首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
以谷氨酸棒杆菌(Corynebacterium glutamicum) SYPS-062基因组DNA为模板,扩增得到L-丝氨酸脱水酶(L-SerDH)的编码基因sdaA。将其克隆到表达载体pET-28a(+),并在E.coli BL21(DE3)中诱导表达,对纯化的L-SerDH进行了酶活测定,并与来自C.glutamicum ATCC13032的重组L-SerDH进行了比较,结果显示,两种不同菌株来源的重组L-SerDH降解L-丝氨酸的酶比活力差异并不显著。在此基础上敲除菌株SYPS-062 的sdaA基因,探讨该基因对C.glutamicum SYPS-062生长及产酸的影响。通过构建自杀型重组质粒pK18mobsacB-△sdaA,电击转入C.glutamicum SYPS-062中,以同源重组的方式获得了sdaA基因缺失突变株,并用PCR方法对突变株C.glutamicum SYPS-062△sdaA进行了验证。与出发菌株相比,突变菌株生长缓慢,单位菌体L-丝氨酸的产量(YP/X)提高了15.13%。  相似文献   

2.
Although L-serine proceeds in just three steps from the glycolytic intermediate 3-phosphoglycerate, and as much as 8% of the carbon assimilated from glucose is directed via L-serine formation, previous attempts to obtain a strain producing L-serine from glucose have not been successful. We functionally identified the genes serC and serB from Corynebacterium glutamicum, coding for phosphoserine aminotransferase and phosphoserine phosphatase, respectively. The overexpression of these genes, together with the third biosynthetic serA gene, serA(delta197), encoding an L-serine-insensitive 3-phosphoglycerate dehydrogenase, yielded only traces of L-serine, as did the overexpression of these genes in a strain with the L-serine dehydratase gene sdaA deleted. However, reduced expression of the serine hydroxymethyltransferase gene glyA, in combination with the overexpression of serA(delta197), serC, and serB, resulted in a transient accumulation of up to 16 mM L-serine in the culture medium. When sdaA was also deleted, the resulting strain, C. glutamicum delta sdaA::pK18mobglyA'(pEC-T18mob2serA(delta197)CB), accumulated up to 86 mM L-serine with a maximal specific productivity of 1.2 mmol h(-1) g (dry weight)(-1). This illustrates a high rate of L-serine formation and also utilization in the C. glutamicum wild type. Therefore, metabolic engineering of L-serine production from glucose can be achieved only by addressing the apparent key position of this amino acid in the central metabolism.  相似文献   

3.
Corynebacterium glutamicum was engineered for the production of L-valine from glucose by deletion of the aceE gene encoding the E1p enzyme of the pyruvate dehydrogenase complex and additional overexpression of the ilvBNCE genes encoding the L-valine biosynthetic enzymes acetohydroxyacid synthase, isomeroreductase, and transaminase B. In the absence of cellular growth, C. glutamicum DeltaaceE showed a relatively high intracellular concentration of pyruvate (25.9 mM) and produced significant amounts of pyruvate, L-alanine, and L-valine from glucose as the sole carbon source. Lactate or acetate was not formed. Plasmid-bound overexpression of ilvBNCE in C. glutamicum DeltaaceE resulted in an approximately 10-fold-lower intracellular pyruvate concentration (2.3 mM) and a shift of the extracellular product pattern from pyruvate and L-alanine towards L-valine. In fed-batch fermentations at high cell densities and an excess of glucose, C. glutamicum DeltaaceE(pJC4ilvBNCE) produced up to 210 mM L-valine with a volumetric productivity of 10.0 mM h(-1) (1.17 g l(-1) h(-1)) and a maximum yield of about 0.6 mol per mol (0.4 g per g) of glucose.  相似文献   

4.
Li Y  Chen GK  Tong XW  Zhang HT  Liu XG  Liu YH  Lu FP 《Biotechnology letters》2012,34(8):1525-1530
L-Serine is usually produced from glycine. We have genetically engineered Escherichia coli to produce L-serine from glucose intracellularly. D-3-Phosphoglycerate dehydrogenase (PGDH, EC 1.1.1.95) in E. coli catalyzes the first committed step in L-serine formation but is inhibited by L-serine. To overcome this feedback inhibition, both the His(344) and Asn(346) residues of PGDH were converted to alanine and the mutated PGDH (PGDH(dr)) became insensitive to L-serine. However, overexpression of PGDH(dr) gave no significant increase of L-serine accumulation but, when L-serine deaminase genes (sdaA, sdaB and tdcG) were deleted, serine accumulated: (1) deletion of sdaA gave up to 0.03 mmol L-serine/g; (2) deletion of both sdaA and sdaB accumulated L-serine up to 0.09 mmol/g; and (3) deletion of sdaA, sdaB and tdcG gave up to 0.13 mmol L-serine/g cell dry wt.  相似文献   

5.
Corynebacterium glutamicum possesses high in vivo activity of the gluconeogenic phosphoenolpyruvate carboxykinase (PEPCk) during growth on glucose, resulting together with anaplerotic carboxylation reactions in a PEP/pyruvate/oxaloacetate substrate cycle. The present study investigated the changes in intracellular fluxes and metabolite concentrations that are caused by altered PEPCk activity in L-lysine-producing C. glutamicum MH20-22B, applying a recently developed (13)C labeling-based strategy for anaplerotic flux resolution and quantification. Abolition of PEPCk activity by deletion of the respective pck gene resulted in increased intracellular concentrations of oxaloacetate L-aspartate, alpha-ketoglutarate, pyruvate, and L-lysine and in a 60% enhanced flux toward L-lysine biosynthesis, whereas increasing the PEPCk activity by pck overexpression had opposite effects. The results of the combined measurements of enzyme activities, in vivo fluxes, and metabolite concentrations were exploited to elucidate the in vivo regulation of anaplerotic reactions in C. glutamicum, and implications for the metabolic engineering of amino-acid-producing strains are discussed.  相似文献   

6.
We previously reported that Corynebacterium glutamicum strain ΔldhAΔppc+alaD+gapA, overexpressing glyceraldehyde-3-phosphate dehydrogenase-encoding gapA, shows significantly improved glucose consumption and alanine formation under oxygen deprivation conditions (T. Jojima, M. Fujii, E. Mori, M. Inui, and H. Yukawa, Appl. Microbiol. Biotechnol. 87:159-165, 2010). In this study, we employ stepwise overexpression and chromosomal integration of a total of four genes encoding glycolytic enzymes (herein referred to as glycolytic genes) to demonstrate further successive improvements in C. glutamicum glucose metabolism under oxygen deprivation. In addition to gapA, overexpressing pyruvate kinase-encoding pyk and phosphofructokinase-encoding pfk enabled strain GLY2/pCRD500 to realize respective 13% and 20% improved rates of glucose consumption and alanine formation compared to GLY1/pCRD500. Subsequent overexpression of glucose-6-phosphate isomerase-encoding gpi in strain GLY3/pCRD500 further improved its glucose metabolism. Notably, both alanine productivity and yield increased after each overexpression step. After 48 h of incubation, GLY3/pCRD500 produced 2,430 mM alanine at a yield of 91.8%. This was 6.4-fold higher productivity than that of the wild-type strain. Intracellular metabolite analysis showed that gapA overexpression led to a decreased concentration of metabolites upstream of glyceraldehyde-3-phosphate dehydrogenase, suggesting that the overexpression resolved a bottleneck in glycolysis. Changing ratios of the extracellular metabolites by overexpression of glycolytic genes resulted in reduction of the intracellular NADH/NAD(+) ratio, which also plays an important role on the improvement of glucose consumption. Enhanced alanine dehydrogenase activity using a high-copy-number plasmid further accelerated the overall alanine productivity. Increase in glycolytic enzyme activities is a promising approach to make drastic progress in growth-arrested bioprocesses.  相似文献   

7.
The Corynebacterium glutamicum ATCC 13032 lysC(fbr) strain was engineered to grow fast on racemic mixtures of lactate and to secrete lysine during growth on lactate as well as on mixtures of lactate and glucose. The wild-type C. glutamicum only grows well on L-lactate. Overexpression of D-lactate dehydrogenase (dld) achieved by exchanging the native promoter of the dld gene for the stronger promoter of the sod gene encoding superoxide dismutase in C. glutamicum resulted in a duplication of biomass yield and faster growth without any secretion of lysine. Elementary mode analysis was applied to identify potential targets for lysine production from lactate as well as from mixtures of lactate and glucose. Two targets for overexpression were pyruvate carboxylase and malic enzyme. The overexpression of these genes using again the sod promoter resulted in growth-associated production of lysine with lactate as sole carbon source with a carbon yield of 9% and a yield of 15% during growth on a lactate-glucose mixture. Both substrates were taken up simultaneously with a slight preference for lactate. As surmised from the elementary mode analysis, deletion of glucose-6-phosphate isomerase resulted in a decreased production of lysine on the mixed substrate. Elementary mode analysis together with suitable objective functions has been found a very useful tool guiding the design of strains producing lysine on mixed substrates.  相似文献   

8.
9.
We recently engineered the wild type of Corynebacterium glutamicum for the growth-decoupled production of L: -valine from glucose by inactivation of the pyruvate dehydrogenase complex and additional overexpression of the ilvBNCE genes, encoding the L-valine biosynthetic enzymes acetohydroxyacid synthase, isomeroreductase, and transaminase B. Based on the first generation of pyruvate-dehydrogenase-complex-deficient C. glutamicum strains, a second generation of high-yield L-valine producers was constructed by successive deletion of the genes encoding pyruvate:quinone oxidoreductase, phosphoglucose isomerase, and pyruvate carboxylase and overexpression of ilvBNCE. In fed-batch fermentations at high cell densities, the newly constructed strains produced up to 410 mM (48 g/l) L-valine, showed a maximum yield of 0.75 to 0.86 mol/mol (0.49 to 0.56 g/g) of glucose in the production phase and, in contrast to the first generation strains, excreted neither pyruvate nor any other by-product tested.  相似文献   

10.
The amino acid L-serine is required for pharmaceutical purposes, and the availability of a sugar-based microbial process for its production is desirable. However, a number of intracellular utilization routes prevent overproduction of L-serine, with the essential serine hydroxymethyltransferase (SHMT) (glyA) probably occupying a key position. We found that constructs of Corynebacterium glutamicum strains where chromosomal glyA expression is dependent on Ptac and lacIQ are unstable, acquiring mutations in lacIQ, for instance. To overcome the inconvenient glyA expression control, we instead considered controlling SHMT activity by the availability of 5,6,7,8-tetrahydrofolate (THF). The pabAB and pabC genes of THF synthesis were identified and deleted in C. glutamicum, and the resulting strains were shown to require folate or 4-aminobenzoate for growth. Whereas the C. glutamicum DeltasdaA strain (pserACB) accumulates only traces of L-serine, with the C. glutamicum DeltapabABCDeltasdaA strain (pserACB), L-serine accumulation and growth responded in a dose-dependent manner to an external folate supply. At 0.1 mM folate, 81 mM L-serine accumulated. In a 20-liter controlled fed-batch culture, a 345 mM L-serine accumulation was achieved. Thus, an efficient and highly competitive process for microbial l-serine production is available.  相似文献   

11.
Pyruvate carboxylase was recently sequenced in Corynebacterium glutamicum and shown to play an important role of anaplerosis in the central carbon metabolism and amino acid synthesis of these bacteria. In this study we investigate the effect of the overexpression of the gene for pyruvate carboxylase (pyc) on the physiology of C. glutamicum ATCC 21253 and ATCC 21799 grown on defined media with two different carbon sources, glucose and lactate. In general, the physiological effects of pyc overexpression in Corynebacteria depend on the genetic background of the particular strain studied and are determined to a large extent by the interplay between pyruvate carboxylase and aspartate kinase activities. If the pyruvate carboxylase activity is not properly matched by the aspartate kinase activity, pyc overexpression results in growth enhancement instead of greater lysine production, despite its central role in anaplerosis and aspartic acid biosynthesis. Aspartate kinase regulation by lysine and threonine, pyruvate carboxylase inhibition by aspartate (shown in this study using permeabilized cells), as well as well-established activation of pyruvate carboxylase by lactate and acetyl coenzyme A are the key factors in determining the effect of pyc overexpression on Corynebacteria physiology.  相似文献   

12.
A novel L-serine deaminase activity in Escherichia coli K-12.   总被引:2,自引:1,他引:1       下载免费PDF全文
We demonstrate here that Escherichia coli K-12 synthesizes two different L-serine deaminases (L-SD) catalyzing the nonoxidative deamination of L-serine to pyruvate, one coded for by the previously described sdaA gene and a second, hitherto undescribed enzyme which we call L-SD2. A strain carrying a null mutation in sdaA made no detectable L-SD in minimal medium, but had activity in Luria broth. We describe a mutation, sdaX, which affects the regulation of L-SD2 and permits its expression in minimal medium, and an insertion mutation, sdaB, which abolishes L-SD2 activity completely. Both mutations lie near 60.5 min on the E. coli genetic map. The two L-SD enzymes have similar enzyme parameters, and both require posttranslational activation.  相似文献   

13.
Extracts of 14 filamentous fungi were examined regarding their potential for production of (R)-phenylacetylcarbinol [(R)-PAC], which is the chiral precursor in the manufacture of the pharmaceuticals ephedrine and pseudoephedrine. Benzaldehyde and pyruvate were transformed at a scale of 1.2 ml into PAC by cell-free extracts of all selected strains, covering the broad taxonomic spectrum of Ascomycota, Zygomycota and Basidiomycota. Highest final PAC concentrations were obtained with the extracts of Rhizopus javanicus and Fusarium sp. [78-84 mM (11.7-12.6 g/l) PAC within 20 h from initial substrate concentrations of 100 mM benzaldehyde and 150 mM pyruvate]. (R)-PAC was in about 90-93% enantiomeric excess. Rhizopus javanicus had the advantage of faster growth than Fusarium sp. Rhizopus javanicus mycelia were used as an example in a biotransformation process based on whole cells and benzaldehyde and glucose as substrates. The substrate pyruvate was generated through the fungal fermentation of glucose. Only 19 mM PAC (2.9 g/l) were produced within 8 h from 80 mM benzaldehyde. with evidence of significant benzyl alcohol production.  相似文献   

14.
This study was conducted to examine the effect of energy substrates in a serum-free culture medium on in vitro development of porcine embryos. Presumptive zygotes derived from in vitro fertilization were cultured in glucose-free North Carolina State University (NCSU)-23 medium with glucose, pyruvate, fructose and lactate added to the culture medium singly or in various combinations. In experiment 1, a higher percentage of embryos cleaved (53-63% vs 10-13%) and developed to the blastocyst stage (18-27% vs 0) after the single addition of glucose (5.6 mM), pyruvate (0.5 mM) or lactate (10 mM) than with no energy substrate addition or the addition only of fructose (5.6 mM). In experiment 2, the addition of pyruvate and lactate resulted in higher blastocyst formation (25%) than other combinations (6-22%), while the addition of glucose and pyruvate significantly inhibited blastocyst formation. Increasing lactate concentration, as a single energy supplement, from 5 to 20 mM significantly improved blastocyst formation (7% vs 14-18%), while no benefit was achieved from increasing pyruvate concentration up to 2 mM (experiment 3). Glucose-free NCSU-23 medium supplemented with 0.5 mM pyruvate and 5 mM lactate significantly improved blastocyst formation (28% vs 17%) compared with NCSU-23 medium supplemented with 5.6 mM glucose (experiment 4). In conclusion, pyruvate and lactate are preferable energy substrates to support in vitro development of porcine embryos cultured in a serum-free NCSU-23 medium.  相似文献   

15.
L-Serine alone is not gluconeogenic in isolated rabbit hepatocytes, whereas in rat liver this amino acid has been reported to yield as much glucose as does L-lactate itself. The current study has been an investigation into the explanation of the difference between the two species. Hepatocytes were isolated from 48-h-starved, 750- to 1000-g male rabbits, and the viability of each preparation was judged by ATP levels (2.4 +/- 0.2 mumol/g wet wt) at the beginning and end of the incubation as well as gluconeogenesis from 10 mM L-lactate (0.83 +/- 0.08 mumol/min/g wet wt). L-Serine alone produced virtually no glucose or pyruvate accumulation above baseline. Hydroxypyruvate, however, did appear in the incubation mixture. When L-serine and pyruvate were combined to test the functional activity of L-serine:pyruvate aminotransferase (EC 2.6.1.51), however, gluconeogenesis remained at the rate produced by pyruvate alone (0.61 +/- 0.04 mumol/min/g wet wt). On the other hand, the combination of L-serine and L-lactate produced rates of glucose accumulation 35% above that of L-lactate alone. The combination of L-lactate plus hydroxypyruvate produced nearly maximal rates (1.39 +/- 0.08 mumol/min/g wet wt), approaching those achieved by a physiologic ratio (10:1) of L-lactate and pyruvate. Hydroxypyruvate itself was only moderately gluconeogenic (0.44 +/- 0.04 mumol/min/g wet wt). That a reduction of the cytoplasmic free [NAD+]/[NADH] ratio by L-lactate was not its only contribution to L-serine utilization was suggested by the fact that ethanol completely eliminated gluconeogenesis from virtually all precursors (or combinations) tested, with the exception of hydroxypyruvate. It has been concluded from the data that, probably in contrast to the rat, the major pathway for the entrance of L-serine into gluconeogenesis in rabbit hepatocytes is through the pathway initiated by L-serine: pyruvate aminotransferase and that L-lactate is an important participant (i) by generating cytoplasmic reducing equivalents (NADH), (ii) by supplying pyruvate for the transaminating reaction itself, and, perhaps, (iii) by preventing hydroxypyruvate from being reduced by L-lactate dehydrogenase (EC 1.1.1.27) to L-glycerate.  相似文献   

16.
Pyruvate:quinone oxidoreductase catalyzes the oxidative decarboxylation of pyruvate to acetate and CO2 with a quinone as the physiological electron acceptor. So far, this enzyme activity has been found only in Escherichia coli. Using 2,6-dichloroindophenol as an artificial electron acceptor, we detected pyruvate:quinone oxidoreductase activity in cell extracts of the amino acid producer Corynebacterium glutamicum. The activity was highest (0.055 +/- 0.005 U/mg of protein) in cells grown on complex medium and about threefold lower when the cells were grown on medium containing glucose, pyruvate, or acetate as the carbon source. From wild-type C. glutamicum, the pyruvate:quinone oxidoreductase was purified about 180-fold to homogeneity in four steps and subjected to biochemical analysis. The enzyme is a flavoprotein, has a molecular mass of about 232 kDa, and consists of four identical subunits of about 62 kDa. It was activated by Triton X-100, phosphatidylglycerol, and dipalmitoyl-phosphatidylglycerol, and the substrates were pyruvate (kcat=37.8 +/- 3 s(-1); Km=30 +/- 3 mM) and 2-oxobutyrate (kcat=33.2 +/- 3 s(-1); Km=90 +/- 8 mM). Thiamine pyrophosphate (Km=1 microM) and certain divalent metal ions such as Mg2+ (Km=29 microM), Mn2+ (Km=2 microM), and Co2+ (Km=11 microM) served as cofactors. In addition to several dyes (2,6-dichloroindophenol, p-iodonitrotetrazolium violet, and nitroblue tetrazolium), menadione (Km=106 microM) was efficiently reduced by the purified pyruvate:quinone oxidoreductase, indicating that a naphthoquinone may be the physiological electron acceptor of this enzyme in C. glutamicum.  相似文献   

17.
Growth of Corynebacterium glutamicum on mixtures of the carbon sources glucose and acetate is shown to be distinct from growth on either substrate alone. The organism showed nondiauxic growth on media containing acetate-glucose mixtures and simultaneously metabolized these substrates. Compared to those for growth on acetate or glucose alone, the consumption rates of the individual substrates were reduced during acetate-glucose cometabolism, resulting in similar total carbon consumption rates for the three conditions. By (13)C-labeling experiments with subsequent nuclear magnetic resonance analyses in combination with metabolite balancing, the in vivo activities for pathways or single enzymes in the central metabolism of C. glutamicum were quantified for growth on acetate, on glucose, and on both carbon sources. The activity of the citric acid cycle was high on acetate, intermediate on acetate plus glucose, and low on glucose, corresponding to in vivo activities of citrate synthase of 413, 219, and 111 nmol. (mg of protein)(-1). min(-1), respectively. The citric acid cycle was replenished by carboxylation of phosphoenolpyruvate (PEP) and/or pyruvate (30 nmol. [mg of protein](-1). min(-1)) during growth on glucose. Although levels of PEP carboxylase and pyruvate carboxylase during growth on acetate were similar to those for growth on glucose, anaplerosis occurred solely by the glyoxylate cycle (99 nmol. [mg of protein](-1). min(-1)). Surprisingly, the anaplerotic function was fulfilled completely by the glyoxylate cycle (50 nmol. [mg of protein](-1). min(-1)) on glucose plus acetate also. Consistent with the predictions deduced from the metabolic flux analyses, a glyoxylate cycle-deficient mutant of C. glutamicum, constructed by targeted deletion of the isocitrate lyase and malate synthase genes, exhibited impaired growth on acetate-glucose mixtures.  相似文献   

18.
The overexpression of fructose 1,6-bisphosphatase (FBPase) in Corynebacterium glutamicum leads to significant improvement of lysine production on different sugars. Amplified expression of FBPase via the promoter of the gene encoding elongation factor TU (EFTU) increased the lysine yield in the feedback-deregulated lysine-producing strain C. glutamicum lysCfbr by 40% on glucose and 30% on fructose or sucrose. Additionally formation of the by-products glycerol and dihydroxyacetone was significantly reduced in the PEFTUfbp mutant. As revealed by 13C metabolic flux analysis on glucose the overexpression of FBPase causes a redirection of carbon flux from glycolysis toward the pentose phosphate pathway (PPP) and thus leads to increased NADPH supply. Normalized to an uptake flux of glucose of 100%, the relative flux into the PPP was 56% for C. glutamicum lysCfbr PEFTUfbp and 46% for C. glutamicum lysCfbr. The flux for NADPH supply was 180% in the PEFTUfbp strain and only 146% in the parent strain. Amplification of FBPase increases the production of lysine via an increased supply of NADPH. Comparative studies with another mutant containing the sod promoter upstream of the fbp gene indicate that the expression level of FBPase relates to the extent of the metabolic effects. The overexpression of FBPase seems useful for starch- and molasses-based industrial lysine production with C. glutamicum. The redirection of flux toward the PPP should also be interesting for the production of other NADPH-demanding compounds as well as for products directly stemming from the PPP.  相似文献   

19.
Glucose inhibits development of hamster 8-cell embryos in vitro   总被引:3,自引:0,他引:3  
Relative preferences of energy substrates (glucose, pyruvate, and lactate) for in vitro development of hamster 8-cell embryos were investigated. Using protein-free modified Tyrode's medium (TLP-PVA) containing 10 mM lactate (L), 0.1 mM pyruvate (P), and amino acids (Phe, Ile, Met and Gln), we found that development of hamster 8-cell embryos to blastocysts was supported better in the absence of glucose than in medium containing (standard) 5 mM glucose (88.1% and 50%, respectively). Addition of even 0.25 mM glucose to the medium significantly inhibited blastocyst formation (54.1%). Medium T-PVA, containing 5 mM glucose as sole energy substrate (without pyruvate, lactate, and amino acids), very poorly supported embryo development (less than or equal to 7.9% blastocysts), but addition of 0.1 mM pyruvate enhanced blastocyst formation (52%). Elimination of pyruvate in TL-PVA medium containing 5 mM glucose and amino acids markedly reduced blastocyst formation by 4-fold (13.5%); the optimal pyruvate concentration was 0.2 mM. However, if the same medium was devoid of glucose, blastocyst formation was high both in the absence (71.1%) and presence (83.3%) of 0.1 mM pyruvate. Similarly, in glucose-free T-PVA medium, addition of either 10 mM lactate or amino acids supported 8-cell embryo development to blastocysts (61.7% and 60.5%, respectively) as opposed to 18.8% and 30.6%, respectively, in the presence of 5 mM glucose. This augmented development in the absence of glucose is suggested to the due to the efficient conversion of lactate to pyruvate and of amino acids to amphibolic intermediates and hence their utilization via the Krebs cycle.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号