotics. ATP hydrolysis is unaffected by the addition of either gyrA protein or DNA but stimulated in the presence of both.  相似文献   

16.
The synthesis and biological profile in vitro of a series of coumarin inhibitors of gyrase B bearing a N-propargyloxycarbamate at C-3' of noviose is presented. Replacement of the 5-methylpyrrole-2-carboxylate of coumarin drugs with an N-propargyloxycarbamate bioisostere leads to analogues with improved antibacterial activity. Analysis of crystal structures of coumarin antibiotics with the 24 kDa N-terminal domain of the gyrase B protein provides a rational for the excellent inhibitory potency of C-3' N-alkoxycarbamates.  相似文献   

17.
Intrinsic DNA-dependent ATPase activity of reverse gyrase   总被引:4,自引:0,他引:4  
Reverse gyrase is a type I DNA topoisomerase that promotes positive supercoiling of closed-circular double-stranded DNA through an ATP-dependent reaction, and it was purified from an archaebacterium, Sulfolobus. When ATP is replaced by UTP, GTP, or CTP, this enzyme just relaxes the negatively supercoiled closed-circular double-stranded DNA. We found that reverse gyrase hydrolyzes ATP through a double-stranded DNA-dependent reaction. The superhelicity of the DNA did not affect the ATPase activity. However, reverse gyrase does not hydrolyze UTP, GTP, or CTP. Therefore, any of the four nucleotide 5'-triphosphates acts as an effector for the topoisomerase activity of reverse gyrase, but only ATP supports the positive supercoiling of closed-circular double-stranded DNA, through the energy released on its hydrolysis. Single-stranded DNA was a much more potent cofactor for the ATPase activity of the enzyme than double-stranded DNA, and it acted as a potent inhibitor for the topoisomerase activity on double-stranded DNA. These results indicate that reverse gyrase has higher affinity to single-stranded DNA than to double-stranded DNA, which suggests a cellular function of the enzyme.  相似文献   

18.
19.
Bacterial DNA gyrase, has been identified as the target of several antibacterial agents, including the coumarin drugs. The coumarins inhibit the gyrase action by competitive binding to the ATP-binding site of DNA gyrase B (GyrB) protein. The high in vitro inhibitory potency of coumarins against DNA gyrase reactions has raised interest in studies on coumarin-gyrase interactions. In this context, a series of low-molecular weight peptides, including the coumarin resistance-determining region of subunit B of Escherichia coli gyrase, has been designed and synthesized. The first peptide model was built using the natural fragment 131-146 of GyrB and was able to bind to novobiocin (K(a) = 1.8 +/- 0.2 x 10(5)/m) and ATP (K(a) = 1.9 +/- 0.4 x 10(3)/m). To build the other sequences, changes in the Arg(136) residue were introduced so that the binding to the drug was progressively reduced with the hydrophobicity of this residue (K(a) = 1.3 +/- 0.1 x 10(5)/m and 1.0 +/- 0.2 x 10(5)/m for Ser and His, respectively). No binding was observed for the change Arg(136) to Leu. In contrast, the binding to ATP was not altered, independently of the changes promoted. On the contrary, for peptide-coumarin and peptide-ATP complexes, Mg(2+) appears to modulate the binding process. Our results demonstrate the crucial role of Arg(136) residue for the stability of coumarin-gyrase complex as well as suggest a different binding site for ATP and in both cases the interactions are mediated by magnesium ions.  相似文献   

20.
Methicillin resistant Staphylococcus aureus (MRSA) is among the major drug resistant bacteria that persist in both the community and clinical settings due to resistance to commonly used antimicrobials. This continues to fuel the need for novel compounds that are active against this organism. For this purpose we have targeted the type IIA bacterial topoisomerase, DNA gyrase, an essential enzyme involved in bacterial replication, through the ATP-dependent supercoiling of DNA. The virtual screening tool Shape Signatures was applied to screen a large database for agents with shape similar to Novobiocin, a known gyrase B inhibitor. The binding energetics of the top hits from this initial screen were further validated by molecular docking. Compounds with the highest score on available crystal structure of homologous DNA gyrase from Thermus thermophilus were selected. From this initial set of compounds, several rhodanine-substituted derivatives had the highest antimicrobial activity against S. aureus, as determined by minimal inhibitory concentration assays, with Novobiocin as the positive control. Further activity validation of the rhodanine compounds through biochemical assays confirmed their inhibition of both the supercoiling and the ATPase activity of DNA gyrase. Subsequent docking and molecular dynamics on the crystal structure of DNA gyrase from S. aureus when it became available, provides further rationalization of the observed biochemical activity and understanding of the receptor–ligand interactions. A regression model for MIC prediction against S. aureus is generated based on the current molecules studied as well as other rhodanines derivatives found in the literature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号