首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
PCR amplification, oligonucleotide probe typing, and sequencing were used to analyze the HLA class II loci (DRB1, DQA1, DQB1, and DPB1) of an isolated South Amerindian tribe. Here we report HLA class II variation, including the identification of a new DRB1 allele, several novel DR/DQ haplotypes, and an unusual distribution of DPB1 alleles, among the Cayapa Indians (N = 100) of Ecuador. A general reduction of HLA class II allelic variation in the Cayapa is consistent with a population bottle-neck during the colonization of the Americas. The new Cayapa DRB1 allele, DRB1*08042, which arose by a G-->T point mutation in the parental DRB1*0802, contains a novel Val codon (GTT) at position 86. The generation of DRB1*08042 (Val-86) from DRB1*0802 (Gly-86) in the Cayapa, by a different mechanism than the (GT-->TG) change in the creation of DRB1*08041 (Val-86) from DRB1*0802 in Africa, implicates selection in the convergent evolution of position 86 DR beta variants. The DRB1*08042 allele has not been found in > 1,800 Amerindian haplotypes and thus presumably arose after the Cayapa separated from other South American Amerindians. Selection pressure for increased haplotype diversity can be inferred in the generation and maintenance of three new DRB1*08042 haplotypes and several novel DR/DQ haplotypes in this population. The DPB1 allelic distribution in the Cayapa is also extraordinary, with two alleles, DPB1*1401, a very rare allele in North American Amerindian populations, and DPB1*0402, the most common Amerindian DPB1 allele, constituting 89% of the Cayapa DPB1.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Human leukocyte antigen (HLA) class I and class II alleles are implicated as genetic risk factors for many autoimmune diseases. However, the role of the HLA loci in human systemic lupus erythematosus (SLE) remains unclear. Using a dense map of polymorphic microsatellites across the HLA region in a large collection of families with SLE, we identified three distinct haplotypes that encompassed the class II region and exhibited transmission distortion. DRB1 and DQB1 typing of founders showed that the three haplotypes contained DRB1*1501/ DQB1*0602, DRB1*0801/ DQB1*0402, and DRB1*0301/DQB1*0201 alleles, respectively. By visualizing ancestral recombinants, we narrowed the disease-associated haplotypes containing DRB1*1501 and DRB1*0801 to an approximately 500-kb region. We conclude that HLA class II haplotypes containing DRB1 and DQB1 alleles are strong risk factors for human SLE.  相似文献   

3.
The aim of this study was to examine frequencies and haplotypic associations of HLA class II alleles in autochthonous population of Gorski kotar (Croatia). HLA-DRB1, -DQA1 and -DQB1 alleles were determined by DNA based PCR typing in 63 unrelated inhabitants from Gorski kotar whose parents and ancestors were born and lived in tested area for at least over four generations. A total of 13 HLA-DRB1, 12 DQA1 and 14 DQB1 alleles were identified. The most frequent HLA class II genes in Gorski kotar population are: HLA-DRB1*13 (af = 0.150), -DRB1*03 (af = 0.142), -DRB1*07 (af = 0.119), and -DRB1*11 (af = 0.119), HLA-DQA1*0501 (af = 0.278), -DQA1*0102 (af = 0.183), -DQA1*0201 (af = 0.127) and HLA-DQB1*0301 (af = 0.157), -DQB1*0201 (af = 0.139), -DQB1*0501 (af = 0.111). We have identified 24 HLA class II three-locus haplotypes. The most common haplotypes in Gorski kotar population are DRB1*03-DQA* 0501-DQB1*0201 (0.120), DRB1*11-DQA1*0501-DQB1*0301 (0.111) and DRB1*07-DQA1*0201-DQB1*0202 (0.094). The allelic frequencies and populations distance dendrogram revealed the closest relationships of Gorski kotar population with Slovenians, Germans, Hungarians and general Croatian population, which is the result of turbulent migrations within this microregion during history.  相似文献   

4.
We have analyzed the distribution of HLA class II alleles and haplotypes in a Filipino population by PCR amplification of the DRB1, DQB1, and DPB1 second-exon sequences from buccal swabs obtained from 124 family members and 53 unrelated individuals. The amplified DNA was typed by using nonradioactive sequence-specific oligonucleotide probes. Twenty-two different DRB1 alleles, including the novel Filipino *1105, and 46 different DRB1/DQB1 haplotypes, including the unusual DRB1*0405-DQB1*0503, were identified. An unusually high frequency (f = .383) of DPB1*0101, a rare allele in other Asian populations, was also observed. In addition, an unusual distribution of DRB1 alleles and haplotypes was seen in this population, with DR2 (f = .415) and DRB1*1502-DQB1*0502 (f = .233) present at high frequencies. This distribution of DRB1 alleles differs from the typical HLA population distribution, in which the allele frequencies are more evenly balanced. The distribution of HLA class II alleles and haplotypes in this Filipino population is different from that of other Asian and Pacific groups: of those populations studied to date; the Indonesian population is the most similar. DRB1*1502-DQB1*0502 was in strong linkage disequilibrium (D'' = .41) with DPB1*0101 (f = .126, for the extended haplotype), which is consistent with selection for this DR, DQ, DP haplotype being responsible for the high frequency of these three class II alleles in this population.  相似文献   

5.
The highly polymorphic swine leucocyte antigen (SLA) genes are among the most important determinants of swine immune responses to disease and vaccines. Accurate and effective SLA genotyping methods are required to understand how SLA gene polymorphisms affect immunity, especially in outbred pigs with diverse genetic backgrounds. In this study, we present a simple and rapid molecular‐based typing system for characterizing SLA class II alleles of the DRB1, DQB1 and DQA loci. This system utilizes a set of 47 sequence‐specific PCR primers developed to differentiate alleles by groups that share similar sequence motifs. We applied this typing method to investigate the SLA class II diversity in four populations of outbred pigs (n = 206) and characterized a total of 19 SLA class II haplotypes, six of which were shared by at least three of the sampled pig populations. We found that Lr‐0.1 (DRB1*01XX–DQB1*01XX–DQA*01XX) was the most prevalent haplotype with a combined frequency of 16.0%, followed by Lr‐0.2 (DRB1*02XX–DQB1*02XX–DQA*02XX) with 14.6% and Lr‐0.15b (DRB1*04XX–DQB1*0202–DQA*02XX) with 14.1%. Over 70% of the pigs (n = 147) had at least one copy of one of these three haplotypes. The PCR‐based typing system described in this study demonstrates a reliable and unambiguous detection method for SLA class II alleles. It will be a valuable tool for studying the influence of SLA diversity on various immunological, pathological and physiological traits in outbred pigs.  相似文献   

6.
Based on population analysis of the DRB1, DQA1, DQB1 and TNFA allele frequency distribution patterns, regional features of immunogenetic structure of the population of West Siberia were investigated. Statistically significant linkage disequilibrium within the HLA class II region, as well as between the TNFA and DRB1, DQA1, and DQB1 was demonstrated. Population frequency distribution patterns of two- and multilocus haplotypes were examined.  相似文献   

7.
Microminipigs are extremely small‐sized, novel miniature pigs that were recently developed for medical research. The inbred Microminipigs with defined swine leukocyte antigen (SLA) haplotypes are expected to be useful for allo‐ and xenotransplantation studies and also for association analyses between SLA haplotypes and immunological traits. To establish SLA‐defined Microminipig lines, we characterized the polymorphic SLA alleles for three class I (SLA‐1, SLA‐2 and SLA‐3) and two class II (SLA‐DRB1 and SLA‐DQB1) genes of 14 parental Microminipigs using a high‐resolution nucleotide sequence‐based typing method. Eleven class I and II haplotypes, including three recombinant haplotypes, were found in the offspring of the parental Microminipigs. Two class I and class II haplotypes, Hp‐31.0 (SLA‐1*1502–SLA‐3*070102–SLA‐2*1601) and Hp‐0.37 (SLA‐DRB1*0701–SLA‐DQB1*0502), are novel and have not so far been reported in other pig breeds. Crossover regions were defined by the analysis of 22 microsatellite markers within the SLA class III region of three recombinant haplotypes. The SLA allele and haplotype information of Microminipigs in this study will be useful to establish SLA homozygous lines including three recombinants for transplantation and immunological studies.  相似文献   

8.
Thirty-nine CEPH (Centre d'Etude du Polymorphisme Humain) families, comprised of 502 individuals, have been typed for the HLA class II genes DRB1, DQA1, DQB1, and DPB1 using nonradioactive sequence-specific oligonucleotide probes to analyze polymerase chain reaction amplified DNA. This population, which consists of 266 independent chromosomes, contains 27 DRB1, 7 DQA1, 12 DQB1, and 17 DPB1 alleles. Analysis of the distribution of allele frequencies using the homozygosity statistic, which gives an indication of past selection pressures, suggests that balancing selection has acted on the DRB1, DQA1, and DQB1 loci. The distribution of DPB1 alleles, however, suggests a different evolutionary past. Family data permits the estimation of recombination rates and the unambiguous assignment of haplotypes. No recombinants were found between DRB1, DQA1, and DQB1; however, recombinants were detected between DQB1 and DPB1, resulting in an estimated recombination fraction of greater than or equal to 0.008 +/- 0.004. Only 33 distinct DRB1-DQA1-DQB1 haplotypes were found in this population which illustrates the extreme nonrandom haplotypic association of alleles at these loci. A few of these haplotypes are unusual (previously unreported) for a Caucasian population and most likely result from past recombination events between the DR and DQ subregions. Examination of disequilibrium across the HLA region using these data and the available serologic HLA-A and HLA-B types of these samples shows that global disequilibrium between these loci declines with the recombination fraction, approaching statistic nonsignificance at the most distant interval, HLA-A to HLA-DP.DR-DQ haplotypes in linkage disequilibrium with DPB1 and B are noted and, finally, the evolutionary origin of certain class II haplotypes is addressed.  相似文献   

9.
The polymorphism at the HLA DRB1 and DQB1 loci in the population of Vojvodina was studied by PCR-SSP method. A total of 13 DRB1 and 5 DQB1 specificities displaying population-specific frequency distribution pattern were described. The most frequent HLA Class II alleles in Vojvodina population were: HLA-DRB1*11 (af = 0.30), −DRB1*04 (af = 0.28), −DRB1*07 (af = 0.21), −DRB1*13 and −DRB1*16 (af = 0.18), −DQB1*03 (af = 0.64), −DQB1*05 (af = 0.39) and −DQB1*02 (af = 0.35). The haplotypes with high frequencies (≥0.02) included HLA DRB1*11 DQB1*03 (0.0825), DRB1*04DQB1*03 (0.0725), DRB1*07DQB1*02 (0.0475). The allele DRB1*07 showed the strongest association with DQB1*02 (Δ = 0.0261, gC2 = 4.437) and DRB1*13 allele with DQB1*06 (Δ = 0.0222, gC2 = 4.247). The allelic frequencies and populations distance dendrogram revealed the closest relationship of Vojvodina population with Hungarians, Croat, and Greeks which can be the result of turbulent migration within this region and admixture with neighbour populations during the history.  相似文献   

10.
The populations that colonized Siberia diverged from one another in the Paleolithic and evolved in isolation until today. These populations are therefore a rich source of information about the conditions under which the initial divergence of modern humans occurred. In the present study we used the HLA system, first, to investigate the evolution of the human major histocompatibility complex (MHC) itself, and second, to reveal the relationships among Siberian populations. We determined allelic frequencies at five HLA class II loci (DRB1, DQA1, DQB1, DPA1, and DPB1) in seven Siberian populations (Ket, Evenk, Koryak, Chukchi, Nivkh, Udege, and Siberian Eskimo) by the combination of single-stranded conformational polymorphism and DNA sequencing analysis. We then used the gene frequency data to deduce the HLA class II haplotypes and their frequencies. Despite high polymorphism at four of the five loci, no new alleles could be detected. This finding is consistent with a conserved evolution of human class II MHC genes. We found a high number of HLA class II haplotypes in Siberian populations. More haplotypes have been found in Siberia than in any other population. Some of the haplotypes are shared with non-Siberian populations, but most of them are new, and some represent “forbidden” combinations of DQA1 and DQB1 alleles. We suggest that a set of “public” haplotypes was brought to Siberia with the colonizers but that most of the new haplotypes were generated in Siberia by recombination and are part of a haplotype pool that is turning over rapidly. The allelic frequencies at the DRB1 locus divide the Siberian populations into eastern and central Siberian branches; only the former shows a clear genealogical relationship to Amerinds. Received: 18 August 1997 / Accepted: 6 October 1997  相似文献   

11.
The Major Histocompatibility Complex (Mhc) genomic region of many vertebrates is known to contain at least one highly polymorphic class II gene that is homologous in sequence to one or other of the human Mhc DRB1 class II genes. The diversity of the avian Mhc class II gene sequences have been extensively studied in chickens, quails, and some songbirds, but have been largely ignored in the oceanic birds, including the flightless penguins. We have previously reported that several penguin species have a high degree of polymorphism on exon 2 of the Mhc class II DRB1-like gene. In this study, we present for the first time the complete nucleotide sequences of exon 2, intron 2, and exon 3 of the DRB1-like gene of 20 Humboldt penguins, a species that is presently vulnerable to the dangers of extinction. The Humboldt DRB1-like nucleotide and amino acid sequences reveal at least eight unique alleles. Phylogenetic analysis of all the available avian DRB-like sequences showed that, of five penguin species and nine other bird species, the sequences of the Humboldt penguins grouped most closely to the Little penguin and the mallard, respectively. The present analysis confirms that the sequence variations of the Mhc class II gene, DRB1, are useful for discriminating among individuals within the same penguin population as well those within different penguin population groups and species.The nucleotide sequence and amino acid sequence data reported in this paper have been submitted to the DDBJ database and have been assigned the accession numbers AB088371–AB088374, AB089199, AB154393–AB154399, and AB162144.  相似文献   

12.
Gene duplications and sequence polymorphism of bovine class II DQB genes   总被引:2,自引:2,他引:0  
The genetic diversity of bovine class II DQB genes was investigated by polymerase chain reaction amplification and DNA sequencing. The first domain exon was amplified from genomic DNA samples representing 14 class II haplotypes, defined by restriction fragment length polymorphism (RFLP) analysis. The presence of a polymorphism in the copy number of DQB genes was confirmed since two DQB sequences were isolated from certain haplotypes. Four subtypes of bovine DQB genes were found. DQB1 is the major type and was found in almost all haplotypes. DQB2 is very similar to DQB1 but was found only in the duplicated haplotypes DQ9 to 12. DQB3 and DQB4 are two quite divergent genes only present in certain duplicated haplotypes. The bovine DQB complexity thus resembles that in the human DRB region. Bovine DQB genes were found to be highly polymorphic as ten DQB1 alleles and four DQB2 alleles were identified. The observed sequence polymorphism correlated well with previously defined DQB RFLPs. Bovine and human DQB alleles show striking similarities at the amino acid level. In contrast, the frequency of silent substitutions is much higher in comparisons of DQB alleles between species than within species ruling out the possibility that any of the contemporary DQB alleles have been maintained since the divergence of humans and cattle. The frequency of silent substitutions between DQB alleles was markedly lower in cattle than in humans, in agreement with a previous comparison of human and bovine DRB alleles.  相似文献   

13.
We report here our analysis of HLA class II alleles in 180 Caucasian nuclear families with at least two children with insulin-dependent diabetes mellitus (IDDM). DRB1, DQA1, DQB1, and DPB1 genotypes were determined with PCR/sequence-specific oligonucleotide probe typing methods. The data allowed unambiguous determination of four-locus haplotypes in all but three of the families. Consistent with other studies, our data indicate an increase in DR3/DR4, DR3/DR3, and DR4/DR4 genotypes in patients compared to controls. In addition, we found an increase in DR1/DR4, DR1/DR3, and DR4/DR8 genotypes. While the frequency of DQB1*0302 on DR4 haplotypes is dramatically increased in DR3/DR4 patients, DR4 haplotypes in DR1/DR4 patients exhibit frequencies of DQB1*0302 and DQB1*0301 more closely resembling those in control populations. The protective effect of DR2 is evident in this data set and is limited to the common DRB1*1501-DQB1*0602 haplotype. Most DR2+ patients carry the less common DR2 haplotype DRB1*1601-DQB1*0502, which is not decreased in patients relative to controls. DPB1 also appears to play a role in disease susceptibility. DPB1*0301 is increased in patients (P < .001) and may contribute to the disease risk of a number of different DR-DQ haplotypes. DPB1*0101, found almost exclusively on DR3 haplotypes in patients, is slightly increased, and maternal transmissions of DRB1*0301-DPB1*0101 haplotypes to affected children occur twice as frequently as do paternal transmissions. Transmissions of DR3 haplotypes carrying other DPB1 alleles occur at approximately equal maternal and paternal frequencies. The complex, multigenic nature of HLA class II-associated IDDM susceptibility is evident from these data.  相似文献   

14.
A thoroughly characterized breeding colony of 172 pedigreed rhesus macaques was used to analyze exon 2 of the polymorphic Mamu-DPB1, -DQA1, -DQB1, and -DRB loci. Most of the monkeys or their ancestors originated in India, though the panel also included animals from Burma and China, as well as some of unknown origin and mixed breeds. In these animals, mtDNA appears to correlate with the aforementioned geographic origin, and a large number of Mamu class II alleles were observed. The different Mamu-DPB1 alleles were largely shared between monkeys of different origin, whereas in humans particular alleles appear to be unique for ethnic populations. In contrast to Mamu-DPB1, the highly polymorphic -DQA1/DQB1 alleles form tightly linked pairs that appear to be about two-thirds population specific. For most of the DQA1/DQB1 pairs, Mamu-DRB region configurations present on the same chromosome have been ascertained, resulting in 41 different -DQ/DRB haplotypes. These distinct DQ/DRB haplotypes seem to be specific for monkeys of a determined origin. Thus, in evolutionary terms, the Mamu-DP, -DQ, and -DR regions show increasing instability with regard to allelic polymorphism, such as for -DP/DQ, or gene content and allelic polymorphism, such as for -DR, resulting in population-specific class II haplotypes. Furthermore, novel haplotypes are generated by recombination-like events. The results imply that mtDNA analysis in combination with Mhc typing is a helpful tool for selecting animals for biomedical experiments.The sequences reported in this paper have been deposited in the EMBL database (accession nos. AJ534296–AJ534304, AJ 564564, and AJ557455–AJ557511)  相似文献   

15.
Studies of linkage disequilibrium across the HLA class II region have been useful in predicting where recombination is most likely to occur. The strong associations between genes within the 85-kb region from DQB1 to DRB1 are consistent with low frequency of recombination in this segment of DNA. Conversely, a lack of association between alleles of TAP1 and TAP2 (approximately 15 kb) has been observed, suggesting that recombination occurs here with relatively high frequency. Much of the HLA class II region has now been sequenced, providing the tools to undertake detailed analysis of recombination. Twenty-seven families containing one or two recombinant chromosomes within the 500-kb interval between the DPB1 and DRB1 genes were used to determine patterns of recombination across this region. SSCP analysis and microsatellite typing yielded identification of 127 novel polymorphic markers distributed throughout the class II region, allowing refinement of the site of crossover in 30 class II recombinant chromosomes. The three regions where recombination was observed most frequently are as follows: the 45-kb interval between HLA-DNA and RING3 (11 cases), the 50-kb interval between DQB3 and DQB1 (6 cases), and an 8.8-kb segment of the TAP2 gene (3 cases). Six of the 10 remaining recombinants await further characterization, pending identification of additional informative markers, while four recombinants were localized to other intervals (outliers). Analysis of association between markers flanking HLA-DNA to RING3 (45 kb), as well as TAP1 to TAP2 (15 kb), by use of independent CEPH haplotypes indicated little or no linkage disequilibrium, supporting the familial recombination data. A notable sequence motif located within a region associated with increased rates of recombination consisted of a (TGGA)12 tandem repeat within the TAP2 gene.  相似文献   

16.
MHC class II genes in European wolves: a comparison with dogs   总被引:5,自引:5,他引:0  
The genome of the grey wolf, one of the most widely distributed land mammal species, has been subjected to both stochastic factors, including biogeographical subdivision and population fragmentation, and strong selection during the domestication of the dog. To explore the effects of drift and selection on the partitioning of MHC variation in the diversification of species, we present nine DQA, 10 DQB, and 17 DRB1 sequences of the second exon for European wolves and compare them with sequences of North American wolves and dogs. The relatively large number of class II alleles present in both European and North American wolves attests to their large historical population sizes, yet there are few alleles shared between these regions at DQB and DRB1. Similarly, the dog has an extensive array of class II MHC alleles, a consequence of a genetically diverse origin, but allelic overlap with wolves only at DQA. Although we might expect a progression from shared alleles to shared allelic lineages during differentiation, the partitioning of diversity between wolves and dogs at DQB and DRB1 differs from that at DQA. Furthermore, an extensive region of nucleotide sequence shared between DRB1 and DQB alleles and a shared motif suggests intergenic recombination may have contributed to MHC diversity in the Canidae.  相似文献   

17.
The association of certain HLA-D alleles with insulin-dependent diabetes mellitus (IDDM) is well known. One hundred and sixty-one non-related diabetic individuals and 142 non-related healthy controls were typed for the HLA DR-DQw-Dw association, using a restriction fragment length polymorphism (RFLP) typing method that combines three probe/enzyme systems: DRB/Taq I, DQB/Taq I, and DQB/Bam HI. Comparison of frequencies in both diabetics and controls confirms previous results in terms of HLA class II and IDDM association. Moreover, we have found that DR3/4 heterozygous individuals are more susceptible to IDDM when they are also Dw25 (associated with B18) than when they are Dw24 (associated with B8). Using oligonucleotide dot-blot hybridizations we analyzed the HLA-DQB1 sequence of DR3, Dw24 and DR3, Dw25 homozygous individuals, and we found no difference at position 57 between these two DR3-carrying haplotypes. This observation points to the heterogeneity of HLA genetic factors in IDDM susceptibility. Offprint requests to: D. Cohen.  相似文献   

18.
The porcine major histocompatibility complex (MHC) harbors the highly polymorphic swine leukocyte antigen (SLA) class I and II gene clusters encoding glycoproteins that present antigenic peptides to T cells in the adaptive immune response. In Austria, the majority of commercial pigs are F 2 descendants of F 1 Large White/Landrace hybrids paired with Pietrain boars. Therefore, the repertoire of SLA alleles and haplotypes present in Pietrain pigs has an important influence on that of their descendants. In this study, we characterized the SLA class I ( SLA‐1 , SLA‐2 , SLA‐3 ) and class II ( SLA‐DRB1 , SLA‐DQB1 , SLA‐DQA ) genes of 27 purebred Pietrain pigs using a combination of the high‐resolution sequence‐based typing (SBT) method and a low‐resolution (Lr) PCR‐based method using allele‐group, sequence‐specific primers (PCR‐SSP). A total of 15 class I and 13 class II haplotypes were identified in the studied cohort. The most common SLA class I haplotype Lr‐43.0 ( SLA‐1 *11XX– SLA‐3 *04XX– SLA‐2 *04XX) was identified in 11 animals with a frequency of 20%. For SLA class II, the most prevalent haplotype, Lr‐0.14 [ SLA‐DRB1 *0901– SLA‐DQB1 *0801– SLA‐DQA *03XX], was found in 14 animals with a frequency of 26%. Two class II haplotypes, tentatively designated as Lr‐Pie‐0.1 [ SLA‐DRB1 *01XX/be01/ha04– SLA‐DQB1 *05XX– SLA DQA*blank] and Lr‐Pie‐0.2 [ SLA‐DRB1 *06XX– SLA‐DQB1 *03XX– SLA‐DQA *03XX], appeared to be novel and have never been reported so far in other pig populations. We showed that SLA genotyping using PCR‐SSP‐based assays represents a rapid and cost‐effective way to study SLA diversity in outbred commercial pigs and may facilitate the development of more effective vaccines or identification of disease‐resistant pigs in the context of SLA antigens to improve overall swine health.  相似文献   

19.
The use of polymerase chain reaction (PCR) and oligonucleotide hybridization offers a new approach for the definition of HLA class II alleles. It has been possible to determine 43 alleles of DRB1, four of DRB3, two of DRB4, four of DRB5, eight of DQA1, and 14 of DQB1. These alleles are inherited together in members of families and form closely associated groups which are found repeatedly and in characteristics patterns in different populations. We have determined the HLA class II alleles and analyzed their association in 431 healthy unrelated subjects including 161 North American Caucasians, 53 Latin Americans, 61 Blacks, 88 Chinese, and 68 Israeli Jews. For-locus haplotypes (DRB1; DRB3/4/5; DQA1; DQB1) were derived from 79 B cell lines and the analysis of segregation in 34 nuclear families. The B-cell lines yielded 37 and the families showed the same, and 20 other, haplotypic combinations. In addition to these 57 haplotypes, associated alleles were assigned in the unrelated panels following certain rules. The resulting haplotypes were assigned to groups known to share associated alleles. The groups were: (1) DR1, DR2, and DRw10 (13 haplotypes); (2) DR3 and DRw6 (26 haplotypes); (3) DR5 and DRw8 (24 haplotypes); (4) DR4, DR7, and DR9 (24 haplotypes). Their distribution in populations with different ethnic backgrounds was analyzed. The expressed DRB4 allele and its null mutant were determined by PCR and oligonucleotide hybridization. The different DR7 haplotypes resulting from these determinations were analyzed in a panel of 130 North American Caucasoids. This comprehensive analysis of class II HLA haplotypes in human populations should be useful in understanding the role of these genes and in various applications including anthropolgy, disease susceptibility, and transplantation of allogeneic organs and tissues. Address correspondence and offprint requests to: P. Stastny  相似文献   

20.
DNA-based typing of the HLA class II loci in a sample of the Cayapa Indians of Ecuador reveals several lines of evidence that selection has operated to maintain and to diversify the existing level of polymorphism in the class II region. As has been noticed for other Native American groups, the overall level of polymorphism at the DRB1, DQA1, DQB1, and DPB1 loci is reduced relative to that found in other human populations. Nonetheless, the relative evenness in the distribution of allele frequencies at each of the four loci points to the role of balancing selection in the maintenance of the polymorphism. The DQA1 and DQB1 loci, in particular, have near-maximum departures from the neutrality model, which suggests that balancing selection has been especially strong in these cases. Several novel DQA1-DQB1 haplotypes and the discovery of a new DRB1 allele demonstrate an evolutionary tendency favoring the diversification of class II alleles and haplotypes. The recombination interval between the centromeric DPB1 locus and the other class II loci will, in the absence of other forces such as selection, reduce disequilibrium across this region. However, nearly all common alleles were found to be part of DR-DP haplotypes in strong disequilibrium, consistent with the recent action of selection acting on these haplotypes in the Cayapa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号