首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
The glucocorticoid receptor from rat liver cytosol prepared in 2 ml buffer/g tissue sedimented at approximately 10 S in low salt density gradient centrifugation without molybdate. When the receptor was heated at 25 degrees C, both approximately 10 S and approximately 7 S forms were seen in low salt gradient. The approximately 10 S form was not capable of binding to DNA-cellulose and was stabilized by sodium molybdate, namely it corresponded to untransformed receptor. The approximately 7 S form was capable of binding to DNA-cellulose and regarded as transformed receptor. On the other hand, partially-purified transformed receptor labeled with [3H]dexamethasone-21-mesylate sedimented at approximately 5 S, which migrated as a approximately 94 kDa species in SDS-polyacrylamide gel electrophoresis. The reconstitution analysis of this partially-purified approximately 5 S receptor and liver cytosol, showed the shift to approximately 7 S form. RNase A or T1 converted approximately 7 S transformed form into approximately 5 S but it did not affect approximately 10 S untransformed form. 5-20 mM sodium molybdate also shifted approximately 7 S to approximately 5 S. These results indicate that the approximately 7 S transformed form of the glucocorticoid receptor observed in low salt conditions might be an oligomer, probably including both approximately 5 S steroid-binding component and RNA/ribonucleoprotein, and that molybdate dissociates these interactions in a specific manner.  相似文献   

2.
Physicochemical properties of native and activated (DNA-binding) forms of the glucocorticoid receptor in cytosol prepared from lactating goat mammary tissue have been examined. Under hypotonic conditions the cytosolic receptor sediments at 8.4 S or 9.9 S in the absence or presence of 10 mM molybdate, respectively. The receptor in cytosol, either with or without molybdate elutes from DEAE-cellulose at approximately 200 mM potassium phosphate concentration. Isoelectric focusing reveals that this form of the receptor focuses at pH 5.5. Further, the cytosolic form of the receptor exhibits minimal binding affinity for polyanions such as DNA-cellulose. Its Stokes radius is 77 A and the mol. wt is approximately 331,000. Following exposure to in vitro activating conditions (including elevated ionic strength or temperature), the liganded receptor exhibits much lower affinity for DEAE-cellulose (elution at 35-55 mM potassium phosphate concentration). Other alterations in properties of the activated receptor, after partial purification, include sedimentation at 3.9 S in hypotonic sucrose gradients, binding to polyanions (DNA-cellulose), and an isoelectric point at pH 7.2. This receptor has a Stokes radius of 58 A and a mol wt of 98,000. A degraded form, with a mol. wt of approximately 57,000 and high affinity for polyanions, was the major form of the receptor obtained if appropriate precautions to prevent or remove proteolytic activity were not observed during purification and/or characterization of the activated receptor.  相似文献   

3.
The relationship between glucocorticoid receptor subunit dissociation and activation was investigated by DEAE-cellulose and DNA-cellulose chromatography of monomeric and multimeric [3H]triamcinolone acetonide ([3H]TA)-labeled IM-9 cell glucocorticoid receptors. Multimeric (7-8 nm) and monomeric (5-6 nm) complexes were isolated by Sephacryl S-300 chromatography. Multimeric complexes did not bind to DNA-cellulose and eluted from DEAE-cellulose at a salt concentration (0.2 M KCl) characteristic of unactivated steroid-receptor complexes. Monomeric [3H]TA-receptor complexes eluted from DEAE-cellulose at a salt concentration (20 mM KCl) characteristic of activated steroid-receptor complexes. However, only half of these complexes bound to DNA-cellulose. This proportion could not be increased by heat treatment, addition of bovine serum albumin, or incubation with RNase A. Incubation of monomeric complexes with heat inactivated cytosol resulted in a 2-fold increase in DNA-cellulose binding. Unlike receptor dissociation, this increase was not inhibited by the presence of sodium molybdate. Fractionation of heat inactivated cytosol by Sephadex G-25 chromatography demonstrated that the activity responsible for the increased DNA binding of monomeric [3H]TA-receptor complexes was macromolecular. These results are consistent with a two-step model for glucocorticoid receptor activation, in which subunit dissociation is a necessary but insufficient condition for complete activation. They also indicate that conversion of the steroid-receptor complex to the low-salt eluting form is a reflection of receptor dissociation but not necessarily acquisition of DNA-binding activity.  相似文献   

4.
The cytosolic glucocorticoid receptor of 21st gestational day rat epiphyseal chondrocytes has been evaluated. The receptor, a single class of glucocorticoid binding component approached saturation, utilizing [3H]triamcinolone acetonide ([3H]TA) as the radiolabeled ligand, at approximately 1.8-2.0 x 10(-8) M. The dissociation constant (Kd) reflected high-affinity binding, equaling 4.0 +/- 1.43 x 10(-9) M (n = 7) for [3H]TA. The concentration of receptor estimated from Scatchard analysis was approximately 250 fmol/mg cytosolic protein and when calculated on a sites/cell basis equalled 5800 sites/cell. The relative binding affinities of steroid for receptor were found to be triamcinolone acetonide greater than corticosterone greater than hydrocortisone greater than progesterone greater than medroxyprogesterone acetate much greater than 17 alpha-hydroxyprogesterone much greater than testosterone greater than 17 beta-estradiol. Cytosolic preparations activated in vitro by warming (25 degrees C for 20 min) were shown to exhibit an increased affinity for DNA-cellulose. 46% of the total specifically bound activated ligand-receptor complex was bound to DNA-cellulose. Cytosol maintained at 0-4 degrees C in the presence of 10 mM molybdate or activated in vitro in the presence of molybdate, bound to DNA-cellulose at 8 and 10% respectively. DEAE-Sephadex elution profiles of the nonactivated receptor were indicative of a single binding moiety which eluted from the columns at 0.4 M KCl. Elution profiles of activated receptor were suggestive of an activation induced receptor lability. The 0.4 M KCl peak was diminished, while a concomitant increase in the 0.2 M KCl peak was only modestly discernible. Evaluation of endogenous proteolytic activity in chondrocyte cytosol using [methyl-14C]casein as substrate show a temperature-dependent proteolytic activity with a pH optimum of 5.9-6.65. The proteolytic activity was susceptible to heat inactivation and was inhibitable, by 20 mM EDTA. The sedimentation coefficient of the nonactivated receptor was 9.3s (n = 6) on sucrose density gradients and exhibited steroid specificity and a resistance to activation induced molecular alterations when incubated in the presence of 10 mM molybdate. Receptor activation in vitro, in the absence of molybdate induced an increased receptor susceptibility to proteolytic attack and/or enhanced ligand receptor dissociation as evidenced by a diminution of the 9.3s binding form without a concomitant increase in 5s or 3s receptor fragments.  相似文献   

5.
The molybdate-stabilized rat liver glucocorticoid receptor complex was purified 9000-fold with a 46% yield by steroid-affinity chromatography and DEAE-Sephacel ion-exchange chromatography. The purified glucocorticoid receptor was identified as a 90-92-kDa protein by SDS/polyacrylamide gel electrophoresis. Raising the temperature to 25 degrees C in the absence of molybdate resulted in increased binding of the receptor complex to DNA-cellulose or nuclei, similar to the effect on the cytosolic complex. The purified complex has a sedimentation coefficient of 9-10 S before and after heat treatment in the absence of molybdate. The appearance of smaller 3-4-S species was unrelated to the extent of DNA-cellulose binding of the complex. The process termed 'transformation', i.e. increasing the affinity for DNA, is not concomitant with subunit dissociation or loss of RNA. Highly purified glucocorticoid receptor could be covalently modified with biotin to retain its steroid-binding activity but with a 50% decrease in nuclear binding capacity. The biotin-modified complex reacts with streptavidin in solution without losing its steroid.  相似文献   

6.
The effect of sodium molybdate on the stability and activation of the glucocorticoid receptor from chick and rat thymus were investigated. Molybdate, at a concentration range of 1–10 mM, blocked denaturation of the cytosol receptor by elevated (25 and 37°C) temperatures. This effect could be observed only with the aggregated (low-salt) form of the receptor. Molybdate also inhibited transformation of the receptor-hormone complex to the DNA-binding state which occurs either with incubation at 25°C or with salt treatment. The inhibitory effect of molybdate could be observed only on the non-activated receptor; nuclear- and DNA-binding of the activated receptor was not significantly changed by molybdate. Both effects were concentration-dependent. Molybdate had no effect on the activation of the partially purified glucocorticoid receptor. Molybdate effect was also examined using intact lymphocytes. Sodium molybdate had no effect either on the steroid binding of whole cells or on the nuclear transfer of the hormone-receptor complex. While the mechanism of molybdate action remains unknown the results of experiments on purified receptor suggest that molybdate does not act directly on the receptor molecule; rather through some cytosol factor(s). However, these effects could only be seen in cell-free experiments, and not during the conditions of the living cell.  相似文献   

7.
We have previously shown that the purified or unfractionated cytosolic, activated glucocorticoid receptor of rat liver consists of a polypeptide with a Stokes radius of approximately 6 nm, a sedimentation coefficient of 4S and a molecular mass of approximately 90,000 Daltons. We have confirmed previous observations by other authors that if sodium molybdate is introduced into the cytosol preparation buffer the non-activated glucocorticoid receptor appears as an 8 nm, 9S species with an apparent molecular mass of 330,000 Daltons. In order to study the physicochemical parameters of the glucocorticoid receptor prior to ligand binding, we have used an enzyme-linked immunosorbent assay (ELISA) based on antibodies raised in rabbits against the purified activated glucocorticoid receptor. In isotonic buffer, the non-liganded glucocorticoid receptor was shown to have a Stokes radius of 6 nm in the absence and 8 nm in the presence of molybdate. Furthermore, experimental conditions known to result in activation of the glucocorticoid receptor complex (increased ionic strength, increased temperature) did not lead to activation of the 6 nm non-liganded glucocorticoid receptor as judged from the lack of binding of the treated, non-liganded receptor to DNA-cellulose. The existence of both 6 and 8 nm forms of nonactivated, non-liganded glucocorticoid receptor in vitro suggests that dissociation of an 8 nm form to a 6 nm form, if it occurs in vivo, is probably not the only molecular event constituting the activation of the glucocorticoid receptor.  相似文献   

8.
The interaction of the rat hepatic receptor for 2,3,7,8-tetrachlorodibenzo-p-dioxin (dioxin) with immobilized heparin (heparin-Sepharose) or DNA (DNA-cellulose) has been compared to the polyanionic-binding properties of the rat hepatic glucocorticoid receptor. Both the nonoccupied and in vitro occupied forms of the receptors interacted with heparin-Sepharose but with varying strength, as determined by ligand binding assays or an enzyme-linked immunosorbent assay based on a monoclonal antibody against the steroid- and DNA-binding Mr approximately 94,000 glucocorticoid receptor protein. In the absence of ligand, both the dioxin and glucocorticoid receptors eluted from heparin-Sepharose at 0.1-0.2 M KCl, in contrast to the in vitro occupied receptor forms which eluted at 0.3-0.4 M KCl. Following elution of the in vitro occupied dioxin receptor from heparin-Sepharose, it was efficiently retained on DNA-cellulose and eluted at an ionic strength of approximately 0.2 M KCl. In the presence of 20 mM sodium molybdate which is known to inhibit the activation of steroid hormone receptors to a DNA-binding form, both the dioxin and glucocorticoid receptors eluted at 0.1-0.2 M KCl from heparin-Sepharose. In analogy to what has previously been shown for the glucocorticoid receptor, sodium molybdate stabilized a large dioxin-receptor complex with a sedimentation coefficient, S20,w, of 9-10 S, a Stokes radius of approximately 7.5 nm, and a calculated Mr of 290,000-310,000. Limited proteolysis of both the dioxin and glucocorticoid receptors with trypsin which is known to eliminate the DNA-binding property of both receptor forms also resulted in a decreased strength in the interaction of both in vitro occupied receptors with heparin-Sepharose (elution at 0.1-0.2 M KCl). In line with these data, calf thymus DNA in solution competed for receptor binding to heparin-Sepharose. In conclusion, the chromatographic properties of the dioxin receptor on heparin-Sepharose are indistinguishable from those of the glucocorticoid receptor, and both receptors appear to be structurally and functionally closely related proteins.  相似文献   

9.
The specific glucocorticoid receptor binding of rat liver cytosol was very unstable in vitro at 25 and 4 degrees C. However, 5 mM CaCl2 added with 5 mM EDTA to cytosol prior to incubation markedly stabilized unbound glucocorticoid receptors at both temperatures. Optimal effectiveness was achieved using equimolar (5 mM) amounts of CaCl2 and EDTA. On the other hand, 5 mM CaCl2 (added alone) further destabilized the unbound glucocorticoid receptor, while 5 mM EDTA (added alone) had no effect at 25 degrees C. EGTA (in lieu of EDTA) added with CaCl2 stabilized hepatic receptor binding at 25 degrees C. On the other hand, citrate added with calcium was ineffective in stabilizing the hepatic glucocorticoid receptor. MgCl2 effectively replaced CaCl2 as a stabilizing agent at 25 degrees C if added with 5 mM EDTA. When added alone, MgCl2 slightly destabilized the unbound receptor. Sucrose density gradient analysis (in low salt) revealed that CaCl2 plus EDTA enhanced the steroid-receptor complex sedimentation coefficient from 7 S to about 10 S. Unlike molybdate, CaCl2 plus EDTA had no apparent effect on steroid-receptor complex thermal transformation into a nuclear binding form, while MgCl2 plus EDTA partially reduced transformation. These results suggest a novel means to chemically stabilize unbound hepatic glucocorticoid receptors in vitro which may be of particular importance for receptor purification studies.  相似文献   

10.
Gel-exclusion high-performance liquid chromatography (HPLC) has been used to separate the untransformed from the transformed glucocorticoid receptor (GC-R) extracted from mouse AtT-20 cells. With 200 mM potassium phosphate as the eluent, an efficient separation of the forms of the GC-R is attained in 15-20 min. The untransformed cytosolic GC-R elutes from the column with a Stokes radius (Rs) of 8.2-8.6 nm, as do the molybdate-stabilized GC-R, the purified untransformed GC-R, and the cross-linked cytosolic GC-R. GC-R transformed in vitro by either ammonium sulfate precipitation, KCl treatment, or G-25 chromatography elutes with an Rs of 5.7-6 nm. Also, GC-R extracted from the nucleus with either 0.3 M KCl or 2 mM sodium tungstate, or purified by two cycles of DNA-cellulose chromatography, has an Rs of 5.5-6.3 nm. The data are identical either in the presence or in the absence of 20 mM Na2MoO4, suggesting that molybdate is not causing aggregation to produce a larger Rs value than that of the native receptor. Vertical tube rotor sucrose gradient ultracentrifugation of cytosol produces three forms of the GC-R: 9.1 S, 5.2 S, and 3.8 S. Sequential analysis of the GC-R forms by HPLC and vertical tube rotor ultracentrifugation and vice versa allows for the hydrodynamic determination of molecular weight within a very short time period (2-3 h total).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
In cell-free systems androgen receptor (AR) labeled with (3H)DHT at 0 degrees C in the presence of 50mM molybdate remains unactivated (less than 3% binding to nuclei) and untransformed (7-8S on sucrose density gradients containing 0.4M KCl and 50mM molybdate). In the absence of molybdate, however, these complexes undergo activation and transformation even at 0 degrees C, albeit, very slowly. Incubation of unactivated, untransformed AR complexes at 18 degrees C, or at 0 degrees C in the presence of 0.4M KCl, greatly accelerated both activation and transformation. Activation and transformation are also associated with formation of high affinity (3H)DHT-receptor complexes as indicated by decreased rates of (3H)DHT dissociation from the receptor. Cytosolic AR complexes labeled with (3H)DHT in tissue slices at 37 degrees C, or in vivo, undergo rapid activation, transformation and nuclear translocation. The data suggest that activation and transformation of cytosolic AR in cell-free systems is associated with changes in the physicochemical properties of AR similar to those occurring upon hormone binding in intact cells and in vivo.  相似文献   

12.
Calf uterine cytosol contains an androgen receptor with a relative molecular mass of approx. 90,000. In this study we have analysed the structure and aggregation properties of the androgen receptor, using sucrose density gradient centrifugation on a vertical rotor (VTi65). In the presence of 10 mM NaCl the androgen receptor in whole cytosol sedimented at 8 S irrespective of the presence of molybdate. In 400 mM NaCl the receptor dissociated to a 4.3 S entity. In whole cytosol molybdate promoted a partial shift of the 4.3 S receptor into the aggregated 8 S state. The time of exposure of the receptor to molybdate and NaCl determined the proportion of receptor sedimentating at 8 S and 4.3 S. The DNA-binding form of the uterine androgen receptor when analysed under the conditions of the DNA-cellulose binding assay, sedimented at 6.5 S. Increasing concentrations of molybdate shifted its sedimentation coefficient gradually from 6.5 S to 4.5 S and in parallel reduced the DNA-binding capacity. Molybdate added to a partially purified, DNA-binding form of the androgen receptor did not promote receptor aggregation to faster sedimentating forms. This suggests that such preparations are devoid of an androgen receptor-aggregation factor. Indirect evidence for such a factor was obtained from reconstitution experiments with whole cytosol. Our results indicate that the DNA-binding form of the androgen receptor interacts with a cytosol factor to form the 8 S receptor complex. Molybdate has diverse effects: in the presence of the cytosol factor it stabilizes the 8S complex; in its absence molybdate prevents in a concentration-dependent way DNA-binding as well as reaggregation of the monomeric 4.3 S form.  相似文献   

13.
Boiled cytosols prepared from a wide variety of sources contain a low Mr factor that inhibits glucocorticoid receptor transformation to the DNA-binding state (Leach, K.L., Grippo, J.F., Housley, P.R., Dahmer, M.K., Salive, M.E., and Pratt, W.B. (1982) J. Biol. Chem. 257, 381-388). In this work, we show that this endogenous factor, which is partially purified from rat liver, produces all of the effects of the group VI-A transition metal oxyanions molybdate and vanadate on the structure and function of glucocorticoid receptors in cytosol preparations. Like molybdate, the endogenous factor behaves as a strong anion with an apparent Mr of 340 on Bio-Gel P-2, and it binds to both hydroxylapatite and Chelex 100 resins. The receptor stabilizing activity of the factor is completely stable to heating at 320 degrees C for 1 h. The small size, profound heat stability, and absorption by a metal chelating resin strongly suggest that the factor is an endogenous metal anion. As reduction of the concentration of the factor in cytosol promotes generation of the DNA-binding form of the receptor, we suggest that this endogenous metal anion interacts with the receptor to stabilize the 9 S complex and maintain the receptor in its untransformed, non-DNA-binding state. We propose that molybdate and vanadate may exert their effects on the untransformed receptor by interacting with the binding site for the endogenous metal anion.  相似文献   

14.
A majority of the untransformed glucocorticoid-receptor complexes (GRc) from rat liver cytosol sedimented in the 9S region in 5-20% sucrose gradients containing 0.15 M KCl and 20 mM Na2MoO4. Incubation of the cytosol at 23 degrees C, or at 0 degree C with 10 mM ATP or 0.3 M KCl caused appearance of a slower migrating (4S) form which exhibited an increased affinity toward DNA-cellulose and ATP-Sepharose. Presence of 20 mM Na2MoO4 blocked this 9S to 4S transformation of GRc. A complete conversion of the 9S to the 4S form occurred upon a 2 h incubation of GRc with 10 mM ATP at 0 degree C. Other nucleoside triphosphates (GTP, CTP, and UTP), ADP and PPi (but not AMP or cAMP) were also effective in transforming the 9S form. The heat transformation occurred in a time-dependent manner and was complete within 1 h at 23 degrees C; presence of 10 mM ATP during this 23 degrees C incubation period allowed a complete 9S to 4S alteration in 10-20 min. Addition of ATP also accelerated the rate of salt activation of the GRc; a 50% conversion to the 4S form occurred in 20 min or 3 min in the absence or the presence of 10 mM ATP during the 0 degree C incubation of GRc with 0.15 M KCl. An absolute requirement of the hormone for 9S to 4S transformation of glucocorticoid receptor (GR) was evident, as no conversion of the 9S form to the 4S form could be achieved with the ligand-free GR under any of the above conditions. Incubation of cytosol preparations at 23 degrees C or at 0 degree C with KCl or ATP caused dissociation of the GRc and reduced the steroid binding capacity of GR. Although aurintricarboxylic acid, pyridoxal 5'-phosphate, Na2MoO4, Na2WO4, o-phenanthroline, Rifamycin AF/013 and heparin inhibited the ATP-Sepharose and DNA binding of the GRc, only Na2MoO4 and Na2WO4 selectively blocked the 9S to 4S conversion. We suggest that the 9S to 4S transformation in vitro of rat liver GRc represents an acquisition of DNA and ATP-Sepharose binding ability and may involve a separation of subunits from an oligomeric receptor structure.  相似文献   

15.
Aliquots of rat liver cytosol glucocorticoid-receptor complexes (GRc) were transformed by an incubation with 8-10 mM ATP at 0 degrees C and were compared with those transformed by an exposure to 23 degrees C. The extent of receptor transformation was measured by chromatography of the samples over columns of DEAE-Sephacel. The ATP-transformed complexes, like those which were heat-transformed, exhibited lower affinity for the positively charged ion-exchange resin and were eluted with 0.12 M KCl (peak-I): the nontransformed complexes appeared to possess higher affinity and required 0.21 M KCl (peak II) for their elution. As expected, the receptor in the peak-I exhibited the DNA-cellulose binding capacity and sedimented as 4S in sucrose gradients. Peak II contained an 8-9S glucocorticoid receptor (GR) form that showed reduced affinity for DNA-cellulose. Presence of sodium tungstate (5 mM) prevented both heat and ATP transformation of the GRc resulting in the elution of the complexes in the region of nontransformed receptors. When parallel experiments were performed, binding of the cytosol GRc to rat liver nuclei or DNA-cellulose was seen to increase 10-15 fold upon transformation by heat or ATP: tungstate treatment blocked this process completely. The transformed and nontransformed GRc were also differentially fractionated by (NH4)2SO4: tungstate-treated (nontransformed) receptor required higher salt concentration and was precipitated at 55% saturation. In addition, the GRc could be extracted from DNA-cellulose by an incubation of the affinity resin with sodium tungstate resulting in approximately 500-fold purification of the receptor with a 30% yield. These studies show that the nontransformed, and the heat-, salt-, and ATP-transformed GRc from the rat liver cytosol can be separated chromatographically, and that the use of tungstate facilitates the resolution of these different receptor forms. In addition, extraction of the receptor from DNA-cellulose by tungstate provides another new and efficient method of partial receptor purification.  相似文献   

16.
Cytosol preparations contain an endogenous heat-stable factor which stabilizes the glucocorticoid receptor in its untransformed, non DNA-binding form. Elution of a partially purified preparation of this stabilizing factor through a metal chelating resin (Chelex-100) leads to the loss of its ability to inhibit temperature-mediated transformation of the receptor. Sodium molybdate mimicks the ability of this endogenous metal to stabilize the untransformed receptor, and it too is adsorbed by Chelex resin. When an L-cell cytosol preparation containing the glucocorticoid receptor is passed through a column of Chelex-100 resin and then incubated at 15 degrees C, the receptor is rapidly transformed to the DNA-binding state, regardless of whether it is steroid-bound or not. In contrast, whole cytosol containing endogenous metals is transformed to the DNA-binding state only when the receptor is both steroid-bound and exposed to elevated temperature. these data suggest that a metal (or metals) may be involved in conferring the property of ligand-dependency to the transformation process.  相似文献   

17.
The effect of RNAase A on the activation of the estrogen receptor from fetal guinea pig uterus was studied by DNA-cellulose binding assay and immunorecognition of the estradiol-receptor complex by the monoclonal antibody D547 raised against the human estrogen receptor. After RNAase treatment at 4 degrees C or 25 degrees C the binding of the receptor to DNA-cellulose doubled. This stimulation was partially prevented by sodium molybdate. RNAase treatment did not modify the interaction of the receptor with the monoclonal antibody D547; this antibody, as was demonstrated previously, selectively recognizes the activated form of the receptor when activation has been induced by temperature, time or high salt concentrations. In addition, RNAase had little or no effect on the transformation of the 8-9 S receptor to more slowly sedimenting forms under low salt concentrations. These observations suggest that even if RNAase induces receptor activation, which can be inferred from the increase in its binding to DNA-cellulose, the conformational modifications of the receptor molecule involved in this process are apparently different from those induced by factors such as temperature, time or high-salt concentrations.  相似文献   

18.
Glucocorticoid-receptor complexes in rat thymus cytosol were characterized by gel-filtration and ion-exchange chromatography and by other procedures. Two forms of non-transformed complex were identified at low ionic strength in the presence of molybdate, with Stokes radii of approx. 8 and 6 nm. The 8 nm molybdate-stabilized form could be converted to the 6 nm form by chromatography on Sephacryl S-300 or Lipidex 1000 or by incubation with charcoal or phospholipase C, but not by chromatography on Sephadex G-25. The dissociation rate of the complex was reduced by treatment with charcoal or Lipidex 1000, but none of the treatments caused transformation to a DNA-binding form. Transformation of the complex, by exposure to elevated temperature or ionic strength in the absence of molybdate, resulted in the appearance of a different 6 nm form, distinguished by an increased affinity for DNA-cellulose and a reduced affinity for DEAE-cellulose. These results suggest that receptor transformation is preceded by structural changes associated with the loss of a lipid factor from the complex. Non-polar steroid antagonists, and lipophilic compounds such as phenothiazines, were found to bind to secondary, hydrophobic sites on the receptor and to exert allosteric effects on the primary steroid-binding site; these and other observations emphasize the importance of hydrophobic interactions as determinants of the structure and properties of glucocorticoid receptors.  相似文献   

19.
Glucocorticoid-receptor complex from rat liver cytosol, activated by warming at 23°C or fractionation with (NH4)2SO4, was adsorbed over DNA-cellulose. This DNA-cellulose-bound [3H]triamcinolone acetonide-receptor complex was extracted in a dose-dependent manner by incubation with different concentrations of sodium tungstate. A 50% recovery of receptor was achieved with 5 mM sodium tungstate. Almost the entire glucocorticoid-receptor complex bound to DNA-cellulose could be extracted with 20 mM sodium tungstate. The [3H]triamcinolone acetonide released from DNA-cellulose following tungstate and molybdate treatment was found to be associated with a macromolecule, as seen by analysis on a Sephadex G-75 column. The glucocorticoid-receptor complex extracted by both the compounds sedimented as a 4 S entity of 5–20% sucrose gradients under low- and high-salt conditions. Addition of tungstate or molybdate to the preparations containing activated receptor had no effect on the sedimentation rate of receptor. However, addition of tungstate to non-activated receptor preparation caused aggregates of larger size. The tungstate-extracted glucocorticoid-receptor complex failed to rebind to DNA-cellulose even after extensive dialysis, whereas receptor in molybdate-extract retained its DNA-cellulose binding capacity.  相似文献   

20.
We have investigated the potential for the steroid affinity-labeled human glucocorticoid receptor to form both intramolecular and intermolecular disulfide bonds. Glucocorticoid receptors labeled in intact HeLa S3 cells with the covalent affinity label [3H]dexamethasone mesylate ([3H]DM) were analyzed on denaturing 5-12% polyacrylamide gels under both nonreducing and reducing conditions. Under nonreducing conditions the affinity-labeled receptor migrated as a heterogeneous species having an average molecular mass of approximately 96 kDa whereas, under reducing conditions, the receptor migrated as a more discrete form. These data suggest that a reducing environment can influence the structure of the glucocorticoid receptor monomer and further imply that sulfhydryl groups within the affinity-labeled receptor are available for modification. To pursue this observation in greater detail, we tested the effect of oxidizing conditions on the structure of the glucocorticoid receptor. The presence of low concentrations (0.125-0.5 mM) of three oxidizing reagents (sodium tetrathionate, disulfiram, and iodosobenzoate) altered the migration of the affinity-labeled receptor resulting in forms of apparent lower molecular mass (as low as 78 kDa). This altered migration, not seen with most other cytosolic proteins, is consistent with the formation of intramolecular disulfide bonds within the receptor which presumably cause it to assume a folded conformation and migrate faster through the gel. At higher concentrations of these reagents (up to 5.0 mM), we also detect a saturably labeled [3H]DM band which has a higher molecular mass (approximately 140 kDa), indicating the formation of intermolecular disulfide bonds between the [3H]DM-labeled receptor and another closely associated protein(s) having a molecular mass of approximately 40 kDa. The effects which these oxidizing reagents have on glucocorticoid receptor structure are completely reversed upon the addition of dithiothreitol, indicating that the observed changes in migration do not reflect receptor proteolysis but rather a folding and unfolding within the receptor monomeric protein. We have also analyzed the effect of this oxidation/reduction on the function of the glucocorticoid receptor. Oxidation of the [3H]DM-labeled receptor complex with 0.5 mM sodium tetrathionate inhibited activation of receptor to a form capable of binding to DNA-cellulose. This inhibition can be reversed with dithiothreitol at 25 degrees C but not at 0 degrees C, suggesting that these oxidizing reagents are inhibitory at the transformation and/or activation steps.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号