首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hydrothermal reaction of the carboxylate-based ligands with metal salts (or oxide) and 4,4′-bipyridine as a second linker, afforded three new coordination polymers, namely, [Co(PCPA)2(4,4′-bpy)]n (1) with 2-D rectangle grids, Cu(PCPA)2(4,4′-bpy)]n (2) with a linear chain, [Ag(PCPA)(PCPAH)(4,4′-bpy) · H2O]n (3) with 1-D molecular ladder (4,4′-bpy = 4,4′-bipyridine; PCPA = p-chlorophenoxyacetate; PCPAH = p-chlorophenoxyacetic acid). It is noticeable that compound 3 is also a supramolecular framework built by coordination bonds, weak interactions between Ag ions, π-π stacking interactions and hydrogen-bonded interactions. The three compounds with different structure motifs have been characterized by elemental analyses, IR spectra, ultraviolet-visible diffuse reflection integral spectra, fluorescent spectra and single crystal X-ray diffraction analysis. Furthermore, the bonding properties of compound 3 were investigated in terms of the absorption spectrum, as well as the calculated band structures and density of states.  相似文献   

2.
Two new supramolecular compounds, [Ag(4,4′-bipy)]n [Ag(HBTC)]n (1) and [Cu(H2BTC)(2,2′-bipy)] (2) (HBTC/H2BTC = 1,2,4-benzenetricarboxylate, 4,4′-bipy/2,2′-bipy = 4,4′/2,2′-bipyridine), have been synthesized and characterized by elemental analyses, IR spectra, ultraviolet-visible diffuse reflection integral spectra (UV-Vis DRIS), fluorescent spectra, thermogravimetric analysis and single crystal X-ray diffraction analysis. It is noteworthy that there were two kinds of one-dimensional stairs-chain including cationic [Ag(4,4′-bipy)]n chain and anionic [Ag(HBTC)]n chain in 1. Furthermore, a two-dimensional double layer supramolecular framework was constructed through coordination bonds, hydrogen bonds, π-π stacking interactions and Ag?O weak coordinative interactions. The one-dimensional supramolecular chain of 2 was built from combining mononuclear [Cu(H2BTC)(2,2′-bipy)] by inter- and intra-molecular hydrogen bonding interactions. Additionally, the two complexes exhibit intense blue or olivine luminescence at room temperature.  相似文献   

3.
Three new Cu(II) complexes of formula [Cu(L1)(pyz)(CH3OH)]ClO4 (1), [Cu(L1)(4,4′-bpy)(ClO4)]·0.5H2O (2) and [{Cu(L2)(ClO4)}2(μ-4,4′-bpy)] (3) have been synthesised by using pyrazine (pyz) and 4,4′-bipyridine (4,4′-bpy) and tridentate O,N,O-donor hydrazone ligands, L1H and L2H, obtained by the condensation of 1,1,1-trifluoro-2,4-pentanedione with salicyloylhydrazide and benzhydrazide, respectively. The ligands and their complexes have been characterized by elemental analyses, FT-IR, and UV-Vis spectroscopies. Single crystal X-ray structure analysis evidences the metal ion in a slightly deformed square pyramidal geometry in all the complexes. However complexes 1 and 2 are mononuclear with pyz and 4,4′-bpy, respectively, showing an unusual monodentate behavior, while complex 3 is dinuclear with 4,4′-bpy adopting the typical bridging coordination mode. Self assembly of the complex units by hydrogen bonding interactions produces one-dimensional arrangement in each crystal packing. The magnetic characterization of complex 3 indicates a weak antiferromagnetic exchange interaction between the Cu(II) ions (J = −0.96 cm−1) mediated through the long 4,4′-bpy bridge. Electrochemical behavior of the complexes is also discussed.  相似文献   

4.
The hydrothermal reactions of CuSO4 · 5H2O, a phosphonate ligand and an appropriate aromatic nitrogen heterocycle yield a series of materials of the Cu(II)/phosphonate/nitrogen ligand donor family. Two of the materials [Cu(2,2′-bpy)(HO3PCH2CH2CH2PO3H)] (1) and [Cu(4,4′-bpy)(H2O)2(HO3PCH2CH2CH2CH2PO3H)] (2) are two-dimensional, while [{Cu(2,2′-bpy)}2(O3PC6H4PO3)] · 8H2O (3 · 8H2O) is three-dimensional. When 1,3,5-benzenetricarboxylic acid is introduced as a reactant, the one-dimensional material [Cu(2,2′-bpy){OC6H2(CO2H)3}(HOPC6H5)] (4) is isolated. This is an example of an in situ hydrothermal ligand transformation in which the 1,3,5-benzene tricarboxylic acid is hydroxylated to give 1,3,5-benzene tricarboxylic acid-2-hydroxide. Compound 5 [Cu(terpy)(HO3PC6H4PO3H] is molecular.  相似文献   

5.
Two new Mn(II) coordination polymers with bis(5-tetrazolyl)methane (H2btm), [Mn(btm)(phen)(H2O)] · H2O (1) and [Mn(btm)(2,2′-bpy)] · 1.5H2O (2), have been synthesized and their structures determined by X-ray diffraction. In complex 1, the btm ligands assume the μ2-1,1′:4 coordination mode and interlink Mn(II) ions into infinite one-dimensional chains. The chains are assembled into a three-dimensional architecture via hydrogen bonds and π-π interactions. For 2, Mn(II) ions are connected by btm ligands in the μ3-1,1′:2:3′ mode to produce two-dimensional (6,3) coordination network. Magnetic investigations revealed that interactions through the btm bridges in both 1 and 2 are antiferromagnetic.  相似文献   

6.
Reaction of ferrocenyl carboxylate H2bfcs with Cd(Ac)2 · 2H2O (H2bfcs = 1,1′-bis(3-carboxy-1-oxopropyl)ferrocene) gives the mononuclear tetrahydrate precursor Cd(Hbfcs)2(H2O)4 (1). Investigation on the substitution reactions of 1 with imidazole or 2,2′-bpy afforded two one-dimensional (1D) complexes {[Cd2(bfcs)2(C3H4N2)6] · 4H2O}n (2) and {[Cd(bfcs)(2,2′-bpy)(H2O)] · 2H2O}n (4) (2,2′-bpy = 2,2′-bipyridine), respectively. However, the one-step reactions of H2bfcs, Cd(Ac)2 · 2H2O with imidazole or 2,2′-bpy result in the formation of two different 1D complexes {[Cd(bfcs)(C3H4N2)2] · CH3OH · 2H2O}n (3) and [Cd(bfcs)(CH3OH)]n (5). It can be seen from the results that applying different synthetic routes produce dissimilar complexes from however the same materials and under the same reaction conditions. In addition, investigations of differential pulse voltammetry of these four 1D complexes indicate that their half-wave potentials are slightly higher than that of H2bfcs.  相似文献   

7.
Complexes 1 and 2, formulated {[Co2(4,4′-bpy)2 · 8H2O] · (CCA)2 · 4H2O}n (1) and {[Co(TMG)(4,4′-bpy)(H2O)2] · 3H2O}n (2) (H2CCA = 2-carboxylatocinnamate, H2TMG = 3,3-tetramethyleneglutate, 4,4′-bpy = 4,4′-bpyridine) have been synthesized by the reaction of cobalt (II), 4,4′-bpy and carboxylate ligands, in which 2D metal-water layers and 1D metal-water chains have been observed, respectively. In the metal-water clusters, the water molecules are trapped by the cooperative association of coordination interactions as well as hydrogen bonds.  相似文献   

8.
The synthesis and structural characterization of four new copper compounds with formula [Cu(crot)2(isn)2(Hcrot)·H2O] (1), [Cu(oda)(isn)2] (2), [Cu(crot)2(nia)2·(H2O)] (3) and [Cu(oda)(nia)] (4) (crot = trans-2-butenoate, oda = oxydiacetate, isn = isonicotinamide, nia = nicotinamide) is reported. The complexes extend into 3D supramolecular structures by means of hydrogen bonds. EPR spectra of powder samples of the compounds are reported.  相似文献   

9.
A new coordination polymer, [Zn2(mal)(1,10-phen)Cl]n (1), (mal = malate, 1,10-phenanthroline), has been synthesized with malic acid and fumaric acid which are generated from maleic acid under hydrothermal reactions. At about the same condition, we get [Cd(fma)(2,2′-bpy)(H2O)]n (2) (fma = fumarate, 2,2′-bpy=2, 2′-bipyridine). The diverse products illustrate that the carbon-carbon doublebond of the maleic acid has two kinds of reaction trends under different conditions. Complex 1, which displays a two-dimensional (4, 8) lattice-type network, is formed from Zn and maleic through the addition reaction with water molecule. If the Zn is changed by Cd, at the same reaction condition with 1, a two-dimensional supramolecular network complex 2 is formed through the conformation transform reaction. To our knowledge, a lot of coordination polymers have been constructed from malic acid and fumaric acid directly; however, these kinds of complexes have seldom been synthesized from maleic acid under hydrothermal reaction. As is known, the rigid carbon-carbon double bond makes maleic acid lead to some unique structural features which the saturated aliphatic acid does not possess. To illustrate this clearly, a simple one dimensional complex 3, [Cd(glut)(1,10-phen)(H2O)]n (glut = glutarate), is synthesized. Furthermore, complex 1 and complex 3 exhibit intense photoluminescent property at room temperature.  相似文献   

10.
Three new organic-inorganic hybrid materials with 4,4′-bipy ligands and copper cations as linkers, [CuII(H2O)(4,4′-bipy)2][CuII(H2O)(4,4′-bpy)2]2H[CuIIP8Mo12O62H12] · 5H2O (1), [CuI(4,4′-bipy)][CuII(4,4′-bipy)]2 (BW12O40) · (4,4′-bipy) · 2H2O (2) and [CuI (4,4′-bipy)]3 (PMo12O40) · (pip) · 2H2O (3) (pip = piperazine; 4,4′-bipy = 4,4′-bipyridine), have been hydrothermally synthesized. The single X-ray structural analysis reveals that the structure of 1 is constructed from [Cu(H2O)(4,4′-bipy)2] complexes into a novel, three-dimensional supermolecular network with 1-D channels in which Cu[P4Mo6]2 dimer clusters reside. To the best of our knowledge, compound 1 is the first complex in which the [P4Mo6] clusters have been used as a non-coordinating anionic template for the construction of a novel, three-dimensional supermolecular network. Compound 2 is constructed from the six-supported [BW12O40]5− polyoxoanions and [CuI(4,4′-bipy)] and [CuII(4,4′-bipy)] groups into a novel, 3-D network. Compound 3 exhibits unusual 3-D supramolecular frameworks, which are constructed from tetrasupporting [PMo12O40]3− clusters and [CuI (4,4′-bipy)n] coordination polymer chains. The electrochemical properties of 2 and 3 have been investigated in detail.  相似文献   

11.
Four novel coordination polymers, [Cd(Hdtbb)(dtbb)0.5(DMF)]n (1), {[Cd(dtbb)(2,2′-bpy)(H2O)]·2DMA}n (2), {[Cd2(dtbb)2(1,4-bix)2]·3DMF}n (3) and [Cd(dtbb)(1,4-btx)]n (4) [H2dtbb = 2,2-dithiobisbenzoic acid, 2,2′-bpy = 2,2′-bipyridine, 1,4-bix = 1,4-bis(imidazol-1-ylmethyl)benzene, 1,4-btx = 1,4-bis(triazol-1-ylmethyl)benzene] have been synthesized and structurally characterized. Complexes 1 and 2 possess one-dimensional (1D) infinite structures. The structures of complexes 3 and 4 exhibit two dimensional (2D) frameworks, which mainly due to the differences in the bridging modes of dtbb2− ligand and the effect of the N-donor auxiliary ligands. The infrared spectra, thermogravimetric and luminescent properties were also investigated for these compounds.  相似文献   

12.
Complexes [Cu(HSas)(H2O)] · 2H2O (H3Sas = N-(2-hydroxybenzyl)-l-aspartic acid) (1), [Cu(HMeSglu)(H2O)] · 2H2O (H3MeSglu = (N-(2-hydroxy-5-methylbenzyl)-l-glutamic acid) (2), [Cu2(Smet)2] (H2Smet = (N-(2-hydroxybenzyl)-l-methionine) (3), [Ni(HSas)(H2O)] (4), [Ni2(Smet)2(H2O)2] (5), and [Ni(HSapg)2] (H2Sapg = (N-(2-hydroxybenzyl)-l-aspargine) (6) have been synthesized and characterized by chemical and spectroscopic methods. Structural determination by single crystal X-ray diffraction studies revealed 1D coordination polymeric structures in 2 and 4, and hydrogen-bonded network structure in 5 and 6. In contrast to previously reported coordination compounds with similar ligands, the phenol remains protonated and bonded to the metal ions in 2 and 4, and also probably in 1. However, the phenolic group is non-bonded in 6.  相似文献   

13.
A series of coordination polymers have been prepared by the combination of flexible ligand 1,1′-biphenyl-2,2′-dicarboxylic acid (H2dpa) and different types of nitrogen-containing ligands, with various metal ions such as Co(II), Zn(II) and Cd(II). The single-crystal structure analyses reveal that the above complexes possess different structure features with the introduction of different nitrogen-containing ligands. When auxiliary linear ligand 4,4′-bipyridine (4,4′-bpy) is introduced, two-dimensional layered complex, [Co2(dpa)2(4,4′-bpy)2(H2O)]n (1) is formed. Whereas if chelating ligand, 1,10-phenanthroline (1,10′-phen) and 2,2′-bipyridine (2,2′-bpy) are introduced, one-dimensional complex [Zn(dpa)(1,10′-phen)]n (2) and discrete complexes [Co2(dpa)2(2,2′-bpy)2(H2O)2] (3), [Co3(dpa)3(1,10′-phen)6(H2O)2] (4), [Cd(dpa)(1,10′-phen)2][(H2dpa)2(H2O)2] (5) are synthesized. To our interest, 1 and 2 crystallize in homochiral spacegroup. Furthermore, the magnetic property of complex 1 and the fluorescent properties of complexes 2 and 5 are studied.  相似文献   

14.
Four coordination compounds of tetrazolate-5-carboxylate (tzc) with cobalt(II), [Co2(tzc)2(H2O)6]·2H2O (1), [Co2(tzc)2(phen)2(H2O)2]·2H2O (2), [Co2(tzc)2(2,2′-bpy)2(H2O)2]·H2O (3), and [Co(tzc)(4,4′-bpy)] (4), where phen = 1,10-phenanthroline, 2,2′-bpy = 2,2′-bipyridyl, and 4,4′-bpy = 4,4′-bipyridyl, have been synthesized by the hydrothermal methods involving the in situ generation of the ligand from sodium ethyl tetrazolate-5-carboxylate. Compounds 1, 2 and 3 all contain dinuclear molecules in which metal ions are linked by the double N-N bridges from two tzc ligands in the μ2-N1,O1:N2 mode, and the dinuclear molecules are associated into 3D architecture through extensive hydrogen bonding and π-π stacking interactions in various fashions. Compound 4 exhibits a two-dimensional layer structure in which Co(tzc) chains with μ3-N1,O1:O1:N2 tzc are cross-linked by 4,4′-bpy. Magnetic investigations on 1-3 revealed intramolecular ferromagnetic coupling through the double N-N bridges with intermolecular ferromagnetic or antiferromagnetic interactions. The interaction through the mixed N-N and μ2-Ocarboxylate bridges in 4 is antiferromagnetic.  相似文献   

15.
Four structurally diverse complexes, [Cd(dppz)(bdoa)]n (1), [Zn(dppz)(bdoa)(H2O)]n (2), [Fe(dppz)2(bdoa)]n·2nH2O (3), and [Co2(dppz)2(bdoa)2(H2O)]n·3nH2O (4), where H2bdoa = benzene-1,4-dioxyacetic acid and dppz = dipyrido[3,2-a:2′,3′-c]phenazine, have been hydrothermally synthesized. Compounds 1-4 feature chain structures. There exist π-π interactions in the structures of 1, 2 and 4. Two neighboring chains of 1 are linked through the π-π interactions into a double chain supramolecular structure. The chains of 2 and 4 are further extended by the π-π interactions to form 3D and 2D supramolecular structures, respectively. The structural differences among such complexes show that the transition metals have important influences on their structures. The photoluminescent property of complex 2 and the magnetic property of complex 4 have also been investigated.  相似文献   

16.
Three new coordination compounds with 4-sulfophthalic acid (H3SPA) ligand, namely {[Pb3(4-SPA)2(H2O)](H2O)}n (1), [Mn(4,4′-bpy)2(H2O)4][Mn2(4-SPA)2-(4,4′-bpy)4(H2O)4]·7.5(H2O) (2) and Cu2(4-HSPA)2(2,2′-bpy)2(H2O)2 (3) (4,4′-bpy = 4,4′-bipyridine and 2,2′-bpy = 2,2′-bipyridine), have been synthesized. The structures exhibit different dimensionality depending on the nature of the metal ions and/or the ancillary ligands. Compound 1 has a 2D layered architecture constructed from one-dimensional inorganic lead(II) oxygen chains containing tetranuclear [Pb42-O)4] cluster. Compound 2 has a dinuclear manganese [Mn2(4-SPA)2(4,4′-bpy)4(H2O)4] motif charged with mononuclear [Mn(4,4′-bpy)2(H2O)4]2+ cation. Compound 3 is a discrete dinuclear copper(II) structure that linked by extensive hydrogen bonds to form a three-dimensional supramolecular structure. In the solid state, compound 1 exhibits blue photoluminescence with the maximum at 432 nm upon excitation at 350 nm. The temperature-dependent magnetic susceptibility data of 2 have been investigated. The Curie constant C and Weiss constant θ are 3.14 emu K mol−1 and −2.09 K, respectively, revealing antiferromagnetically magnetic interactions between the Mn2+ ions. In addition, these compounds are characterized by powder X-ray diffraction, IR, elemental analysis, and thermogravimetric analysis.  相似文献   

17.
Two chiral coordination polymers involving amino acid backbone l-cysteic acid (H2l-cys) and N-donor ligand 4,4′-bipyridine (4,4′-bpy) [{Cd(l-cys)(4,4′-bpy)(H2O)}3.5H2O]n1, [{Zn2(l-cys)2(4,4′-bpy)2(H2O)4}·(H2O)·(4,4′-bpy)]n2 with rectangular grids have been synthesized. Both compounds are insoluble in common polar/non-polar solvents and well characterized by various physico-chemical techniques such as CHN, IR, TGA, NMR, solid state CD and single crystal X-ray diffraction methods. Complexes 1 and 2 comprise l-cysteate dianions self assembled into chiral coordination polymers by bridging the adjacent metal centres through the carboxylate oxygen generating one-dimensional helical chains. The helical chains are pillared by 4,4′-bpy generating two dimensional network. Complex 1 generates two dimensional (4,4) rectangular grid network with dimension 4.77 Å × 11.74 Å (based on dCd···Cd) involving with the edge sharing l-cys and 4,4′-bpy ligands, respectively. Complex 2 possesses a brick-wall type (6,3) network topology with edge lengths of the grids 11.42 Å × 10.11 Å based on dZn···Zn. Lattice water molecules are encapsulated between the adjacent rectangular grids via hydrogen bonding interactions. One 4,4′-bpy moiety is stacked between the adjacent layers of brick-wall network via weak π···π interaction with the edge sharing N-donor ligand. Even though both the complexes are rigid and stable, N2 adsorption studies by these complexes revealed not much promising results. The terminal protruding sulphonate groups, angular orientation of the grids within the two-dimensional network and interpenetration of the adjacent offset sheets concomitantly prevent the formation of through tubular channels. Flexible coordination geometry around the metal centre and the versatile coordination mode of the amino carboxylate group from the l-cys moiety are accountable for the variation of the appealing network topology in these complexes. Chiral nature is established by solid state CD spectrum which shows a positive cotton effect for both complexes.  相似文献   

18.
The combination of transition metal ions with mixed ligands resulted in the formation of three new coordination polymers, {[Co(C4H4O5)(bpe)(H2O)2] · (0.5bpe)(H2O)}n (1), {[Cu(C4H4O6)(bipy)] · 5H2O}n (2) and {[Cu(C4H4O5)(bpa)] · 2.5H2O}n (3) (, , bpe = 1,2-bis(4-pyridyl)ethene, bipy = 2,2′-bipyridine, bpa = 1,2-bis(4-pyridyl)ethane), which were prepared under solvothermal conditions and characterized by single-crystal X-ray diffraction. 1 and 2 feature 1D chain structures. Interestingly, each pair of chains recognizes each other through aromatic π-π stacking interactions, generating a zipper-like double-stranded chain in 2. Compound 3 shows 2D 63 topology framework with a rectangle-like grid.  相似文献   

19.
A novel copper(II)-radical complex [Cu(NITmPy)(PDA)(H2O)] · (H2O) (1) (NITmPy = 2-(3′-pyridyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide, H2PDA = 2,6-pyridinedicarboxylic acid) has been synthesized and structurally characterized by X-ray diffraction methods. It crystallizes in the triclinic space group . The Cu(II) ion exists in a distorted square pyramid environment. The molecules of [Cu(NITmPy)(PDA)(H2O)] · (H2O) are connected as a two-dimensional structure by the intermolecular hydrogen bonds. Magnetic measurements show intramolecular ferromagnetic interactions between NITmPy and Cu(II) ion and intermolecular antiferromagnetic interactions in 1.  相似文献   

20.
This work presents a systematic investigation on coordination chemistry of a novel pyridine-2,6-dicarboxylic acid N-oxide (pydco), and also reveals the significant function of supramolecular interactions in dominating the resultant crystalline nets. Assemblies of pydco with transition-metal ions under similar conditions yield a series of polymers in the absence/presence of the organonitrogen ligands {[Cu(pydco)(L)0.5(H2O)] · 2H2O}n (L = bipy (1), bpa (2) and bpe (3)), {[M(pydco)(bpp)(H2O)] · 2H2O}n (M = Cu (4) and Ni (5)), [Ag2(pydco)]n (6) and [Ag2Cu(pydco)2]n (7) (bipy = 4,4′-bipyridine, bpa = 1,2-bis(4-pyridyl)ethane, bpe = 1,2-bis(4-pyridyl)ethene, bpp = 1,3-bis(4-pyridyl)propane). 1-5 feature different structural characteristics, although they exhibit analogous chain networks. Remarkably, extended architectures are further constructed with the aid of weak interactions. Reaction of pydco with AgAc yields a 2-D polymer 6, which was reported in our recent Communication. A mixed-metal coordination polymer 7 was obtained by the self-assembly of AgAc, Cu(Ac)2 · H2O and pydco.In 7, two left- and right-hand helical chains are constructed by carboxylic groups of pydco and Cu centers, which are further connected by [AgCO2]2 cores into a 2-D network. Structural evolution under the co-ligand intervention in this series of compounds, as well as the general coordination rule of pydco, has been further discussed. Furthermore, variable temperature magnetic properties of 1, 3 and 7 are also studied. The magnetic measurements of 1 and 3 reveal the existence of weak antiferromagnetic interactions with J1 = −4.59 cm−1 and J2 = −4.63 cm−1, respectively. Whereas 7 displays weak ferromagnetic interactions with J3 = 1.81 cm−1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号