首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
兔肝金属硫蛋白结合铅离子的圆二色性光谱研究   总被引:1,自引:0,他引:1  
从锌诱导的家兔肝脏中分离纯化得到金属硫蛋白两种亚型:ZnMT-Ⅰ和ZnMT-Ⅱ.在酸性条件下脱金属,经Sephadex G-25柱层析得到脱金属硫蛋白(apoMTs).用圆二色性(CD)光谱法研究,发现两种亚型apoMTs 与Pb2+ 的结合依赖于Pb2+ 的加入比例及pH 值.apoMT-Ⅰ在pH3~5之间,apoMT-Ⅱ在pH4~6之间与Pb2+ 结合形成特征簇合物Pb7MTs,其CD谱图特征峰位于316nm (- ),270 nm (+ ),245 nm (+ )及225 nm (- ),提示解铅中毒的最佳条件应控制在弱酸性环境.不同亚型apoMTs 与Pb2+ 的结合方式各不相同:Pb2+ 与apoMT-Ⅰ的结合采取平均分配的方式,而与apoMT-Ⅱ则为选择性结合方式,表明这两种亚型在解铅毒功能上存在差异.  相似文献   

2.
通过化学反应体系产生OH^-和O^-2自由基,采用荧光和化学发光检测体系,比较研究了不同亚型及不同结合金属的金属硫蛋白(MT)清除自由基能力的大小。结果表明,对于同一亚型,Zn结合MT清除自由基的能力大于Cd结合MT;同一结合金属的MT,MT1清除自由基的能力大于MT2。通过比较ZnMT1与谷胱甘肽(GSH)及超氧化物歧化酶(SOD)清除自由基的能力大小发现,ZnMT1清除OH的能力是GSH的10  相似文献   

3.
天花粉蛋白的定点聚乙二醇修饰   总被引:3,自引:0,他引:3  
用一种定点修饰天花粉蛋白(trichosanthin,TCS)的方法,将聚乙二醇(PEG)偶联到预先选定的位点.利用nTCS无半胱氨酸(Cys)残基这一特点,通过定点突变将一个Cys残基引入TCS以取代第7位的丝氨酸(Ser)残基.然后,与巯基反应的PEG-m aleim ide 即可偶联到新引入的Cys 残基上.经纯化得到均一的PEG-TCS复合物,在SDS-PAGE上显示一条区带,表观分子量为38 kD.复合物的体外致核糖体失活活性降低了6倍,但其体内引产活性与nTCS相同.定点PEG修饰方法为改造TCS提供了新途径.  相似文献   

4.
金属硫蛋白的生物学特性及生理作用   总被引:12,自引:0,他引:12  
金属硫蛋白的生物学特性及生理作用朱赓伯(苏州医学院生化教研室,苏州215007)关键词金属硫蛋白金属硫蛋白又名金属硫组氨酸甲基内盐(metallothioneins,MT)。三十年前美国哈佛大学的B.L.Vallee首次在马的肾脏中发现Cd-MT和Z...  相似文献   

5.
兔肝金属硫蛋白β结构域的制备和鉴定   总被引:2,自引:0,他引:2  
制备一定量的Cd、Zn兔肝金属硫蛋白,然后脱掉其中的金属,获得不含金属的硫蛋白,用一价金属CuCl或AgNO3以5.8:1的金属:蛋白摩尔比与apoMT结合,将其β结构域用金属饱和,在37℃,PH7.0下用枯草杆菌蛋白酶水解掉未结合金属的α结构域,获得Cu(Ⅰ)、Ag(Ⅰ)结合的兔肝MT-Ⅰ、MT-Ⅱ的β结构域,通过HPLC、羧甲基化后的SDS-PAGE、氨基酸组成分析、金属定量、N末端分析和紫外  相似文献   

6.
菠菜放氧的光系统Ⅱ(PSⅡ)核心复合物经0.8mol/L Tris(pH8.0)洗涤后,用温和的非离子去垢剂DM和高浓度的LiClO4增溶,再经DEAE-Toyopearl-650S离子交换柱层析分离,可得到PSⅡ天线组分中的叶绿素α/b结合蛋白(CP29)。SDS-PAGE显示一条30kD蛋白质带。根据Arnon法和Markwell法的结果表明,每个蛋白质分子结合有7~8个分子的叶绿素α和2~3  相似文献   

7.
以大鼠红细胞膜为研究对象,以脂肪酸自旋标记物5NS,16NS插入膜脂,蛋白自旋标记物MSL标记膜蛋白,观察内皮素(ET)损伤后膜脂流动性、膜蛋白构象的变化及金属硫蛋白(MT)抗ET保护生物膜作用。结果表明ET(1×10-9,10-8及10-7mol/L)对膜脂流动性无明显影响,但在5×10-9及1×10-7mol/L浓度下均改变膜蛋白构象,而且对膜蛋白构象的影响呈剂量依赖性。1×10-5mol/LMT能抵抗5×10-9mol/LET对膜蛋白损伤,保护生物膜。  相似文献   

8.
本文以异硫氰基荧光素(FITC)作为荧光探针标记于金属硫蛋白分子上,用荧光光谱研究了Cd^2+及Ag^+离子与ZnMT2-FITC进行金属交换及与ApoMT2-FITC进行金属重组时的构象变化。结果表明,标记后MT与Cd^2+离子进行金属交换及金属重组时不具有明显的结构域特征,而Ag^+离子进行金属交换及金属重组时,分别在Ag6MT、Ag12MT及Ag18MT处具有明显的结构域形成特征。此外高温下  相似文献   

9.
制备一定量的Cd、Zn兔肝金属硫蛋白(metalothionein,MT),然后脱掉其中的金属,获得不含金属的硫蛋白(apoMT).用一价金属CuCl或AgNO3以5.81的金属蛋白摩尔比与apoMT结合,将其β结构域用金属饱和,在37℃,pH7.0下用枯草杆菌蛋白酶水解掉未结合金属的α结构域,获得Cu(Ⅰ)、Ag(Ⅰ)结合的兔肝MT-I、MT-Ⅱ的β结构域.通过HPLC、羧甲基化后的SDS-PAGE、氨基酸组成分析、金属定量、N末端分析和紫外扫描等鉴定,证明确实得到了N末端为Met,分子量3000左右,金属蛋白摩尔比为5~5.51的MTβ结构域,其氨基酸组成与理论值基本相符  相似文献   

10.
用胞质阻断法微核试验和单细胞凝胶电泳法检测酵母金属硫蛋白(BD101Cu-MT)对(60)Co-γ射线诱发的g12细胞微核形成和DNA链断裂的影响。结果表明10和50μg/mlBD101Cu-MT处理,对1或3Gyγ射线诱发的双核微核细胞率和1Gyγ射线诱发的彗星细胞频率及核DNA迁移距离的增加有明显的抑制作用.提示酵母金属硫蛋白对γ射线诱发g12细胞的遗传损伤有拮抗作用.  相似文献   

11.
Metallothionein (MT) is a ubiquitous mammalian protein comprising 61 or 62 nonaromatic amino acids of which 20 are cysteine residues. The high sulfhydryl content imparts to this protein a unique and remarkable ability to bind multiple metal ions in structurally significant metal–thiolate clusters. MT can bind seven divalent metal ions per protein molecule in two domains with exclusive tetrahedral metal coordination. The domain stoichiometries for the M7S20 structure are M4(Scys)11 (α domain) and M3(Scys)9 (β domain). Up to 12 Cu(I) ions can displace the 7 Zn2+ ions bound per molecule in Zn7–MT. The incoming Cu(I) ions adopt a trigonal planar geometry with domain stoichiometries for the Cu12S20 structure of Cu6(Scys)11 and Cu6(Scys)9 for the α and β domains, respectively. The circular dichroism (CD) spectra recorded as Cu+ is added to Zn7–MT to form Cu12–MT directly report structural changes that take place in the metal binding region. The spectrum arises under charge transfer transitions between the cysteine S and the Cu(I); because the Cu(I)–thiolate cluster units are located within the chiral binding site, intensities in the CD spectrum are directly related to changes in the binding site. The CD technique clearly indicates stoichiometries of several Cu(I)–MT species. Model Cu(I)–thiolate complexes, using the tripeptide glutathione as the sulfhydryl source, were examined by CD spectroscopy to obtain transition energies and the Cu(I)–thiolate coordination geometries which correspond to these bands. Possible structures for the Cu(I)–thiolate clusters in the α and β domains of Cu12–MT are proposed. © 1994 Wiley-Liss, Inc.  相似文献   

12.
W R Bernhard  M Vasák  J H K?gi 《Biochemistry》1986,25(8):1975-1980
Mammalian metallothioneins (MT) contain 20 Cys in a total of 61 amino acid residues and bind 7 Cd and/or Zn ions. The metal is localized in two clusters made up of three and four metal-thiolate complexes in the NH2- and COOH-terminal half of the chain, respectively [Otvos, J.D., & Armitage, I. M. (1980) Proc. Natl. Acad. Sci. U.S.A. 77, 7094-7098]. The formation of these oligonuclear complexes designated as Cd4 and Cd3 clusters has now been monitored in MT reconstituted with varying amounts of Cd by using differential chemical modification of Cys with [14C]iodoacetamide. At ratios below 2-3 mol of Cd/mol of MT bound, no differential protection of Cys by the metal, and hence no preferred binding, is detectable. At Cd-to-protein ratios between 3 and 5 mol of Cd/mol of MT, the modification profiles reveal preferred and cooperative binding in the COOH-terminal half of the chain, indicating formation of the Cd4 cluster. At still higher ratios, formation of the Cd3 cluster is initiated in the NH2-terminal section of the polypeptide chain. Comparison of the differential modification data of Cd6-MT and Cd7-MT suggests that the last Cd to be bound is coordinated to Cys ligands located mainly between positions 20 and 30 of the sequence. The extent of labeling of the different Cys in Cd7-MT indicates that the ligands of the Cd3 cluster are 3 times as accessible to iodoacetamide than those of the Cd4 cluster, suggesting a greater thermodynamic or kinetic stability of the latter.  相似文献   

13.
The Cd-sequestering metallothionein (MT) isoform isolated from the midgut gland of Roman snails exposed to Cd supplements in the feed was characterized by compositional and spectroscopic analysis. The preparations contained nearly 5 mol of Cd, small amounts of Cu and about 1 mol of Zn per chain mass of 6620 Da, in numerical agreement with the apoprotein's measured capacity of firmly binding a maximum of 6 equivalents of Cd per molecule. As with other Cd-containing MTs the occurrence of a prominent Cd-mercaptide-specific shoulder at 250 nm in its absorption spectrum showed that Cd is complexed in tetrahedral symmetry by the cysteine residues of the protein, and the multiphasic ellipticity profile in the CD spectrum revealed that these complexes are joined to form one or more oligonuclear Cd-mercapto clusters. Both spectral features vanished with the removal of the metal but were reconstituted to maximum amplitudes by readdition of Cd to the metal-free apoprotein, provided precautions were taken to prevent air oxidation of the latter. Quantitative analysis of snail MT reconstituted with Cd established that the 18 cysteine side chains bind the metal in a 3-to-1 ratio; spectroscopic studies on fractionally restored forms demonstrated that the six Cd ions were bound to the apoprotein molecule in succession in two sets of three Cd ions each. Thus, one can infer from the observed stoichiometry and the coordinating preferences of Cd that this gastropod MT, like the Cd-bearing MTs of marine crustaceans, harboured the metal in two separate cyclically constructed Cd3Cys9 clusters. The snail clusters differed, however, from other MTs in their response to acidification. Their protolytic dissociation proceeded through two separate protonation steps with the manifestation of spectroscopically distinguishable intermediate forms. Thus, this snail isoform displays in its metal composition and its chemical and spectroscopic features both similarities and differences to other animal kingdom MTs. Its properties suggest that it serves an important role in the protection of the terrestrial gastropod from Cd.  相似文献   

14.
Metal substitution of Neurospora copper metallothionein   总被引:1,自引:0,他引:1  
M Beltramini  K Lerch  M Vasák 《Biochemistry》1984,23(15):3422-3427
The binding of diamagnetic Zn(II), Cd(II), and Hg(II) and paramagnetic Co(II) and Ni(II) ions to the apo form of Neurospora metallothionein (MT) was investigated by various spectroscopic techniques. In contrast to native copper MT, which was shown to bind 6 mol of Cu(I)/mol of protein (Lerch, 1980), all substituted forms reveal an overall metal to protein stoichiometry of 3. The charge-transfer (CT) transitions of the complexes containing diamagnetic metal ions as well as the d-d transitions of those with paramagnetic metal ions are indicative of a distorted Td coordination. Electron paramagnetic resonance and absorption measurements of the Co(II) derivative are in agreement with the presence of a metal-thiolate cluster in this protein. Metal titration studies of the apoprotein reveal characteristic spectral features for the derivatives containing two metal equivalents as compared to those with a full complement of three metal ions. The former features are indicative of an exclusive Td type of metal-sulfur coordination whereas the latter suggest that the third metal ion is coordinated in a different fashion. This finding is in agreement with the presence of only seven cysteine residues in Neurospora MT as opposed to nine cysteine residues in the three-metal cluster of the mammalian MT's [Winge, D.R., & Miklossy, K.-A. (1982) J. Biol. Chem. 257, 3471].  相似文献   

15.
Metallothionein (MT) is a small cysteine-rich protein thought to play a critical role in cellular detoxification of inorganic species by sequestering metal ions that are present in elevated concentrations. We demonstrate here that metallothionein can play an important role at the other end of the homeostatic spectrum by scavenging an essential metal in a mouse fibroblast cell line that has been cultured under conditions of extreme zinc deprivation (LZA-LTK-). These cells unexpectedly produce constitutively high levels of metallothionein mRNA; however, the MT protein accumulates only when high concentrations of zinc are provided in the media. Until this MT pool is saturated, no measurable zinc remains in the external media. In this case, zinc deprivation leads to amplification of the MT gene locus in the LZA-LTK- cell line. Furthermore, the intracellular zinc levels in the fully adapted cells remain at the normal level of 0.4 fmol zinc/cell, even when extracellular zinc concentration is decreased by 2 orders of magnitude relative to normal media.  相似文献   

16.
Interactions of cadmium (Cd) ions with bovine serum albumin (BSA), bovine hepatic metallothionein (MT), calf thymus histone and deoxyribonucleic acid (DNA), and bovine hepatic chromatins were studied in the presence and absence of divalent zinc (Zn), copper (Cu), mercury (Hg), or lead (Pb) ions, using equilibrium dialysis at pH 7 and at 37°C. The BSA had 3.5 Cd-binding sites with an apparent affinity constant of 1×105. The other metal ions inhibited the binding by reducing the affinity constant and the number of Cd-binding sites in BSA. There were 6 high affinity and 13 low affinity Cd-binding sites in the MT. Zinc ions had poor efficacy in reducing the binding of Cd to the MT. However, the Cu2+ and Hg2+ ions inhibited the Cd binding to a considerable extent, the former ions being more potent in this respect. Histone did not bind Cd. There were two kinds of Cd-binding sites in DNA: One mole of Cd per four moles DNA-phosphorus at low affinity sites, and one mole of Cd per 6.7 moles DNA-phosphorus at high affinity sites. Their apparent association constants were 8.3×105 and 4.4×106 M, respectively. The other metal ions had inhibitory effects on the binding of Cd to DNA. Histone reduced the Cd-DNA interactions to only a minor extent. The other metal ions reduced the binding of Cd to DNA-histone complex to a small extent. Cadmium binds to the euchromatin (Euch), heterochromatin (Het), and Euch-Het mixture almost equally. The other metal ions reduced the binding maximally in Euch-Het followed next in order by Het and Euch. Cupric ions were the most potent inhibitors of the interactions of Cd with the nuclear materials.  相似文献   

17.
Metallothioneins (MTs) are low molecular weight proteins that include metal ions in thiolate clusters. The capability of metallothioneins to bind different metals has suggested their use as biosensors for different elements. We study here the interaction of nitric oxide with rat liver MTs by using in situ X-ray absorption spectroscopy techniques. We univocally show that the presence of NO induces the release of Zn atoms from the MT structure to the solution. Zn ions transform in the presence of NO from a tetrahedral four-fold coordinated environment in the MT into a regular octahedral six-fold coordinated state, with interatomic distances compatible with those of Zn solvated in water.  相似文献   

18.
Metallothionein (MT) is the protein that has been shown to bind heavy metals, scavenge free radicals, protect DNA from radiation damage, and alleviate disease symptoms. However, only very limited success has been achieved in expression and production of active recombinant metallothionein. In this study, human metallothionein 1A (hMT1A) was transformed into yeast Pichia pastoris for expression with secretion of the protein into the medium. The expression system was optimized to obtain the targeted protein in active form at 335 mg per litre culture. hMT1A showed the character of extreme instability in the experiment. High concentration, aeration and heavy metal ions are the main factors affecting hMT1A stability.  相似文献   

19.
水生无脊椎动物金属硫蛋白研究进展   总被引:1,自引:0,他引:1  
金属硫蛋白在水生无脊椎动物中分布广泛、容易被诱导,在水环境生态响应研究中具有重要意义。对水生无脊椎动物金属硫蛋白分类和特性、MT的诱导及影响因素、基因克隆与表达等方面取得的进展进行概述;并对其金属离子调节功能及其在水环境重金属污染监测、重金属污染生物治理和水产养殖等方面的应用潜力进行展望,提出研究中的不足和今后的研究方向。  相似文献   

20.
Bismuth complexes are widely used as anti-ulcer drugs and can significantly reduce the side effects of platinum anti-cancer drugs. Bismuth is known to induce the synthesis of metallothionein (MT) in the kidney, but there are few chemical studies on the interactions of bismuth complexes with metallothionein. Here we show that Bi(3+) binds strongly to metallothionein with a stoichiometry bismuth:MT = 7:1 (Bi(7)MT) and can readily displace Zn(2+) and Cd(2+). Bismuth is still bound to the protein even in strongly acidic solutions (pH 1). Reactions of bismuth citrate with MT are faster than those of [Bi(EDTA)](-), and both exhibit biphasic kinetics. (1)H NMR data show that Zn(2+) is displaced faster than Cd(2+), and that both Zn(2+) and Cd(2+) in the beta-domain (three metal cluster) of MT are displaced by Bi(3+) much faster than from the alpha-domain (four metal cluster). The extended x-ray absorption fine structure spectrum of Bi(7)MT is very similar to that for the glutathione and N-acetyl-L-cysteine complexes [Bi(GS)(3)] and [Bi(NAC)(3)] with an inner coordination sphere of three sulfur atoms and average Bi-S distances of 2.55 A. Some sites appear to contain additional short Bi-O bonds of 2.2 A and longer Bi-S bonds of 3.1 A. The Bi(3+) sites in Bi(7)MT are therefore highly distorted in comparison with those of Zn(2+) and Cd(2+).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号