首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The importance of agricultural land for maintaining indigenous biodiversity is an important contemporary issue. A large agricultural estate in Swaziland, which is a mosaic of citrus orchards, exotic tree windbreaks, indigenous riparian vegetation and savanna was investigated. The distribution of larval and adult coccinellids within the habitat types, and the relative influences of temperature, relative humidity, ground insolation and prey presence was assessed over a 2-year period. The highest coccinellid densities and species richness occurred within the orchards. Riparian habitats on the boundaries of the estate were closer to the orchard habitat in species composition than was the natural savanna. Not surprisingly, the presence/absence of prey was the most important variable which determined coccinellid distribution and density in the agricultural landscape. Relative humidity, temperature and ground insolation had no significant effect on coccinellid densities. Some species, such as the exotic Cheilomenes lunata, and the indigenous Scynmus sp. and Nephus sp. were widely dispersed and occurred in all habitats, while the economically important but exotic species, Rodolia cardinalis was only within the citrus orchards. Overall, the coccinellid assemblage was not a good indicator of habitat type. Nevertheless, a variety of habitat types (i.e. a heterogenous landscape) appear to be essential for the survival of most coccinellids. Indeed, the heterogeneous agricultural and natural land mosaic provides maximum plant diversity and hence coccinellid diversity, thus increasing the potential for natural control of pest prey species in the orchards, while at the same time maximizing survival of indigenous coccinellids.  相似文献   

2.
1. Tiger sharks Galeocerdo cuvier are important predators in a variety of nearshore communities, including the seagrass ecosystem of Shark Bay, Western Australia. Because tiger sharks are known to influence spatial distributions of multiple prey species, it is important to understand how they use habitats at a variety of spatial scales. We used a combination of catch rates and acoustic tracking to determine tiger shark microhabitat use in Shark Bay. 2. Comparing habitat-use data from tracking against the null hypothesis of no habitat preference is hindered in Shark Bay, as elsewhere, by the difficulty of defining expected habitat use given random movement. We used randomization procedures to generate expected habitat use in the absence of habitat preference and expected habitat use differences among groups (e.g. males and females). We tested the performance of these protocols using simulated data sets with known habitat preferences. 3. The technique correctly classified sets of simulated tracks as displaying a preference or not and was a conservative test for differences in habitat preferences between subgroups of tracks (e.g. males vs. females). 4. Sharks preferred shallow habitats over deep ones, and preferred shallow edge microhabitats over shallow interior ones. The use of shallow edges likely increases encounter rates with potential prey and may have profound consequences for the dynamics of Shark Bay's seagrass ecosystem through indirect effects transmitted by grazers that are common prey of tiger sharks. 5. Females showed a greater tendency to use shallow edge microhabitats than did males; this pattern was not detected by traditional analysis techniques. 6. The randomization procedures presented here are applicable to many field studies that use tracking by allowing researchers both to determine overall habitat preferences and to identify differences in habitat use between groups within their sample.  相似文献   

3.
Tatyana A. Rand  Teja Tscharntke 《Oikos》2007,116(8):1353-1362
The greater susceptibility of higher trophic levels to habitat loss has been demonstrated to disrupt important trophic interactions such as consumer control of prey populations. This pattern is predicted to break down for generalist species that can use matrix habitats, yet empirical studies comparing generalist and specialist enemy pressure in response to natural habitat loss are lacking. Here we examined the effects of landscape simplification resulting from habitat conversion to agriculture on nettles, Urtica dioica , their specialized aphid herbivore, Microlophium carnosum , and associated natural enemies that varied broadly in their degree of specialization. Both nettles and their specialized aphid herbivore were significantly more abundant in complex than simple landscapes. Different enemy groups showed contrasting responses. Aphid specialists (parasitic wasps and cecidomyiid midges) reached higher densities in complex than simple landscapes, and this effect was primarily related to shifts in local resource abundance (i.e. nettle aphid densities). In contrast, densities of generalists (coccinellid beetles and spiders) were significantly higher in simple landscapes, presumably due to spillover of generalists from surrounding cropland habitats. Natural enemy-prey ratios did not differ significantly across landscape types for specialist groups but were significantly higher in simple than complex landscapes for generalist groups, suggesting that enemy pressure on nettle aphids likely increases with landscape simplification. This was supported by our finding that aphid population growth rates were lower in simple than complex landscapes, and declined significantly with increasing coccinellid densities. Thus, in marked contrast to previous work, our results suggest that natural habitat loss may augment rather than disrupt consumer–prey interactions, and this will depend greatly on the degree of specialization of functionally dominant natural enemies.  相似文献   

4.
Studies on the relationship between habitat heterogeneity and animal abundance are essential for understanding what determines biodiversity. Transect-based direct observations of eight principal prey species of tiger in the Chitwan National Park (CNP) were used to determine their abundances and habitat preferences. Chital was the most abundant prey species of tiger (Panthera tigris). Each of the prey species had significantly different habitat preferences except sambar deer and chital. Habitat preference was measured using Manly’s preference index, which revealed that short grassland, mixed forest, and riverine forest were the most preferred habitats of the prey species. The results indicate that large species of deer tend to be found in more diverse habitats than small species, except muntjac. The abundance of the principal prey species of tiger was positively correlated with habitat heterogeneity. The habitat, which contributes significantly to the heterogeneity of the landscape, is grassland in large patches of forest. The ongoing increase of forest cover in the CNP has led to a reduction in the area of grassland, which may negatively affect the abundance of the prey species of tiger. Hence, it is suggested that the restoration of landscape heterogeneity is the best way to manage the habitats in the CNP.  相似文献   

5.
Sexual selection and ecological differences are important drivers of speciation. Much research has focused on female choice, yet the role of male competition in ecological speciation has been understudied. Here, we test how mating habitats impact sexual selection and speciation through male competition. Using limnetic and benthic species of threespine stickleback fish, we find that different mating habitats select differently on male traits through male competition. In mixed habitat with both vegetated and open areas, selection favours two trait combinations of male body size and nuptial colour: large with little colour and small with lots of colour. This matches what we see in reproductively isolated stickleback species, suggesting male competition could promote trait divergence and reproductive isolation. In contrast, when only open habitat exists, selection favours one trait combination, large with lots of colour, which would hinder trait divergence and reproductive isolation. Other behavioural mechanisms in male competition that might promote divergence, such as avoiding aggression with heterospecifics, are insufficient to maintain separate species. This work highlights the importance of mating habitats in male competition for both sexual selection and speciation.  相似文献   

6.
Differences in habitat use can bridge early and late stages of speciation by initiating assortative mating. Heliconius colour pattern races might select habitats over which each pattern confers a relative fitness advantage because signal efficacy of wing patterns can vary by environment. Thus habitat preferences could serve to promote the evolution of mimetic colour patterns for mate choice. Here I compare colour pattern genotype and phenotype frequencies to environmental variation across the H. erato hydara x H. erato erato hybrid zone in French Guiana to determine whether races exhibit habitat preferences. I found that genotype and phenotype frequencies correspond to differences in land cover moreso than to other environmental factors. Temporal shifts in colour pattern genotypes, phenotypes and land cover also were associated at individual sample sites, which further suggests that H. erato races differ in habitat use and that habitat preferences may promote speciation among Heliconius butterflies.  相似文献   

7.
Douglas W. Morris 《Oikos》2005,109(2):239-254
Current research contrasting prey habitat use has documented, with virtual unanimity, habitat differences in predation risk. Relatively few studies have considered, either in theory or in practice, simultaneous patterns in prey density. Linear predator–prey models predict that prey habitat preferences should switch toward the safer habitat with increasing prey and predator densities. The density‐dependent preference can be revealed by regression of prey density in safe habitat versus that in the riskier one (the isodar). But at this scale, the predation risk can be revealed only with simultaneous estimates of the number of predators, or with their experimental removal. Theories of optimal foraging demonstrate that we can measure predation risk by giving‐up densities of resource in foraging patches. The foraging theory cannot yet predict the expected pattern as predator and prey populations covary. Both problems are solved by measuring isodars and giving‐up densities in the same predator–prey system. I applied the two approaches to the classic predator–prey dynamics of snowshoe hares in northwestern Ontario, Canada. Hares occupied regenerating cutovers and adjacent mature‐forest habitat equally, and in a manner consistent with density‐dependent habitat selection. Independent measures of predation risk based on experimental, as well as natural, giving‐up densities agreed generally with the equal preference between habitats revealed by the isodar. There was no apparent difference in predation risk between habitats despite obvious differences in physical structure. Complementary studies contrasting a pair of habitats with more extreme differences confirmed that hares do alter their giving‐up densities when one habitat is clearly superior to another. The results are thereby consistent with theories of adaptive behaviour. But the results also demonstrate, when evaluating differences in habitat, that it is crucial to let the organisms we study define their own habitat preference.  相似文献   

8.
Differentiation in habitat selection among sympatric species may depend on niche partitioning, species interactions, selection mechanisms and scales considered. In a mountainous area in Sweden, we explored hierarchical habitat selection in Global Positioning System-collared individuals of two sympatric large carnivore species; an obligate predator, the Eurasian lynx (Lynx lynx), and a generalist predator and scavenger, the wolverine (Gulo gulo). Although the species’ fundamental niches differ widely, their ranges overlap in this area where they share a prey base and main cause of mortality. Both lynx and wolverines selected for steep and rugged terrain in mountainous birch forest and in heaths independent of scale and available habitats. However, the selection of lynx for their preferred habitats was stronger when they were forming home ranges and they selected the same habitats within their home ranges independent of home range composition. Wolverines displayed a greater variability when selecting home ranges and habitat selection also varied with home range composition. Both species selected for habitats that promote survival through limited encounters with humans, but which also are rich in prey, and selection for these habitats was accordingly stronger in winter when human activity was high and prey density was low. We suggest that the observed differences between the species result primarily from different foraging strategies, but may also depend on differences in ranging and resting behaviour, home range size, and relative density of each species. Our results support the prediction that sympatric carnivores with otherwise diverging niches can select for the same resources when sharing main sources of food and mortality.  相似文献   

9.
Seasonal changes in spatial distribution of search effort of birds that prey on small mammals were studied in two structurally different coniferous forest habitats in the northern boreal zone in SE Norway. During the season with snow cover both the proportion of Microtus relative to that of Clethrionomys in the predators' diet, and their use of a clear-cut relative to that of older forest were lower than during the snow-free season. This was related to a lower relative availability of prey ( Microtus agrestis and M. oeconomus ) in the clear-cut when the ground was snow-covered than when it was snow-free. Based on this local pattern I suggest the following explanation for differences in migratory strategy between raptors that prey on small mammals in Fennoscandian boreal zones: species that migrate to snow-free areas in winter are either adapted to hunt by the energetically expensive method of quartering in open grassland habitats, where prey ( Microtus ) availability is relatively low during periods with snow cover (hen harrier Circus cyaneus , short-eared owl Asio flammeus , and longeared owl A. otus ), or by sit-and-wait in open grassland and forest habitats, the latter with relatively high prey availability during periods with snow cover, but unable to locate concealed prey (kestrel Falco tinnuculus , common buzzard Buteo huteo , and roughlegged buzzard B. lagopus ). In contrast, species that remain in areas with permanent snow cover during winter use the energetically cheap sit-and-wait tactic, and are able to hunt in closed forest habitat and localize concealed prey (the remaining owl species). Interspecific differences in prey availability as determined by hunting habitat and hunting mode is probably more important in shaping the migration patterns of Fennoscandian owls than is nest site availability.  相似文献   

10.
Understanding the processes that underpin adaptive evolutionary shifts within major taxonomic groups has long been a research directive among many evolutionary biologists. Such phenomena are best studied in large monophyletic groups that occupy a broad range of habitats where repeated exposure to novel ecological opportunities has happened independently over time in different lineages. The gekkonid genus Cyrtodactylus is just such a lineage with approximately 300 species that range from South Asia to Melanesia and occupy a vast array of habitats. Ancestral state reconstructions using a stochastic character mapping analysis of nine different habitat preferences were employed across a phylogeny composed of 76% of the known species of Cyrtodactylus. This was done in order to ascertain which habitat preference is the ancestral condition and from that condition, the transition frequency to more derived habitat preferences. The results indicate that a general habitat preference is the ancestral condition for Cyrtodactylus and the frequency of transitioning from a general habitat preference to anything more specialized occurs approximately four times more often than the reverse. Species showing extreme morphological and/or ecological specializations generally do not give rise to species bearing other habitat preferences. The evolution of different habitat preferences is generally restricted to clades that tend to occur in specific geographic regions. The largest radiations in the genus occur in rocky habitats (granite and karst), indicating that the transition from a general habitat preference to a granite or karst‐dwelling life style may be ecologically uncomplicated. Two large, unrelated clades of karst‐associated species are centered in northern Indochina and the largest clade of granite‐associated species occurs on the Thai‐Malay Peninsula. Smaller, independent radiations of clades bearing other habitat preferences occur throughout the tree and across the broad distribution of the genus. With the exception of a general habitat preference, the data show that karst‐associated species far out‐number all others (29.6% vs. 0.4%–10.2%, respectively) and the common reference to karstic regions as “imperiled arcs of biodiversity” is not only misleading but potentially dangerous. Karstic regions are not simply refugia harboring the remnants of local biodiversity but are foci of speciation that continue to generate the most speciose, independent, radiations across the genus. Unfortunately, karstic landscapes are some of the most imperiled and least protected habitats on the planet and these data continue to underscore the urgent need for their conservation.  相似文献   

11.
Mating occurs on the larval host plant in allRhagoletis species (Diptera: Tephritidae). We show how this attribute, when coupled with certain differences in other biological traits, strongly influences the mode of speciation. In species of thesuavis species group, host shifts have never occurred during speciation, and larvae feed in the husks of any walnut species(Juglans spp.), which are highly toxic. Taxa are allopatric or parapatric and exhibit deep phylogenetic nodes suggesting relatively ancient speciation events. Traits responsible for species and mate recognition, particularly in parapatric species, are morphologically distinct and strongly sexually dimorphic. All aspects of their biology, genetics and distribution are consistent with a slow rate of allopatric speciation followed by morphological divergence in secondary contact. In contrast, speciation in thepomonella species group has always involved a shift to a new, usually unrelated, non-toxic host, and all taxa within these groups are sympatric, monophagous and morphologically indistinguishable from one another. Phylogenetic nodes are very shallow, indicating recent sympatric speciation. Sympatric divergence is promoted by genetic variation which allows a portion of the original species to shift to a new habitat or host. Evidence suggests that changes in a few key loci responsible for host selection and fitness on a new host may initiate host shifts. By exploiting different habitats, competition for resources between diverging populations is reduced or avoided. We provide evidence that in phytophagous and parasitic insects sufficient intrinsic barriers to gene flow can evolve between sister populations as they adapt to different habitats or hosts to allow each population to establish independent evolutionary lineages in sympatry.  相似文献   

12.
  1. Community scientists have illustrated rapid declines of several aphidophagous lady beetle (Coccinellidae) species. These declines coincide with the establishment of alien coccinellids. We established the Buckeye Lady Beetle Blitz program to measure the seasonal occupancy of coccinellids within gardens across a wide range of landscape contexts. Following the Habitat Compression Hypothesis, we predicted that gardens within agricultural landscapes would be alien‐dominated, whereas captures of natives would be higher within landscapes encompassing a high concentration of natural habitat.
  2. Within the state of Ohio, USA, community scientists collected lady beetles for a 7‐day period across 4 years in June and August using yellow sticky card traps. All identifications were verified by professional scientists and beetles were classified by three traits: status (alien or native), mean body length, and primary diet. We compared the relative abundance and diversity of coccinellids seasonally and determined if the distribution of beetles by size, status, and diet was related to landscape features.
  3. Alien species dominated the aphidophagous fauna. Native aphidophagous coccinellid abundance was positively correlated with forest habitat while alien species were more common when gardens were embedded within agricultural landscapes. Urbanization was negatively associated with both aphidophagous alien and native coccinellids.
  4. Synthesis and Applications: Our census of native coccinellid species within residential gardens—a widespread and understudied habitat—was enabled by volunteers. These data will serve as an important baseline to track future changes within coccinellid communities within this region. We found that native coccinellid species richness and native aphidophagous coccinellid abundance in gardens were positively associated with forest habitat at a landscape scale of 2 km. However, our understanding of when and why (overwintering, summer foraging, or both) forest habitats are important remains unclear. Our findings highlight the need to understand how declining aphidophagous native species utilize forest habitats as a conservation priority.
  相似文献   

13.
Recent research on natural host races and sympatric sister species, comparative phylogenetic analyses, laboratory experiments and theoretical models has greatly strengthened the case for sympatric speciation. Traits evolving in response to divergent selection experienced by subpopulations adapting to different habitats provide sufficient intrinsic premating isolation for sympatric speciation to occur. The initiation of speciation through a habitat shift in animals which mate within a preferred habitat (such as many phytophagous and parasitic invertebrates and some vertebrates, including birds) requires few genetic changes.  相似文献   

14.
Understanding how animals utilize available space is important for their conservation, as it provides insight into the ecological needs of the species, including those related to habitat, prey and inter and intraspecific interactions. We used 28 months of radio telemetry data and information from 200 kill locations to assess habitat selection at the 3rd order (selection of habitats within home ranges) and 4th order (selection of kill sites within the habitats used) of a reintroduced population of cheetahs Acinonyx jubatus in Phinda Private Game Reserve, South Africa. Along with landscape characteristics, we investigated if lion Panthera leo presence affected habitat selection of cheetahs. Our results indicated that cheetah habitat selection was driven by a trade-off between resource acquisition and lion avoidance, and the balance of this trade-off varied with scale: more open habitats with high prey densities were positively selected within home ranges, whereas more closed habitats with low prey densities were positively selected for kill sites. We also showed that habitat selection, feeding ecology, and avoidance of lions differed depending on the sex and reproductive status of cheetahs. The results highlight the importance of scale when investigating a species’ habitat selection. We conclude that the adaptability of cheetahs, together with the habitat heterogeneity found within Phinda, explained their success in this small fenced reserve. The results provide information for the conservation and management of this threatened species, especially with regards to reintroduction efforts in South Africa.  相似文献   

15.
Marine fishes are often associated with structurally complex microhabitats that are believed to provide a refuge from predation. However, the effects of habitat complexity on predator foraging success can be strongly modified by predator and prey behaviors. We conducted a series of laboratory experiments to evaluate the effects of sea floor habitat complexity on juvenile fish survivorship using multiple predator (striped searobin and summer flounder) and prey (winter flounder, scup, and black sea bass) species to identify potentially important species-habitat interactions. Three habitats of varying complexity (bare sand, shell, and sponge) common to coastal marine environments were simulated in large aquaria (2.4 m diameter, 2400 L volume). Prey survivorship increased significantly with greater habitat complexity for each species combination tested. However, examination of multiple prey and predator species across habitats revealed important effects of predator × habitat and prey × habitat interactions on prey survival, which appeared to be related to species-specific predator and prey behavior in complex habitats. Significant species × habitat interactions imply that the impact of reduced seafloor habitat complexity may be more severe for some species than others. Our results indicate that the general effects of seafloor habitat complexity on juvenile fish survivorship may be broadly applicable, but that the interaction of particular habitats with search tactics of predators as well as habitat affinities and avoidance responses of prey can produce differences among species that contribute to variable mortality.  相似文献   

16.
Animals that deploy chemical defences against predators often signal their unprofitability using bright colouration. This pairing of toxicity and conspicuous patterning is known as aposematism.Explaining the evolution and spread of aposematic traits in previously cryptic species has been the focus of much empirical and theoretical work over the last two decades. Existing research concerning the initial evolution of aposematism does not however properly consider that many aposematic species (such as members of the hymenoptera, the lepidoptera, and amphibia) are highly mobile. We argue in this paper that the evolution of aposematic displays is therefore often best understood within a metapopulation framework; hence in this paper we present the first explicit metapopulation model of the evolution of aposematism. Our most general finding is that migration tends to reduce the probability that an aposematic prey can increase from rarity and spread across a large population. Hence, the best case scenarios for the spread of aposematism required fixation of the aposematic form in one or more isolated sub-habitats prior to some event which subsequently enabled migration. We observed that changes in frequency of new aposematic forms within source habitats are likely to be nonmonotonic. First, aposematic prey tend to decline in frequency as they migrate outwards from the source habitat to neighbouring sink habitats, but subsequently they increase in relative abundance in the source, as the descendents of earlier migrants migrate back from newly converted sub-populations. This pattern of initial loss and subsequent gain between new source and neighbouring sink habitats is then repeated as the aposematic form spreads via a moving cline.  相似文献   

17.
Ecosystems are linked by the movement of organisms across habitat boundaries and the arrangement of habitat patches can affect species abundance and composition. In tropical seascapes many coral reef fishes settle in adjacent habitats and undergo ontogenetic habitat shifts to coral reefs as they grow. Few studies have attempted to measure at what distances from nursery habitats these fish migrations (connectivity) cease to exist and how the abundance, biomass and proportion of nursery species change on coral reefs along distance gradients away from nursery areas. The present study examines seascape spatial arrangement, including distances between habitats, and its consequences on connectivity within a tropical seascape in Mozambique using a seascape ecology approach. Fish and habitat surveys were undertaken in 2016/2017 and a thematic habitat map was created in ArcGIS, where cover and distances between habitat patches were calculated. Distance to mangroves and seagrasses were significant predictors for abundance and biomass of most nursery species. The proportions of nursery species were highest in the south of the archipelago, where mangroves were present and decreased with distance to nurseries (mangroves and seagrasses). Some nursery species were absent on reef sites farthest from nursery habitats, at 80 km from mangroves and at 12 km from seagrass habitats. The proportion of nursery/non-nursery snapper and parrotfish species, as well as abundance and biomass of seagrass nursery species abruptly declined at 8 km from seagrass habitats, indicating a threshold distance at which migrations may cease. Additionally, reefs isolated by large stretches of sand and deep water had very low abundances of several nursery species despite being within moderate distances from nursery habitats. This highlights the importance of considering the matrix (sand and deep water) as barriers for fish migration.  相似文献   

18.
The ontogenetic patterns of habitat use by a community of fishes in the main channel of the Broken River, an Australian lowland river, was investigated. Stratified sampling was conducted fortnightly across six habitat types throughout the spring‐summer period within the main channel. As predicted by the 'low flow recruitment hypothesis', backwaters and still littoral habitats were important nursery habitats for most species. These habitats were found to be used by some species throughout all stages of their life cycle, while other species showed clear ontogenetic shifts in habitat preference. Only one species, Murray cod Maccullochella peelii peelii , was never found in backwaters. This study confirms the significance of main channel habitats in the rearing of larvae of some riverine fish species, and emphasizes the importance of considering the habitat requirements of all stages of a fish's life cycle in the management and restoration of rivers and streams.  相似文献   

19.
Migratory species take advantage of multiple habitats during their life cycle to optimize growth, survival, and reproduction. However, migration also makes them vulnerable to habitat degradation and exploitation in each habitat, and loss of connection between habitats. Partially migratory species (i.e., migration is facultative rather than obligate) can persist after loss of connectivity and may then resume migration after the habitats are reconnected. We analyzed stable isotopes of carbon and nitrogen to investigate the possible use of marine habitats for foraging by bull trout, Salvelinus confluentus, in years immediately after removal of impassable hydroelectric dams on the Elwha River, Washington State, USA. Juveniles in the Elwha River estuary were similar in δ15N and δ13C values to those in the estuary of the free-flowing Dungeness River nearby, and the values of fish from the estuaries were higher than those of juveniles collected in the river, consistent with use of marine food sources. Adult bull trout collected in each of the rivers had values indicating extensive reliance on marine prey - similar to those of adult Pacific salmon that had spent several years at sea. Taken together, these data demonstrate that the Elwha River bull trout, almost entirely landlocked for a century, are rapidly resuming anadromy and that the marine prey contribute substantially to their trophic ecology and likely their growth. More broadly, the results reveal the importance of connectivity for migratory fishes, their ability to resume anadromy once the connection between habitats is restored, and the population resilience that partial migration provides for them.  相似文献   

20.
Although habitat selection has been studied in a variety of snake taxa, little is known about habitat selection in aquatic snake species. Additionally, due to their small size and secretive nature, juvenile snakes are seldom included in habitat selection studies. The Eastern cottonmouth Agkistrodon piscivorus is a semi-aquatic pit viper known to use ambush, sit-and-wait foraging strategies. Ambush hunters are likely to select habitats that increase opportunity for successful prey capture while minimizing predation risk and maintaining appropriate thermal and hydric conditions. We characterized the foraging strategy and microhabitat use of cottonmouths at Ellenton Bay, an isolated Carolina bay freshwater wetland on the Savannah River Site in SC, USA. We measured habitat characteristics of 55 ambush sites used by 51 individual cottonmouths located during nighttime visual surveys, as well as 225 randomly selected sites within our search area. Cottonmouths exhibited an ontogenetic shift in foraging strategy with juveniles using predominately ambush foraging around the edge of the wetland while adults were most often encountered actively moving within the wetland. Principal components analysis revealed that juveniles selected foraging microhabitats that were different from random and consisted of mud substrate with sparse vegetation, whereas adults occupied a greater variety of microhabitats that did not differ from random. Concomitantly, free-ranging cottonmouths exhibited ontogenetic shifts in diet: juveniles consumed mostly salamanders, while adults ate a greater variety of prey including other snakes and birds. Our results highlight the importance of understanding how ontogenetic changes in coloration, diet and predation risk influence foraging strategy and microhabitat selection in snakes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号