首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 172 毫秒
1.
Micro and macroalgal biomass: A renewable source for bioethanol   总被引:2,自引:0,他引:2  
Population outburst together with increased motorization has led to an overwhelming increase in the demand for fuel. In the milieu of economical and environmental concern, algae capable of accumulating high starch/cellulose can serve as an excellent alternative to food crops for bioethanol production, a green fuel for sustainable future. Certain species of algae can produce ethanol during dark-anaerobic fermentation and thus serve as a direct source for ethanol production. Of late, oleaginous microalgae generate high starch/cellulose biomass waste after oil extraction, which can be hydrolyzed to generate sugary syrup to be used as substrate for ethanol production. Macroalgae are also harnessed as renewable source of biomass intended for ethanol production. Currently there are very few studies on this issue, and intense research is required in future in this area for efficient utilization of algal biomass and their industrial wastes to produce environmentally friendly fuel bioethanol.  相似文献   

2.
《Process Biochemistry》2010,45(8):1214-1225
Methane derived from anaerobic treatment of organic wastes has a great potential to be an alternative fuel. Abundant biomass from various industries could be a source for biomethane production where combination of waste treatment and energy production would be an advantage. This article summarizes the importance of the microbial population, with a focus on the methanogenic archaea, on the anaerobic fermentative biomethane production from biomass. Types of major wastewaters that could be the source for biomethane generation such as brewery wastewater, palm oil mill effluent, dairy wastes, cheese whey and dairy wastewater, pulp and paper wastewaters and olive oil mill wastewaters in relevance to their dominant methanogenic population are fully discussed in this article.  相似文献   

3.
Coenzyme Q10 (CoQ10) or Ubiquinone10 (UQ10), an isoprenylated benzoquinone, is well-known for its role as an electron carrier in aerobic respiration. It is a sole representative of lipid soluble antioxidant that is synthesized in our body. In recent years, it has been found to be associated with a range of patho-physiological conditions and its oral administration has also reported to be of therapeutic value in a wide spectrum of chronic diseases. Additionally, as an antioxidant, it has been widely used as an ingredient in dietary supplements, neutraceuticals, and functional foods as well as in anti-aging creams. Since its limited dietary uptake and decrease in its endogenous synthesis in the body with age and under various diseases states warrants its adequate supply from an external source. To meet its growing demand for pharmaceutical, cosmetic and food industries, there is a great interest in the commercial production of CoQ10. Various synthetic and fermentation of microbial natural producers and their mutated strains have been developed for its commercial production. Although, microbial production is the major industrial source of CoQ10 but due to low yield and high production cost, other cost-effective and alternative sources need to be explored. Plants, being photosynthetic, producing high biomass and the engineering of pathways for producing CoQ10 directly in food crops will eliminate the additional step for purification and thus could be used as an ideal and cost-effective alternative to chemical synthesis and microbial production of CoQ10. A better understanding of CoQ10 biosynthetic enzymes and their regulation in model systems like E. coli and yeast has led to the use of metabolic engineering to enhance CoQ10 production not only in microbes but also in plants. The plant-based CoQ10 production has emerged as a cost-effective and environment-friendly approach capable of supplying CoQ10 in ample amounts. The current strategies, progress and constraints of CoQ10 production in plants are discussed in this review.  相似文献   

4.
5.
Pseudomonas strains are able to biosynthesize rhamnose-containing surfactants also known as rhamnolipids. These surface-active compounds are reviewed with respect to chemical structure, properties, biosynthesis, and physiological role, focusing on their production and the use of low-cost substrates such as wastes from food industries as alternative carbon sources. The use of inexpensive raw materials such as agroindustrial wastes is an attractive strategy to reduce the production costs associated with biosurfactant production and, at same time, contribute to the reduction of environmental impact generated by the discard of residues, and the treatment costs. Carbohydrate-rich substrates generated low rhamnolipid levels, whereas oils and lipid-rich wastes have shown excellent potential as alternative carbon sources.  相似文献   

6.
Livestock and fish farming are rapidly growing industries facing the simultaneous pressure of increasing production demands and limited protein required to produce feed. Bacteria that can convert low-value non-food waste streams into singe cell protein (SCP) present an intriguing route for rapid protein production. The oleaginous bacterium Rhodococcus opacus serves as a model organism for understanding microbial lipid production. SCP production has not been explored using an organism from this genus. In the present research, R. opacus strains DSM 1069 and PD630 were fed three agro-waste streams: (1) orange pulp, juice, and peel; (2) lemon pulp, juice, and peel; and (3) corn stover effluent, to determine if these low-cost substrates would be suitable for producing a value-added product, SCP for aquafarming or livestock feed. Both strains used agro-waste carbon sources as a growth substrate to produce protein-rich cell biomass suggesting that that R. opacus can be used to produce SCP using agro-wastes as low-cost substrates.  相似文献   

7.
The widespread use of corn starch and sugarcane as sources of sugar for the production of ethanol via fermentation may negatively impact the use of farmland for production of food. Thus, alternative sources of fermentable sugars, particularly from lignocellulosic sources, have been extensively investigated. Another source of fermentable sugars with substantial potential for ethanol production is the waste from the food growing and processing industry. Reviewed here is the use of waste from potato processing, molasses from processing of sugar beets into sugar, whey from cheese production, byproducts of rice and coffee bean processing, and other food processing wastes as sugar sources for fermentation to ethanol. Specific topics discussed include the organisms used for fermentation, strategies, such as co-culturing and cell immobilization, used to improve the fermentation process, and the use of genetic engineering to improve the performance of ethanol producing fermenters.  相似文献   

8.
研究了真氧产碱杆菌以混合有机酸为碳源,硫酸铵为氮源,在双营养(碳、氮)限制区内聚羟基烷酸酯的生物合成。结果表明:双营养限制区的长度与聚羟基烷酸酯的产量呈正相关。同时,在对两种不同的双营养限制区实现方式进行比较后发现,首先限制碳源的双营养限制方式比首先限制氮源的双营养限制方式更有利于聚羟基烷酸酯的合成;在这两种不同营养限制方式下,PHAs的最高产量分别为3.72 g/L和2.55 g/L。  相似文献   

9.
Nowadays, food, cosmetic, environmental and pharmaceutical fields are searching for alternative processes to obtain their major products in a more sustainable way. This fact is related to the increasing demand from the consumer market for natural products to substitute synthetic additives. Industrial biotechnology appears as a promising area for this purpose; however, the success of its application is highly dependent of the availability of a suitable microorganism. To overcome this drawback, the isolation of microorganisms from diverse sources, including fermented food, adverse environments, contaminated samples or agro-industrial wastes is an important approach that can provide a more adaptable strain able to be used as biocatalyst and that exhibit resistance to industrial conditions and high yields/productivities in biotechnological production of natural compounds. The aim of this review is to provide a solid set of information on the state of the art of isolation and screening studies for obtaining novel biocatalysts able to produce natural compounds, focusing in aromas, biosurfactants, polysaccharides and microbial oils.  相似文献   

10.
Increased demand for energy worldwide has resulted in increasing interest in alternative renewable sources of biofuels. Demand for improved systems of bioenergy generation, environmental remediation, and coproduction of high value bioactive compounds has led to the potential use of algae in biomass utilization. In Malaysia, palm oil industries generate high amount of solid wastes. Palm Oil Mill Effluent (POME) is estimated to be three times of the amount of crude palm oil produced. POME is a heavily polluting wastewater due to its high chemical oxygen demand (COD), high biochemical oxygen demand (BOD), and high contents of minerals such as nitrogen and phosphorus that can cause severe pollution to the environment and water resources. A combination of wastewater treatment and renewable bioenergy co-generation with recovery of high-value biochemicals would benefit the palm oil industry.  相似文献   

11.
Biogas technology provides an alternative source of energy to fossil fuels in many parts of the world. Using local resources such as agricultural crop remains, municipal solid wastes, market wastes and animal waste, energy (biogas), and manure are derived by anaerobic digestion. The hydrolysis process, where the complex insoluble organic materials are hydrolysed by extracellular enzymes, is a rate-limiting step for anaerobic digestion of high-solid organic solid wastes. Biomass pretreatment and hydrolysis are areas in need of drastic improvement for economic production of biogas from complex organic matter such as lignocellulosic material and sewage sludge. Despite development of pretreatment techniques, sugar release from complex biomass still remains an expensive and slow step, perhaps the most critical in the overall process. This paper gives an updated review of the biotechnological advances to improve biogas production by microbial enzymatic hydrolysis of different complex organic matter for converting them into fermentable structures. A number of authors have reported significant improvement in biogas production when crude and commercial enzymes are used in the pretreatment of complex organic matter. There have been studies on the improvement of biogas production from lignocellulolytic materials, one of the largest and renewable sources of energy on earth, after pretreatment with cellulases and cellulase-producing microorganisms. Lipids (characterised as oil, grease, fat, and free long chain fatty acids, LCFA) are a major organic compound in wastewater generated from the food processing industries and have been considered very difficult to convert into biogas. Improved methane yield has been reported in the literature when these lipid-rich wastewaters are pretreated with lipases and lipase-producing microorganisms. The enzymatic treatment of mixed sludge by added enzymes prior to anaerobic digestion has been shown to result in improved degradation of the sludge and an increase in methane production. Strategies for enzyme dosing to enhance anaerobic digestion of the different complex organic rich materials have been investigated. This review also highlights the various challenges and opportunities that exist to improve enzymatic hydrolysis of complex organic matter for biogas production. The arguments in favor of enzymes to pretreat complex biomass are compelling. The high cost of commercial enzyme production, however, still limits application of enzymatic hydrolysis in full-scale biogas production plants, although production of low-cost enzymes and genetic engineering are addressing this issue.  相似文献   

12.
Biogas technology provides an alternative source of energy to fossil fuels in many parts of the world. Using local resources such as agricultural crop remains, municipal solid wastes, market wastes and animal waste, energy (biogas), and manure are derived by anaerobic digestion. The hydrolysis process, where the complex insoluble organic materials are hydrolysed by extracellular enzymes, is a rate-limiting step for anaerobic digestion of high-solid organic solid wastes. Biomass pretreatment and hydrolysis are areas in need of drastic improvement for economic production of biogas from complex organic matter such as lignocellulosic material and sewage sludge. Despite development of pretreatment techniques, sugar release from complex biomass still remains an expensive and slow step, perhaps the most critical in the overall process. This paper gives an updated review of the biotechnological advances to improve biogas production by microbial enzymatic hydrolysis of different complex organic matter for converting them into fermentable structures. A number of authors have reported significant improvement in biogas production when crude and commercial enzymes are used in the pretreatment of complex organic matter. There have been studies on the improvement of biogas production from lignocellulolytic materials, one of the largest and renewable sources of energy on earth, after pretreatment with cellulases and cellulase-producing microorganisms. Lipids (characterised as oil, grease, fat, and free long chain fatty acids, LCFA) are a major organic compound in wastewater generated from the food processing industries and have been considered very difficult to convert into biogas. Improved methane yield has been reported in the literature when these lipid-rich wastewaters are pretreated with lipases and lipase-producing microorganisms. The enzymatic treatment of mixed sludge by added enzymes prior to anaerobic digestion has been shown to result in improved degradation of the sludge and an increase in methane production. Strategies for enzyme dosing to enhance anaerobic digestion of the different complex organic rich materials have been investigated. This review also highlights the various challenges and opportunities that exist to improve enzymatic hydrolysis of complex organic matter for biogas production. The arguments in favor of enzymes to pretreat complex biomass are compelling. The high cost of commercial enzyme production, however, still limits application of enzymatic hydrolysis in full-scale biogas production plants, although production of low-cost enzymes and genetic engineering are addressing this issue.  相似文献   

13.
Ruminant livestock have the ability to produce high-quality human food from feedstuffs of little or no value for humans. Balanced essential amino acid composition of meat and milk from ruminants makes those protein sources valuable adjuncts to human diets. It is anticipated that there will be increasing demand for ruminant proteins in the future. Increasing productivity per animal dilutes out the nutritional and environmental costs of maintenance and rearing dairy animals up to production. A number of nutritional strategies improve production per animal such as ration balancing in smallholder operations and small grain supplements to ruminants fed high-forage diets. Greenhouse gas emission intensity is reduced by increased productivity per animal; recent research has developed at least one effective inhibitor of methane production in the rumen. There is widespread over-feeding of protein to dairy cattle; milk and component yields can be maintained, and sometimes even increased, at lower protein intake. Group feeding dairy cows according to production and feeding diets higher in rumen-undegraded protein can improve milk and protein yield. Supplementing rumen-protected essential amino acids will also improve N efficiency in some cases. Better N utilization reduces urinary N, which is the most environmentally unstable form of excretory N. Employing nutritional models to more accurately meet animal requirements improves nutrient efficiency. Although smallholder enterprises, which are concentrated in tropical and semi-tropical regions of developing countries, are subject to different economic pressures, nutritional biology is similar at all production levels. Rather than milk volume, nutritional strategies should maximize milk component yield, which is proportional to market value as well as food value when milk nutrients are consumed directly by farmers and their families. Moving away from Holsteins toward smaller breeds such as Jerseys, Holstein-Jersey crosses or locally adapted breeds (e.g. Vechur) would also reduce lactose production and improve metabolic, environmental and economic efficiencies. Forages containing condensed tannins or polyphenol oxidase enzymes have reduced rumen protein degradation; ruminants capture this protein more efficiently for meat and milk. Although these forages generally have lower yields and persistence, genetic modification would allow insertion of these traits into more widely cultivated forages. Ruminants will retain their niches because of their ability to produce valuable human food from low value feedstuffs. Employing these emerging strategies will allow improved productive efficiency of ruminants in both developing and developed countries.  相似文献   

14.
Hydrogen is a promising energy source that is believed to replace the conventional energy sources e.g. fossil fuels over years. Hydrogen production methods can be divided into conventional production methods which depend mainly on fossil fuels and alternative production methods including electrolysis of water, biophotolysis and fermentation hydrogen production from organic waste materials. Compared to the conventional methods, the alternative hydrogen production methods are less energy intensive and negative-value substrates i.e. waste materials can be used to produce hydrogen. Among the alternative methods, fermentation process including dark and photo-fermentation has gained more attention because these processes are simple, waste materials can be utilized, and high hydrogen yields can be achieved. The fermentation process is affected by several parameters such as type of inoculum, pH, temperature, substrate type and concentration, hydraulic retention time, etc. In order to achieve optimum hydrogen yields and maximum substrate degradation, the operating conditions of the fermentation process must be optimized. In this review, two routes for biohydrogen production as dark and photo-fermentation are discussed. Dark/photo-fermentation technology is a new approach that can be used to increase the hydrogen yield and improve the energy recovery from organic wastes.  相似文献   

15.
餐厨垃圾中含有丰富的营养物质,经生物转化过程可以合成对人类有用的化学品.某些产油微生物可以处理餐厨垃圾生产油脂,同时合成高附加值代谢产物如多不饱和脂肪酸、角鲨烯和类胡萝卜素等.这不仅能够降低生产成本,而且提高了产物的经济价值,具有极大的工业化应用潜力.文中主要概括了目前餐厨垃圾的处理研究现状,综述了产油微生物发酵餐厨垃...  相似文献   

16.
Combining sources in stable isotope mixing models: alternative methods   总被引:5,自引:0,他引:5  
Phillips DL  Newsome SD  Gregg JW 《Oecologia》2005,144(4):520-527
Stable isotope mixing models are often used to quantify source contributions to a mixture. Examples include pollution source identification; trophic web studies; analysis of water sources for soils, plants; or water bodies, and many others. A common problem is having too many sources to allow a unique solution. We discuss two alternative procedures for addressing this problem. One option is a priori to combine sources with similar signatures so the number of sources is small enough to provide a unique solution. Aggregation should be considered only when isotopic signatures of clustered sources are not significantly different, and sources are related so the combined source group has some functional significance. For example, in a food web analysis, lumping several species within a trophic guild allows more interpretable results than lumping disparate food sources, even if they have similar isotopic signatures. One result of combining mixing model sources is increased uncertainty of the combined end-member isotopic signatures and consequently the source contribution estimates; this effect can be quantified using the IsoError model (). As an alternative to lumping sources before a mixing analysis, the IsoSource mixing model () can be used to find all feasible solutions of source contributions consistent with isotopic mass balance. While ranges of feasible contributions for each individual source can often be quite broad, contributions from functionally related groups of sources can be summed a posteriori, producing a range of solutions for the aggregate source that may be considerably narrower. A paleohuman dietary analysis example illustrates this method, which involves a terrestrial meat food source, a combination of three terrestrial plant foods, and a combination of three marine foods. In this case, a posteriori aggregation of sources allowed strong conclusions about temporal shifts in marine versus terrestrial diets that would not have otherwise been discerned.  相似文献   

17.
Sigmoid functional responses may arise from a variety of mechanisms, one of which is switching to alternative food sources. It has long been known that sigmoid (Holling's Type III) functional responses may stabilize an otherwise unstable equilibrium of prey and predators in Lotka-Volterra models. This poses the question of under what conditions such switching-mediated stability is likely to occur. A more complete understanding of the effect of predator switching would therefore require the analysis of one-predator/two-prey models, but these are difficult to analyze. We studied a model based on the simplifying assumption that the alternative food source has a fixed density. A well-known result from optimal foraging theory is that when prey density drops below a threshold density, optimally foraging predators will switch to alternative food, either by including the alternative food in their diet (in a fine-grained environment) or by moving to the alternative food source (in a coarse-grained environment). Analyzing the population dynamical consequences of such stepwise switches, we found that equilibria will not be stable at all. For suboptimal predators, a more gradual change will occur, resulting in stable equilibria for a limited range of alternative food types. This range is notably narrow in a fine-grained environment. Yet, even if switching to alternative food does not stabilize the equilibrium, it may prevent unbounded oscillations and thus promote persistence. These dynamics can well be understood from the occurrence of an abrupt (or at least steep) change in the prey isocline. Whereas local stability is favored only by specific types of alternative food, persistence of prey and predators is promoted by a much wider range of food types.  相似文献   

18.
Are insects the farm animal of the future? A key agenda for agricultural production systems is the development of sustainable practices whereby food and feed can be produced in an environmentally efficient manner. These goals require novel approaches to complex problems and demand collaboration between scientists, producers, consumers, government and the general population. The provision of feed for animals is a major contributor to land and water use and greenhouse gas (GHG) emissions. Further, overfishing and a reduction in available land and water resources on which crops can be grown has led to an increase in price of protein ingredients such as fish meals and oils and soybean meals. Determination of novel solutions to meet the feed protein requirements of production animals is key to the development of sustainable farming practices. The Australian pork industry aims to develop production systems that efficiently use available resources (such as feed and energy) and limit the production of emissions (such as manure waste and GHGs). Invertebrates (insects e.g. black soldier flies) are naturally consumed by monogastric and aquatic species, yet the large-scale production of insects for feed (or food) is yet to be exploited. Most insects are low producers of GHGs and have low land and water requirements. The large-scale production of insects can contribute to a circular economy whereby food and feed waste (and potentially manure) are reduced or ideally eliminated via bioconversion. While the concept of farm-scale production of insects as domestic animal feed has been explored for decades, significant production and replacement of traditional protein sources has yet to be achieved. This review will focus on the potential role of insect-derived protein as a feed source for the Australian pig production industry.  相似文献   

19.
Microbial lipids for chemical synthesis are commonly obtained from sugar-based substrates which in most cases is not economically viable. As a low-cost carbon source, short-chain fatty acids (SCFAs) that can be obtained from food wastes offer an interesting alternative for achieving an affordable lipid production process. In this study, SCFAs were employed to accumulate lipids using Yarrowia lipolytica ACA DC 50109. For this purpose, different amounts of SCFAs, sulfate, phosphate and carbon: phosphate ratios were used in both synthetic and real SCFAs-rich media. Although sulfate limitation did not increase lipid accumulation, phosphate limitation was proved to be an optimal strategy for increasing lipid content and lipid yields in both synthetic and real media, reaching a lipid productivity up to 8.95 g/L h. Remarkably, the highest lipid yield (0.30 g/g) was achieved under phosphate absence condition (0 g/L). This fact demonstrated the suitability of using low-phosphate concentrations to boost lipid production from SCFAs.  相似文献   

20.

Background  

Colorants derived from natural sources look set to overtake synthetic colorants in market value as manufacturers continue to meet the rising demand for clean label ingredients – particularly in food applications. Many ascomycetous fungi naturally synthesize and secrete pigments and thus provide readily available additional and/or alternative sources of natural colorants that are independent of agro-climatic conditions. With an appropriately selected fungus; using in particular chemotaxonomy as a guide, the fungal natural colorants could be produced in high yields by using the optimized cultivation technology. This approach could secure efficient production of pigments avoiding use of genetic manipulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号