首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 63 毫秒
1.
Two luteolin O-glucuronides have been located exclusively in the photosynthetically active mesophyll of primary leaves of rye (Secale cereale). Their structures have been elucidated as luteolin 7-O-[β-d-glucuronosyl (1 → 2)β-d-glucuronide]-4′-O-β-d-glucuronide and luteolin 7-O-[β-d-glucuronosyl (1 → 2)β-d-glucuronide]. The former glycoside is a new natural compound.  相似文献   

2.
The complete structural elucidation of the two caffeic acid sugar esters verbascoside and orobanchoside, has been realized by 1H and 13C NMR studies. It has been demonstrated that verbascoside is β-(3′,4′-dihydroxyphenyl)ethyl-O-α-L-rhamnopyranosyl(1→3)-β-D-(4-O-caffeoyl)-glucopyranoside, and orobanchoside is β-hydroxy-β-(3′,4′-dihydroxyphenyl)-ethyl-O-α-L-rhamnopyranosyl(1→2)-β-D-(4-O-caffeoyl)-glucopyranoside.  相似文献   

3.
The EtOH extract of air-dried stems of Abies pindrow yielded okanin, okanin 4′-O-β-d-glucopyranoside, butein 4′-O-β-d-glucopyranoside, 8,3′4′-trihydroxyflavanone-7-O-β-d-glucopyranoside and a new chalcone glycoside, 2′,3′,4′:3,4-pentahydroxy-chalcone 4′-(l-arabinofuranosyl-α-1→4-d-glucopyranoside-β).  相似文献   

4.
Two new furostanol glycosides, trigofoenosides F and G, have been isolated as their methyl ethers from the methanolic extract of Trigonella foenum-graecum seeds (Leguminosae). The structures of the original glycosides have been determined as (25R)-furost-5-en-3β,22,26-triol, 3-O-α-l-rhamnopyranosyl (1 → 2)β-d-glucopyranosyl (1 → 6)β-d-glucopyranoside; 26-O-β-d-glucopyranoside and (25R)-furost-5en-3β,22,26-triol, 3-O-α-L-rhamnopyranosyl (1 → 2) [β-d-xylopyranosyl (1 → 4)]β-d-glucopyranosyl (1 → 6)β-d-glucopyranoside; 26-O-β-d-glucopyranoside, respectively.  相似文献   

5.
The structures of four new saponins, polyphyllin C, D, E and F, isolated from the tubers of Paris polyphylla have been elucidated as diosgenin-3-O-α-l-rhamnopyranosyl(1→3)-β-d-glucopyranoside, diosgenin-3-O-α-l-rhamnopyranosyl(1→3)- [α-l-arabinofuranosyl(1→4)]-β-d-glucopyranoside, diosgenin-3-O-α-l-rhamnopyranosyl(1→2)-α-l-rhamnopyranosyl (1→4)[α-l-rhamnopyranosyl(1→3)]-β-d-glucopyranoside and diosgenin-3-O-α-l-rhamnopyranosyl(1→4)[α-l- rhamnopyranosyl(1→3)][β-d-glucopyranosyl(1→2)]-α-l-rhamnopyranoside, respectively, on the basis of chemical and spectral data.  相似文献   

6.
Two new saponins, agavasaponin E and agavasaponin H have been isolated from the methanolic extract of Agave americana leaves and their structures elucidated. Agavasaponin E is 3-O-[β-d-xylopyranosyl-(1→2glc1)-α-l-rhamnopyranosyl-(1→4)-α-l-rhamnopyranosyl-(1→3glc 1)-β-d-glucopyranosyl-(1→4)-β-d-glucopyranosyl-(1→4)-α-d-galactopyranosyl]-(25R)-5α-spirostan-12-on-3β-ol, whereas agavasaponin H is 3-O-[β-d-xylopyranosyl-(1→2 glc 1)-α-l-rhamnopyranosyl-(1→4)-α-l-rhamnopyranosyl-(1→3 glc 1)-β-d-glucopyranosyl-(1→4)-β-d-glucopyranosyl-(1→4)-β-d-galactopyranosyl]-26-O-[β-d-glucopyranosyl]-(25R)-5α-furostan-12-on-3β,22α,26-triol.  相似文献   

7.
Two new saponins beshornin and beshornoside have been isolated from the methanolic extract of Beshorneria yuccoides leaves and their structures elucidated. Beshornin is 3-O-[α-l-rhamnopyranosyl-(1 → 4)-β-d-glucopyranosyl- (1 → 2)-[α-l-rhamnopyranosyl-(1 -+ 4)-P-D-glucopyranosyl-(1 → 3)]-β-d-glucopyranosyl-(1 → 4)-β-d- galactopyranosyl-(25R)-5α-spirostan-3β-ol, whereas beshornoside is 3-O-[α-l-rhamnopyranosyl-(1 → 4)- β-d)-glycopyranosyl-(1 → 2)]-[α-l-rhamnopyranosyl-(1 → 4)-β-d-glucopyranosyl-(1 → 3)]-β-d-glucopyranosyl- (1 → 4)-β-d-galactopyranosyl 26-O-[β-d]-glucopyranosyl-(25R)-5α-furostan-3β,22α,26-triol.  相似文献   

8.
The biotransformation of naringin and naringenin was investigated using cultured cells of Eucalyptus perriniana. Naringin (1) was converted into naringenin 7-O-β-d-glucopyranoside (2, 15%), naringenin (3, 1%), naringenin 5,7-O-β-d-diglucopyranoside (4, 15%), naringenin 4′,7-O-β-d-diglucopyranoside (5, 26%), naringenin 7-O-[6-O-(β-d-glucopyranosyl)]-β-d-glucopyranoside (6, β-gentiobioside, 5%), naringenin 7-O-[6-O-(α-l-rhamnopyranosyl)]-β-d-glucopyranoside (7, β-rutinoside, 3%), and 7-O-β-d-gentiobiosyl-4′-O-β-d-glucopyranosylnaringenin (8, 1%) by cultured cells of E. perriniana. On the other hand, 2 (14%), 4 (7%), 5 (13%), 6 (2%), 7 (1%), naringenin 4′-O-β-d-glucopyranoside (9, 4%), naringenin 5-O-β-d-glucopyranoside (10, 2%), and naringenin 4′,5-O-β-d-diglucopyranoside (11, 5%) were isolated from cultured E. perriniana cells, that had been treated with naringenin (3). Products, 7-O-β-d-gentiobiosyl-4′-O-β-d-glucopyranosylnaringenin (8) and naringenin 4′,5-O-β-d-diglucopyranoside (11), were hitherto unknown.  相似文献   

9.
Two new saponins, yuccoside C and protoyuccoside C, have been isolated from the methanolic extract of Yucca filamentosa root and their structures elucidated. Yuccoside C is 3-O-[α-d-galactopyranosyl-(1 → 2)-β-d-glucopyranosyl-(1 → 4)-β-d-glucopyranosyl]-(25S)-5β-spirostan-3β-ol, whereas protoyuccoside C is 3-O-[α-d-galactopyranosyl-(1 → 2)-β-d-glucopyranosyl-(1 → 4)-β-d-glucopyranosyl]-26-O-[β-d-glucopyranosy]-(25S)-5β-furostan-3β,22α,26-triol.  相似文献   

10.
Three spirostanol and two furostanol glycosides were isolated from a methanol extract of the roots of Asparagus curillus and characterized as 3-O-[α-l-arabinopyranosyl (1→4)- β-d-glucopyranosyl]-(25S)-5β-spirostan-3β-ol, 3-O-[{α-l-rhamnopyranosyl (1→2)} {α-l-arabinopyranosyl (1→4)}-β-d-glucopyranosyl]-(25S)-5β-spirostan- 3β-ol, 3-O-[{β-d-glucopyranosyl (1→2)} {α-l-arabinopyranosyl (1→4)}-β- d-glucopyranosyl]-(25S)-5β-spirostan-3β-ol, 3-O-[{β-d-glucopyranosyl (1→2)} {α-l-arabinopyranosyl (1→4)}-β-d-glucopyranosyl]-26-O-[β-d-glucopyranosyl]- 22α-methoxy-(25S)-5β-furostan-3β, 26-diol and 3-O-[{β-d-glucopyranosyl (1→2)} {α-l-arabinopyranosyl (1→4)}-β-d-glucopyranosyl]-26-O-[β-d-glucopyranosyl]- (25S)-5β-furostan-3β, 22α, 26-triol respectively.  相似文献   

11.
Three new nortriterpene saponins having inhibitory effects on the growth of cultured tumor cells, named pfaffosides D, E and F, have been isolated from Pfaffia paniculata. Their structures have been established as 3β-O-[β-d-xylopyranosyl-(1 → 2)-β-d-(6-O-n-butyl) glucuronopyranosyl]-pfaffic acid-(28 → 1)-β-d-glucopyranosyl ester, 3β-O-[β-d-xylopyranosyl-(1 → 2)-β-d(6-O-methyl)glucuronopyranosyl]-pfaffic acid-(28 → 1)-β-d glucopyranosyl ester and 3β-O[β-d-glucuronopyranosyl]-pfaffic acid respectively, based on their chemical and spectroscopic properties  相似文献   

12.
Ceramide and mono-, di-, tri-, and tetraglycosylceramide were isolated from the bran and endosperm of rice grains and chemically characterized. The detailed compositions of free ceramide were somewhat different between the bran and endosperm, but those of the ceramide moiety in glycosylceramides were substantially the same. There was a tendency in all the sphingolipid molecules in rice grains for hydroxy acids with C20 to be combined largely with the dihydroxy bases while hydroxy acids with C24< combined mainly with the trihydroxy bases. Representative molecular species of the sphingolipid classes were concluded to be as follows: for ceramide N-2′-hydroxylignoceroyl-4-hydroxysphinganine, for monoglycosylceramide l-O-β-glucosyl-N-2′-hydroxyarachidoyl-4,8-sphingadienine, for diglycosylceramide 1-O-[β-mannosyl(1→-4)-O-β-glucosyl]- and 1-O-[β-glucosyl(1→4)-O-β-glucosyl]-N-2′-hydroxylignoceroyl-4-hydroxy-8-sphingenine, for triglycosylceramide l-O-[β-mannosyl(1→4)-O-β-mannosyl(l→4)-O-β-glucosyl]- and l-O-[β-glucosyl(l→4)-O-β-mannosyl(1→4)-O-β-glucosyl]-N-2′-hydroxylignoceroyl-4-hydroxy-8-sphingenine, and for tetraglycosylceramide 1-0-[β-mannosyl(l→4)-O-β-mannosyl (1→4)-O-β-mannosyl(1→4)-O-β-glucosyl]- and l-O-[β-glucosyl(1→4)-O-β-mannosyl(l→4)-O-β-mannosyl(1β4)-O-β-glucosyl]-N-2′-hydroxylignoceroyl-4-hydroxy-8-sphingenine.  相似文献   

13.
4′-O-β-d-Glucopyranosyl-quercetin-3-O-β-d-glucopyranosyl-(1→4)-β-d-glucopyra-noside (3) was isolated from Helminthostachys zeylanica root extract as a melanogenesis acceleration compound and was synthesized using rutin as the starting material. Related compounds were also synthesized to understand the structure–activity relationships in melanin biosynthesis.Melanogenesis activities of the glycosides were determined by measuring intracellular melanin content in B16 melanoma cells. Among the synthesized quercetin glycosides, quercetin-3-O-β-d-glucopyranoside (1), quercetin-3-O-β-d-glucopyranosyl-(1→4)-β-d-glucopyranoside (2), and 3 showed more potent intracellular melanogenesis acceleration activities than theophyline used as positive control in a dose-dependent manner with no cytotoxic effect.  相似文献   

14.
Two new furostanol glycosides trigofoenosides A and D have been isolated from the Trigonella foenum-graecum seeds as their methyl ethers, A-1 and D-1. Their structures have been determined as (25S)-22-O-methyl-furost-5-ene-3β,26-diol, 3-O-α-L-rhamnopyranosyl (1 → 2)-β-D-glucopyranoside; 26-O-β-D-glucopyranoside (A-1) and (25S)-22-O-methyl-furost-5-ene-3β,26-diol, 3-O-α-L-rhamnopyranosyl (1 → 2)-[β-D-glucopyranosyl (1 → 3)]-β-D-glucopyranoside; 26-O-β-D-glucopyranoside (D-1).  相似文献   

15.
(2R,3R)-2 3-Dihydro-2-(4′-hydroxy-3′-methoxyphenyl)-3-(hydroxymethyl)-7-methoxy-5-benzofuranpropanol 4′-O-β-d-glucopyranoside [dihydrodehydrodiconiferyl alcohol glucoside], (2R,3R)-2 3-dihydro-7-hydroxy-2-(4′-hydroxy-3′-methoxyphenyl)-3-(hydroxymethyl)-5-benzofuranpropanol 4′-O-β-d-glucopyranoside and 4′-O-α-l-rhamnopyranoside, 1-(4′-hydroxy-3′-methoxyphenyl)-2- [2″-hydroxy-4″-(3-hydroxypropyl)phenoxy]-1, 3-propanediol 1-O-β-d-glucopyranoside and 4′-O-β-d-xylopyranoside, 2,3-bis[(4′-hydroxy-3′-methoxyphenyl)-methyl]-1,4-butanediol 1-O-β-d-glucopyranoside [(?)-seco-isolariciresinol glucoside] and (1R,2S,3S)-1,2,3,4-tetrahydro-7-hydroxy-1-(4′-hydroxy-3′-methoxyphenyl)-6-methoxy-2 3-naphthalenedimethanol α2-O-β-d-xylopyranoside [(?)-isolariciresinol xyloside] have been isolated from needles of Picea abies and identified.  相似文献   

16.
From the methanol extract of the fruits of Asparagus adscendens sitosterol-β-d-glucoside, two spirostanol glycosides (asparanin A and B) and two furostanol glycosides (asparoside A and B) were isolated and characterized as 3-O-[β-d-glucopyranosyl (1→2)-β-d-glucopyranosyl]-(25S)-5β-spirostan-3β-ol, 3-O-{[β-d-glucopyranosyl(1→2)][α-l-rhamnopyranosyl(1→4)]-β-d-glucopyranosyl}-(25S)-5β-spirostan-3β-ol,3-O-{[β-d-glucopyranosyl(1→2)][α-l-rhamnopyranosyl(1→4)]-β-d-glucopyranosyl|} -26-O-(β- d-glucopyranosyl)-22α-methoxy-(25S)-5β-furostan-3β,26-diol and 3-O-{[β-d-glucopyranosyl(1→2)][α-l-rhamnopyranosyl(1→4)]-β-d-glucopyranosyl}-26-O-(β-d-glucopyranosyl)- 25S)-5β-furostan-3β,22α, 26-triol, respectively.  相似文献   

17.
Partial, acid hydrolysis of the extracellular polysaccharide from Xanthomonas campestris gave products that were identified as cellobiose, 2-O-(β-d-glucopyranosyluronic acid)-d-mannose, O(β-d-glucopyranosyluronic acid)-(1→2)-O-α-d-mannopyranosyl-(1→3)-d-glucose, O-(β-d-glucopyranosyluronic acid)-(1→2)-O-α-d-mannopyranosyl-(1→3)-[O-β-d-glucopyranosyl-(1→4)]-d-glucose, and O-(β-d-glucopyranosyluronic acid)-(1→2)-O-α-d-mannopyranosyl-(1→3)-[O-β-d-glucopyranosyl-(1→4)-O-β-d-glucopyranosyl-(1→4)-d-glucose. This and other evidence supports the following polysaccharide structure (1) which has been proposed independently by Jansson, Kenne, and Lindberg:
  相似文献   

18.
Four novel 3,28-O-bisglycosidic triterpenoid saponins were isolated from the mature fruits of F. japonica. They were characterized as the 28-O-α-l-rhamnopyranosyl-(1 → 4)-β-d-glucopyranosyl-(1 → 4)-β- d-glucopyranosides of 3-O-α-l-arabinopyranosyl echinocystic acid, 3-O-α-l-arabinopyranosyl hederagenin, 3-O-β-d-glucopyranosyl-(1 → 2)-α-l-arabinopyranosyl oleanolic acid and 3-O-β- d-glucopyranosyl-(1 → 2)-α-l-arabinopyranosyl hederagenin respectively.  相似文献   

19.
Four new and three known oleanane-type saponins have been isolated from the methanolic extract of Phryna ortegioides, a monotypic and endemic taxon of Caryophyllaceae.The structures of the new compounds were determined as gypsogenic acid 28-O-β-d-glucopyranosyl-(1→2)-O-β-d-glucopyranosyl-(1→6)-O-β-d-glucopyranosyl ester (1), 3-O-α-l-arabinofuranosyl-gypsogenic acid 28-O-β-d-glucopyranosyl-(1→3)-O-[β-d-glucopyranosyl-(1→6)]-O-β-d-glucopyranosyl ester (2), 3-O-α-l-arabinofuranosyl-gypsogenic acid 28-O-β-d-glucopyranosyl-(1→3)-O-[β-d-glucopyranosyl-(1→2)-O-β-d-glucopyranosyl-(1→6)-O-]-β-d-glucopyranosyl ester (3), 3-O-α-l-arabinofuranosyl-16α-hydroxyolean-12-en-23,28-dioic acid-28-O-β-d-glucopyranosyl-(1→3)-O-[β-d-glucopyranosyl-(1→2)-O-β-d-glucopyranosyl-(1→6)]-O-β-d-glucopyranosyl ester (4). Their structures were established by a combination of one- and two-dimensional NMR techniques, and mass spectrometry. Noteworthy, none of isolated compounds possesses as aglycone moiety gypsogenin, considered a marker of Caryophyllaceae family.The cytotoxic activity of the isolated compounds was evaluated against three cancer cell lines including A549 (human lung adenocarcinoma), A375 (human melanoma) and DeFew (human B lymphoma) cells. Only compound 6 showed a weak activity against A375 and DeFew cell lines with IC50 values of 77 and 52 μM, respectively. None of the other tested compounds, in a range of concentrations between 12.5 and 100 μM, caused a significant reduction of the cell number.  相似文献   

20.
Sixteen oleanane-type glycosides were extracted from three Weigela hybrids and cultivars: W. x Styriaca, W. florida “Minor black” and W. florida “Brigela”, and four of them were previously undescribed ones: 3-O-β-D-xylopyranosyl-(1→4)-β-D-xylopyranosyl-(1→3)-α-L-rhamnopyranosyl-(1→2)-β-D-xylopyranosyloleanolic acid, 3-O-β-D-xylopyranosyl-(1→4)-β-D-xylopyranosyl-(1→3)-α-L-rhamnopyranosyl-(1→2)-α-L-arabinopyranosyloleanolic acid, 3-O-β-D-xylopyranosyl-(1→4)-β-D-xylopyranosyl-(1→4)-β-D-xylopyranosyl-(1→3)-α-L-rhamnopyranosyl-(1→2)-α-L-arabinopyranosyloleanolic acid, and 3-O-β-D-xylopyranosyl-(1→4)-β-D-xylopyranosyl-(1→4)-β-D-xylopyranosyl-(1→4)-β-D-xylopyranosyl-(1→3)-α-L-rhamnopyranosyl-(1→2)-α-L-arabinopyranosyloleanolic acid. Their full structural elucidation required extensive 1D and 2D NMR experiments, as well as mass spectrometry analysis. Six compounds among the known ones were in sufficient amount to be tested for their antifungal activity against Candida albicans, and their antibacterial activity against Staphylococcus aureus and Pseudomonas aeruginosa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号