首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
Changes in the content of free sterols (FS), steryl esters (SE), steryl glucosides (SG) and acylated steryl glucosides (ASG) in germinating seeds of white mustard (Sinapis alba) were studied together with parrallel changes in specific activities of some enzymes involved in sterol conjugate transformation. It has been found that a distinct increase in the net SE content and a similar, but less pronounced, increase in SG content at the beginning of germination can be correlated with a distinctly earlier appearance of SE and SG synthesizing enzymes, i.e. triacylglycerol: sterol acyltransferase and UDPG: sterol glucosyltransferase in comparison with hydrolytic activities, i.e. SE hydrolase and SG hydrolase. Our results suggest that metabolism of SG and ASG takes place mainly in the cotyledons while SE metabolism takes place mainly in the roots.  相似文献   

2.
UDPG: sterol glucosyltransferase and acyltransferase which catalyse acylation of steryl glucosides are active in leaves, roots and flowers during the whole vegetative period of Calendula officinalis. The high activity of glucosyltransferase in young, developing tissues and its subsequent rapid decrease in activity in mature organs suggests that steryl glucosides are involved in the formation of some cell structures rather than in sterol transport as such within the plant.  相似文献   

3.
Microplasmodia of Physarum polycephalum exhibit high UDPG: sterol glucosyltransferase activity. The enzyme was purified about 28-fold by acetone pr  相似文献   

4.
A particulate enzyme fraction from the Chlorophyta Prototheca zopfii catalysed the transfer of glucose-[U-14C]from UDP-Glc-[U-14C] to endogenous sterol acceptors and the esterification of steryl glucosides with fatty acids from an endogenous acyl donor. Glucose was the only sugar present, and it appeared to have the β-configuration. In the acylated derivatives the glucose-acyl linkage appeared in the C-6 position of glucose, as indicated by periodate oxidation. UDP-Glc:sterol glucosyltransferase was solubilized with detergent and purified 34-fold. The solubilized enzyme showed no specificity for the sterol but a high affinity for the sugar nucleotide UDP-Glc. Time-course incorporation into steryl glucoside (SG) and the acylderivative (ASG) indicated that SG was the precursor of ASG and that phosphatidyl ethanolamine stimulated the formation of the latter compound, presumably acting as acyl donor. A high sterol glucosylating activity was found in the Golgirich fraction. All this evidence indicates that steryl glucosides and their acylated derivatives were synthesized by algae. The early assumption that these compounds were not present in algae must be revised.  相似文献   

5.
Fatty acids C12-C22 are components of acylated steryl glucosides in Calendula officinalis. Various particulate fractions from 14-day-old seedlings catalyze the esterification of the steryl glucosides with utilization of endogenous acyl donors. The activity seems to be associated mainly with the membranous structures being fragments of Golgi complex, as it has previously been suggested for UDPG: sterol glucosyltransferase. Succesive treatment of the particulate enzyme fraction with Triton X-100 and acetone affords a soluble acyltransferase preparation partly depleted of endogenous lipids. As a source of acyl groups for the synthesis of steryl acylglucosides this preparation utilizes various phospholipids obtained from the same plant in the following sequence: phosphatidylinositol greater than phosphatidylethanolamine greater than phosphatidylcholine. It does not utilize triacylglycerols and monogalactosyldiacylglycerols.  相似文献   

6.
The major UDPG: flavonol glucosyltransferase (UFGT) in maize is an enzyme of strict positional specificity known to be coded by the Bz locus. In bz mature endosperms, no UFGT can be detected. However, bz embryos possess a residual flavonol glucosyltransferase activity which is independent of Bz locus control. The products of this activity have been identified as the 3′-, 7- and 3-glucosides.  相似文献   

7.
In plants, glucosylceramide (GlcCer) biosynthesis is poorly understood. Previous investigations suggested that sterol glucoside (SG) acts as the actual glucose donor for the plant GlcCer synthase (GCS). We addressed this question by generating a Pichia pastoris double mutant devoid of GlcCer and SG. This mutant was used for heterologous expression of the plant GCS. The activity of the GCS resulted in the accumulation of GlcCer and, surprisingly, a small proportion of SG. The synthesis of GlcCer in the transformed double mutant shows that the GCS is SG-independent, while the detection of SG suggests that in addition to the sterol glucosyltransferase, also the GCS may contribute in planta to SG biosynthesis.  相似文献   

8.
Soybean seedlings were grown at 28°C in the dark or the light for 12 days, and four classes of sterol lipids, sterol esters (SE), free sterols (St), acylated steryl glycosides (ASG) and steryl glycosides (SG), were isolated from the cotyledons by solvent extractions, Florisil column chromatography, and thin-layer chromatography (TLC), successively. Each sterol lipid (SE, ASG and SG) obtained was hydrolyzed and then separately divided into sterol, fatty acid and/ or sugar fractions. The hydrolysates and St were analyzed mainly by gas-liquid chromatography (GLC).

Under the two conditions tested, the main sterol lipid class was St during germination, the minor one being SG. With the progress of germination, St and ASG decreased under both conditions tested, whereas SE and SG increased, especially SE in the light-grown seedlings. The changing patterns of sterol and sugar compositions of ASG resembled those of SG, but those of fatty acid composition differed between SE and ASG. In general, the changes in fatty acid compositions of SE and ASG were more marked in the light-grown seedlings than in the dark-grown ones.  相似文献   

9.
Neisseria polysaccharea amylosucrase (NpAS), a transglucosidase of glycoside hydrolase family 13, is a hydrolase and glucosyltransferase that catalyzes the synthesis of amylose-like polymer from a sucrose substrate. Recently, an NpAS homolog from Xanthomonas axonopodis pv. glycines was identified as a member of the newly defined carbohydrate utilization locus that regulates the utilization of plant sucrose in phytopathogenic bacteria. Interestingly, this enzyme is exclusively a hydrolase and not a glucosyltransferase; it is thus known as sucrose hydrolase (SUH). Here, we elucidated the novel functional features of SUH using X-ray crystallography and site-directed mutagenesis. Four different crystal structures of SUH, including the SUH-Tris and the SUH-sucrose and SUH-glucose complexes, represent structural snapshots along the catalytic reaction coordinate. These structures show that SUH is distinctly different from NpAS in that ligand-induced conformational changes in SUH cause the formation of a pocket-shaped active site and in that SUH lacks the three arginine residues found in the NpAS active site that appear to be crucial for NpAS glucosyltransferase activity. Mutation of SUH to insert these arginines failed to confer glucosyltransferase activity, providing evidence that its enzymatic activity is limited to sucrose hydrolysis by its pocket-shaped active site and the identity of residues in the vicinity of the active site.  相似文献   

10.
Glucose derivatives of hydroxycinnamic acids have been identified in tomato fruits either as esters or glucosides, the latter always being the most abundant and increasing during growth and at the time of ripening. These compounds can be synthesized in vitro by a fruit glucosyltransferase from free hydroxycinnamic acids and UDPG; glucosides are always formed in higher amounts than esters.  相似文献   

11.
Sterol: UDPG glucosyltransferase was isolated for the first time from cell culture. Digitalis purpurea cultured cells had 2–5 times higher activity than that of the original plant. The enzyme in the particulate fraction was purified 70.2-fold from cell culture and 76-fold from the plant by cellular fractionation and column chromatography. The properties of purified enzyme from cultured cells were similar to those of the enzyme from the intact plant. The substrate specificity was the highest for a phytosterol.  相似文献   

12.
The EPXH2 gene encodes for the soluble epoxide hydrolase (sEH), a homodimeric enzyme with each monomer containing two domains with distinct activities. The C-terminal domain, containing the epoxide hydrolase activity (Cterm-EH), is involved in the metabolism of arachidonic acid epoxides, endogenous chemical mediators that play important roles in blood pressure regulation, cell growth, and inflammation. We recently demonstrated that the N-terminal domain contains a Mg2+-dependent lipid phosphate phosphatase activity (Nterm-phos). However, the biological role of this activity is unknown. The inability of known phosphatase inhibitors to inhibit the Nterm-phos constitutes a significant barrier to the elucidation of its function. We describe herein sulfate, sulfonate, and phosphonate lipids as novel potent inhibitors of Nterm-phos. These compounds are allosteric competitive inhibitors with K(I) in the hundred nanomolar range. These inhibitors may provide a valuable tool to investigate the biological role of the Nterm-phos. We found that polyisoprenyl phosphates are substrates of Nterm-phos, suggesting a possible role in sterol synthesis or inflammation. Furthermore, some of these compounds inhibit the C-terminal sEH activity through a noncompetitive inhibition mechanism involving a new binding site on the C-terminal domain. This novel site may play a role in the natural in vivo regulation of epoxide hydrolysis by sEH.  相似文献   

13.
The addition of soluble cellodextrins of increasing size to a cell envelope preparation of Acetobacter xylinum stimulated cellulose synthesis from UDPG. This stimulation was attributed to both acceptor and activator effects. Enzymes required for cellulose synthesis were found to be heat-unstable and those required for synthesis of glycosylated lipid components from UDPG, heat-stable. Both heat-inactivated envelope fragments and supernatant fluid from whole cells were necessary for cellulose synthesis from UDPG. Cellulose was not formed from UDPG in the presence of either supernatant fluid alone or heat-inactivated envelopes alone.The combined results of this and previous studies suggest that either the cell envelope is necessary for synthesis of a more immediate precursor to cellulose than UDPG, or that the synthesis from UDPG requires a matrix. The former suggestion and its possible link with lipid intermediate involvement was strengthened by the observation of inefficient glycoxylated lipid formation by a celluloseless mutant strain of A. xylinum. The possible locations of various enzyme activities required for the synthesis of the cellulose precursor are indicated and a possible microfibril nucleation process is discussed.  相似文献   

14.
《Process Biochemistry》2010,45(5):655-659
The potential applications of glycosyltransferases in glycoconjugate synthesis have attracted considerable interest from the biotechnology community in recent years. In this work, we present a novel glucosyltransferase from Catharanthus roseus cell cultures. The enzyme was purified to one spot in SDS-polyacrylamide gel electrophoresis, and its molecular weight was about 51 kDa. The optimum temperature was 35 °C, and the optimum pH was 7.6. Sodium ion has weak effect on enzyme activity, whereas divalent ions inhibit enzyme activity strongly. The Km values were 0.112, 0.077, 0.064 and 1.0 mM for scopoletin, 5,7-dihydroxyflavone, 5,7-dihydroxyflavanone and UDPG, respectively. Substrate screening with the purified enzyme was performed against a range of phenolic compounds using UDPG as sugar donor. The enzyme showed activity towards a number of coumarins including umbelliferone, scopoletin, isoscopoletin and esculetin, and flavonoids including a flavone, a flavanone and chalcones. No activity was detected with compounds characterized by a single aromatic ring, i.e. simple and acidic phenols. The substrate specificity and the regioselectivity suggest enzyme structural features that are different from those of other glucosyltransferases.  相似文献   

15.
Sterol glucosides, typical membrane-bound lipids of many eukaryotes, are biosynthesized by a UDP-glucose:sterol glucosyltransferase (EC 2. 4.1.173). We cloned genes from three different yeasts and from Dictyostelium discoideum, the deduced amino acid sequences of which all showed similarities with plant sterol glucosyltransferases (Ugt80A1, Ugt80A2). These genes from Saccharomyces cerevisiae (UGT51 = YLR189C), Pichia pastoris (UGT51B1), Candida albicans (UGT51C1), and Dictyostelium discoideum (ugt52) were expressed in Escherichia coli. In vitro enzyme assays with cell-free extracts of the transgenic E. coli strains showed that the genes encode UDP-glucose:sterol glucosyltransferases which can use different sterols such as cholesterol, sitosterol, and ergosterol as sugar acceptors. An S. cerevisiae null mutant of UGT51 had lost its ability to synthesize sterol glucoside but exhibited normal growth under various culture conditions. Expression of either UGT51 or UGT51B1 in this null mutant under the control of a galactose-induced promoter restored sterol glucoside synthesis in vitro. Lipid extracts of these cells contained a novel glycolipid. This lipid was purified and identified as ergosterol-beta-D-glucopyranoside by nuclear magnetic resonance spectroscopy. These data prove that the cloned genes encode sterol-beta-D-glucosyltransferases and that sterol glucoside synthesis is an inherent feature of eukaryotic microorganisms.  相似文献   

16.
Glucosylation in insects was investigated using tobacco hornworms (Manduca sexta) as the primary test insect and 1-naphthol-14C as the substrate. Of 6 common co-factors tested, only UDPG was utilized by the conjugating enzyme system. Neither the hornworm nor housefly enzymes could form the glucuronic acid derivative of 1-naphthol using UDPGA. Centrifugal fractionation of the hornworm homogenates showed that the glucosyltransferase activity was in the 105,000 g soluble fraction. In the housefly, the enzyme activity was associated with the 15,000 g pellet and to a lesser extent with the 105,000 g pellet. In vitro inhibition of the glucosyltransferase by sulphoxide, piperonyl butoxide, and other insecticide synergists was demonstrated.  相似文献   

17.
Cabbage leaf discs (Brassica oleracea L., Capitata group) were floated adaxial side up in 0, 0.05, or 0.25 m CaCl2 solutions at 15°C for 14 d in the dark. To assess whether the delay of senescence by calcium treatment involved protection of membrane lipids, chlorophyll and protein content and the lipid composition of the membranes were determined during incubation. Chlorophyll and protein content decreased with time, in correlation with a reduction in the amount of phospholipids. The degree of unsaturation of phospholipids and free fatty acids decreased, whereas the ratio of sterol to phospholipid increased. The proportions of phospholipid classes did not change during senescence. The catabolism of phospholipids was delayed by 0.05 m calcium, but accelerated by 0.25 m, as compared to the untreated control. Based on the levels of the lipid intermediates, phospholipase D, phosphatidic acid phosphatase, lipolytic acyl hydrolase, and lipoxygenase appeared to be involved in the breakdown of phospholipids during senescence. Phospholipase D and phosphatidic acid phosphatase may be directly influenced by calcium. The calcium treatment apparently did not affect the activity of acyl hydrolase. Lipoxygenase, responsible for the peroxidation of the polyunsaturated fatty acids, was probably indirectly influenced by calcium. We conclude that the delay of senescence of cabbage leaf discs by calcium treatment involved protection of membrane lipids from degradation.  相似文献   

18.
Understanding how wheat (Triticum aestivum L.) plants under high temperature (HT) regulate lipid composition is critical to developing climate‐resilient varieties. We measured 165 glycerolipids and sterol derivatives under optimum and high day and night temperatures in wheat leaves using electrospray ionization‐tandem mass spectrometry. Levels of polar lipid fatty acyl chain unsaturation were lower in both heat‐tolerant genotype Ventnor and susceptible genotype Karl 92 under HT, compared with optimum temperature. The lower unsaturation was predominantly because of lower levels of 18:3 acyl chains and higher levels of 18:1 and 16:0 acyl chains. Levels of 18:3‐containing triacylglycerols increased threefold/more under HT, consistent with their possible role in sequestering fatty acids during membrane lipid remodelling. Phospholipids containing odd‐numbered or oxidized acyl chains accumulated in leaves under HT. Sterol glycosides (SG) and 16:0‐acylated sterol glycosides (ASG) were higher under HT than optimum temperatures. Ventnor had lower amounts of phospholipids with oxidized acyl chains under HT and higher amounts of SG and 16:0‐ASG than Karl 92. Taken together, the data demonstrate that wheat leaf lipid composition is altered by HT, in which some lipids are particularly responsive to HT, and that two wheat genotypes, chosen for their differing physiological responses to HT, differ in lipid profile under HT.  相似文献   

19.
Fungal sterol glucosyltransferases, which synthesize sterol glucoside (SG), contain a GRAM domain as well as a pleckstrin homology and a catalytic domain. The GRAM domain is suggested to play a role in membrane traffic and pathogenesis, but its significance in any biological processes has never been experimentally demonstrated. We describe herein that sterol glucosyltransferase (Ugt51/Paz4) is essential for pexophagy (peroxisome degradation), but not for macroautophagy in the methylotrophic yeast Pichia pastoris. By expressing truncated forms of this protein, we determined the individual contributions of each of these domains to pexophagy. During micropexophagy, the glucosyltransferase was associated with a recently identified membrane structure: the micropexophagic apparatus. A single amino acid substitution within the GRAM domain abolished this association as well as micropexophagy. This result shows that GRAM is essential for proper protein association with its target membrane. In contrast, deletion of the catalytic domain did not impair protein localization, but abolished pexophagy, suggesting that SG synthesis is required for this process.  相似文献   

20.
Previous work has shown that the hepatopancreas of the spiny lobster (Panulirus argus) contains a mixed-function oxidase system capable of catalyzing the monooxygenation of polycyclic aromatic hydrocarbons to highly toxic products similar to those formed by mammalian tissues. Studies were designed to determine the ability of the spiny lobster to conjugate the phenolic compounds 4-methylumbelliferone, p-nitrophenol, beta-naphthol, and 3-hydroxybenzo[a]pyrene with endogenous molecules. The hepatopancreas contained UDP-glucose (UDPG) dependent glucosyltransferase, while no activity was detected when UDP-glucuronic acid was used as the cosubstrate. Atypical Michaelis-Menten kinetics result with varying concentrations of UDPG, indicating that multiple forms of glucosyltransferase may exist in this organ. The activity was localized in the microsomal fraction, exhibited a pH optimum at 8.0-8.5, and a temperature optimum of 30 degrees C. Sulfate conjugation was found only in the cytosolic fraction of the antennal gland and used adenosine 3'-phosphate 5'-phosphosulfate (PAPS) as the sulfate donor (Km(apparent) = 9.0 +/- 4.9 microM). Hepatopancreas cytosol inhibited sulfotransferase activity. The pH optimum of antennal gland sulfotransferase was a function of the substrate and ranged from 5.5 to 7.4. Analysis of spiny lobster urine 24 hr following exposure to 3-hydroxybenzo[a]pyrene demonstrated the ability of the lobster to form both the sulfate and glucoside conjugate in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号