首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
2.
3.
Regulation of voltage-gatedK+ channel genes represents animportant mechanism for modulating cardiac excitability. Here we demonstrate that expression of twoK+ channel mRNAs is reciprocallycontrolled by cell-cell interactions between adult cardiac myocytes. Itis shown that culturing acutely dissociated rat ventricular myocytesfor 3 h results in a dramatic downregulation of Kv1.5 mRNA and a modestupregulation of Kv4.2 mRNA. These effects are specific, because similarchanges are not detected with other channel mRNAs. Increasing myocytedensity promotes maintenance of Kv1.5 gene expression, whereas Kv4.2mRNA expression was found to be inversely proportional to cell density. Conditioned culture medium did not mimic the effects of high cell density. However, paraformaldehyde-fixed myocytes were comparable tolive cells in their ability to influenceK+ channel message levels. Thusthe reciprocal effects of cell density on the expression of Kv1.5 andKv4.2 genes are mediated by direct contact between adult cardiacmyocytes. These findings reveal for the first time that cardiac myocytegene expression is influenced by signaling induced by cell-cell contact.

  相似文献   

4.
M Sheng  M L Tsaur  Y N Jan  L Y Jan 《Neuron》1992,9(2):271-284
In the mammalian nervous system, K+ channels regulate diverse aspects of neuronal function and are encoded by a large set of K+ channel genes. The roles of different K+ channel proteins could be dictated by their localization to specific subcellular domains. We report that two K+ channel polypeptides, Kv1.4 and Kv4.2, which form transient (A-type) K+ channels when expressed in Xenopus oocytes, are segregated in rat central neurons. Kv1.4 protein is targeted to axons and possibly terminals, while Kv4.2 is concentrated in dendrites and somata. This differential distribution implies distinct roles for these channel proteins in vivo. Their localizations suggest that Kv1.4 and Kv4.2 may regulate synaptic transmission via presynaptic, or postsynaptic mechanisms, respectively.  相似文献   

5.
Because the neuronal membrane properties and firing characteristics are crucially affected by the depolarization-activated K(+) channel (Kv) subunits, data about the Kv distribution may provide useful information regarding the functionality of the neurons situated in the cochlear nucleus (CN). Using immunohistochemistry in free-floating slices, the distribution of seven Kv subunits was described in the rat CN. Positive labeling was observed for Kv1.1, 1.2, 1.6, 3.1, 3.4, 4.2, and 4.3 subunits. Giant and octopus neurons showed particularly strong immunopositivity for Kv3.1; octopus neurons showed intense Kv1.1- and 1.2-specific reactions also. In the latter case, an age-dependent change of the expression pattern was also documented; although both young and older animals produced definite labeling for Kv1.2, the intensity of the reaction increased in older animals and was accompanied with the translocation of the Kv1.2 subunits to the cell surface membrane. The granule cell layer exhibited strong Kv4.2-specific immunopositivity, and markedly Kv4.2-positive glomerular synapses were also seen. It was found that neither giant nor pyramidal cells were uniform in terms of their Kv expression patterns. Our data provide new information about the Kv expression of the CN and also suggest potential functional heterogeneity of the giant and pyramidal cells.  相似文献   

6.
7.
The development of the hippocampal network requires neuronal activity, which is shaped by the differential expression and sorting of a variety of potassium channels. Parallel to their maturation, hippocampal neurons undergo a distinct development of their ion channel profile. The age-dependent dimension of ion channel occurrence is of utmost importance as it is interdependently linked to network formation. However, data regarding the exact temporal expression of potassium channels during postnatal hippocampal development are scarce. We therefore studied the expression of several voltage-gated potassium channel proteins during hippocampal development in vivo and in primary cultures, focusing on channels that were sorted to the axonal compartment. The Kv1.1, Kv1.2, Kv1.4, and Kv3.4 proteins showed a considerable temporal variation of axonal localization among neuronal subpopulations. It is possible, therefore, that hippocampal neurons possess cell type-specific mechanisms for channel compartmentalization. Thus, age-dependent axonal sorting of the potassium channel proteins offers a new approach to functionally distinguish classes of hippocampal neurons and may extend our understanding of hippocampal circuitry and memory processing.  相似文献   

8.
Rapidly activating and inactivating somatodendritic voltage-gated K(+) (Kv) currents, I(A), play critical roles in the regulation of neuronal excitability. Considerable evidence suggests that native neuronal I(A) channels function in macromolecular protein complexes comprising pore-forming (α) subunits of the Kv4 subfamily together with cytosolic, K(+) channel interacting proteins (KChIPs) and transmembrane, dipeptidyl peptidase 6 and 10 (DPP6/10) accessory subunits, as well as other accessory and regulatory proteins. Several recent studies have demonstrated a critical role for the KChIP subunits in the generation of native Kv4.2-encoded channels and that Kv4.2-KChIP complex formation results in mutual (Kv4.2-KChIP) protein stabilization. The results of the experiments here, however, demonstrate that expression of DPP6 in the mouse cortex is unaffected by the targeted deletion of Kv4.2 and/or Kv4.3. Further experiments revealed that heterologously expressed DPP6 and DPP10 localize to the cell surface in the absence of Kv4.2, and that co-expression with Kv4.2 does not affect total or cell surface DPP6 or DPP10 protein levels. In the presence of DPP6 or DPP10, however, cell surface Kv4.2 protein expression is selectively increased. Further addition of KChIP3 in the presence of DPP10 markedly increases total and cell surface Kv4.2 protein levels, compared with cells expressing only Kv4.2 and DPP10. Taken together, the results presented here demonstrate that the expression and localization of the DPP accessory subunits are independent of Kv4 α subunits and further that the DPP6/10 and KChIP accessory subunits independently stabilize the surface expression of Kv4.2.  相似文献   

9.
In the experiments here, the developmental expression of the functional Ca(2+)-independent, depolarization-activated K+ channel currents, Ito and IK, and of the voltage-gated K+ channel (Kv) alpha subunits, Kv1.2, Kv1.4, Kv1.5, Kv2.1, and Kv4.2 in rat ventricular myocytes were examined quantitatively. Using the whole-cell patch clamp recording method, the properties and the densities of Ito and IK in ventricular myocytes isolated from postnatal day 5 (P5), 10 (P10), 15 (P15), 20 (P20), 25 (P25), 30 (P30), and adult (8-12 wk) rats were characterized and compared. These experiments revealed that mean Ito densities increase fourfold between birth and P30, whereas IK densities vary only slightly. Neither the time- nor the voltage-dependent properties of the currents vary measurably, suggesting that the subunits underlying functional Ito and IK channels are the same throughout postnatal development. In parallel experiments, the developmental expression of each of the voltage-gated K+ channel alpha subunits, Kv1.2, Kv1.4, Kv1.5, Kv2.1, and Kv4.2, was examined quantitatively at the mRNA and protein levels using subunit-specific probes. RNase protection assays revealed that Kv1.4 message levels are high at birth, increase between P0 and P10, and subsequently decrease to very low levels in adult rat ventricles. The decrease in message is accompanied by a marked reduction in Kv1.4 protein, consistent with our previous suggestion that Kv1.4 does not contribute to the formation of functional K+ channels in adult rat ventricular myocytes. In contrast to Kv1.4, the mRNA levels of Kv1.2, Kv1.5, Kv2.1, and Kv4.2 increase (three- to five- fold) between birth and adult. Western analyses, however, revealed that the expression patterns of these subunits proteins vary in distinct ways: Kv1.2 and Kv4.2, for example, increase between P5 and adult, whereas Kv1.5 remains constant and Kv2.1 decreases. Throughout development, therefore, there is a mismatch between the numbers of Kv alpha subunits expressed and the functional voltage-gated K+ channel currents distinguished electrophysiologically in rat ventricular myocytes. Alternative experimental approaches will be required to define directly the Kv alpha subunits that underlie functional voltage- gated K+ channels in these (and other) cells. In addition, the finding that Kv alpha subunit protein expression levels do not necessarily mirror mRNA levels suggests that caution should be exercised in attempting functional interpretations of observed changes in mRNA levels alone.  相似文献   

10.
Non-receptor-tyrosine kinases (protein-tyrosine kinases) and non-receptor tyrosine phosphatases (PTPs) have been implicated in the regulation of ion channels, neuronal excitability, and synaptic plasticity. We previously showed that protein-tyrosine kinases such as Src kinase and PTPs such as PTPα and PTPε modulate the activity of delayed-rectifier K(+) channels (I(K)). Here we show cultured cortical neurons from PTPε knock-out (EKO) mice to exhibit increased excitability when compared with wild type (WT) mice, with larger spike discharge frequency, enhanced fast after-hyperpolarization, increased after-depolarization, and reduced spike width. A decrease in I(K) and a rise in large-conductance Ca(2+)-activated K(+) currents (mBK) were observed in EKO cortical neurons compared with WT. Parallel studies in transfected CHO cells indicate that Kv1.1, Kv1.2, Kv7.2/7.3, and mBK are plausible molecular correlates of this multifaceted modulation of K(+) channels by PTPε. In CHO cells, Kv1.1, Kv1.2, and Kv7.2/7.3 K(+) currents were up-regulated by PTPε, whereas mBK channel activity was reduced. The levels of tyrosine phosphorylation of Kv1.1, Kv1.2, Kv7.3, and mBK potassium channels were increased in the brain cortices of neonatal and adult EKO mice compared with WT, suggesting that PTPε in the brain modulates these channel proteins. Our data indicate that in EKO mice, the lack of PTPε-mediated dephosphorylation of Kv1.1, Kv1.2, and Kv7.3 leads to decreased I(K) density and enhanced after-depolarization. In addition, the deficient PTPε-mediated dephosphorylation of mBK channels likely contributes to enhanced mBK and fast after-hyperpolarization, spike shortening, and consequent increase in neuronal excitability observed in cortical neurons from EKO mice.  相似文献   

11.
Although kinesins are known to transport neuronal proteins, it is not known what role they play in the targeting of their cargos to specific subcellular compartments in neurons. Here we present evidence that the K+ channel Kv4.2, which is a major regulator of dendritic excitability, is transported to dendrites by the kinesin isoform Kif17. We show that a dominant negative construct against Kif17 dramatically inhibits localization to dendrites of both introduced and endogenous Kv4.2, but those against other kinesins found in dendrites do not. Kv4.2 colocalizes with Kif17 but not with other kinesin isoforms in dendrites of cortical neurons. Native Kv4.2 and Kif17 coimmunoprecipitate from brain lysate, and introduced, tagged versions of the two proteins coimmunoprecipitate from COS cell lysate, indicating that the two proteins interact, either directly or indirectly. The interaction between Kif17 and Kv4.2 appears to occur through the extreme C terminus of Kv4.2 and not through the dileucine motif. Thus, the dileucine motif does not determine the localization of Kv4.2 by causing the channel to interact with a specific motor protein. In support of this conclusion, we found that the dileucine motif mediates dendritic targeting of CD8 independent of Kif17. Together our data show that Kif17 is probably the motor that transports Kv4.2 to dendrites but suggest that this motor does not, by itself, specify dendritic localization of the channel.  相似文献   

12.
Regulation of voltage-gated K(+) (K(v)) channel expression may be involved in controlling contractility of uterine smooth muscle cells during pregnancy. Functional expression of these channels is not only controlled by the levels of pore-forming subunits, but requires their association with auxiliary subunits. Specifically, rapidly inactivating K(v) current is prominent in myometrial cells and may be carried by complexes consisting of Kv4 pore-forming and KChIP auxiliary subunits. To determine the molecular identity of the channel complexes and their changes during pregnancy, we examined the expression and localization of these subunits in rat uterus. RT-PCR analysis revealed that rat uterus expressed all three Kv4 pore-forming subunits and KChIP2 and -4 auxiliary subunits. The expression of mRNAs for these subunits was dynamically and region selectively regulated during pregnancy. In the corpus, Kv4.2 mRNA level increased before parturition, whereas the expression of Kv4.1 and Kv4.3 mRNAs decreased during pregnancy. A marked increase in KChIP2 mRNA level was also seen at late gestation. In the cervix, the expression of all three pore-forming and two auxiliary subunit mRNAs increased at late gestation. Immunoprecipitation followed by immunoblot analysis indicated that Kv4.2-KChIP2 complexes were significant in uterus at late pregnancy. Kv4.2- and KChIP2-immunoreactive proteins were present in both circular and longitudinal myometrial cells. Finally, Kv4.2 and KChIP2 mRNA levels were similarly elevated in pregnant and nonpregnant corpora of one side-conceived rats. These results suggest that diffusible factors coordinate the pregnancy-associated changes in molecular compositions of myometrial Kv4-KChIP channel complexes.  相似文献   

13.
Compartmentalization of neuronal function is achieved by highly localized clustering of ion channels in discrete subcellular membrane domains. Voltage-gated potassium (Kv) channels exhibit highly variable cellular and subcellular patterns of expression. Here, we describe novel activity-dependent synaptic targeting of Kv4.2, a dendritic Kv channel, in cerebellar granule cells (GCs). In vivo, Kv4.2 channels are highly expressed in cerebellar glomeruli, specializations of GC dendrites that form synapses with mossy fibres. In contrast, in cultured GCs, Kv4.2 was found localized, not to dendrites but to cell bodies. To investigate the role of synaptic contacts, we developed a co-culture system with cells from pontine grey nucleus, the origin of mossy fibres. In these co-cultures, synaptic structures formed, and Kv4.2 was now targeted to these synaptic sites in a manner dependent on synaptic activity. Activation of NMDA- and/or AMPA-type glutamate receptors was necessary for the targeting of Kv4.2 in co-cultures, and activation of these receptor systems in GC monocultures induced dendritic targeting of Kv4.2 in the absence of synapse formation. These results indicate that the proper targeting of Kv4.2 channels is dynamically regulated by synaptic activity. This activity-dependent regulation of Kv4.2 localization provides a crucial yet dynamic link between synaptic activity and dendritic excitability.  相似文献   

14.
Glucocorticoid hormones are released as part of the stress response and regulate secretion by the pituitary. Since the activity of ion channels also influences secretion, we examined the effect of the glucocorticoid agonist dexamethasone on ion channel expression. K+ channel mRNA was detected in rat hypothalamus and anterior pituitary, with probes derived from the rat Kv1 gene, a member of the mammalian voltage-gated K+ channel superfamily. High levels were also detected in PRL-secreting clonal (GH3 and GH4C1) rat pituitary cells. Dexamethasone rapidly increased the steady state concentration of Kv1 mRNA in GH3 cells in a dose-dependent manner. This change in gene expression was accompanied by an increase in whole cell voltage-gated K+ current [lk(i)] with similar pharmacology to the Kv1 gene product. Our findings indicate that hormones may act directly on excitable cells to produce long term effects on electrical activity and secretion by regulating K+ channel expression.  相似文献   

15.
Expression of voltage-gated K(+) channels encoding the K(+) independent transient outward current in the streptozocin-induced diabetic (DM) rat ventricle was studied to determine the basis for slowed cardiac repolarization in diabetes mellitus. Although hypertrophy was not detected in diabetic rats at 12 wk after streptozocin treatment, ventricular Kv4.2 mRNA levels decreased 41% relative to nondiabetic controls. Kv1.4 mRNA levels increased 179% relative to controls, whereas Kv4.3 mRNA levels were unaffected. Immunohistochemistry and Western blot analysis of the diabetic heart showed that the density of the Kv4.2 protein decreased, whereas Kv1.4 protein increased. Thus isoform switching from Kv4.2 to Kv1.4 is most likely the mechanism underlying the slower kinetics of transient outward K(+) current observed in the diabetic ventricle. Brain Kv1.4, Kv4.2, or Kv4.3 mRNA levels were unaffected by diabetes. Myosin heavy chain (MHC) gene expression was altered with a 32% decrease in alpha-MHC mRNA and a 259% increase in beta-MHC mRNA levels in diabetic ventricle. Low-dose insulin-like growth factor-II (IGF-II) treatment during the last 6 of the 12 wk of diabetes (DM + IGF) protected against these changes in MHC mRNAs despite continued hyperglycemia and body weight loss. IGF-II treatment did not change K(+) channel mRNA levels in DM or control rat ventricles. Thus IGF treatment may prevent some, but not all, biochemical abnormalities in the diabetic heart.  相似文献   

16.
Phosphorylation of voltage-gated K+ channels (Kv) is involved in regulation of neuronal excitability, synaptic plasticity and neuronal survival. Among Kv channels expressed in the CNS, Kv1.4 is located in the soma, dendrite and axon terminus of neurones in most regions of the brain. Here, we show that Ser229 found within the highly conserved T1 domain of Kv1.4 in cultured rat cortical neurones is phosphorylated by protein kinase A (PKA), as demonstrated by in vitro protein kinase assay and Western blotting with a polyclonal antibody specific against phosphorylated Ser229. Glutamate, high concentrations of K+ or K+ channel blockers known to increase neurotransmission all stimulated the phosphorylation of Kv1.4 at Ser229 via N-methyl-D-aspartate (NMDA), but not alpha-amino-3-hydroxy-5-methylisoxazole-4-proprionic acid (AMPA) receptor, whereas tetradotoxin (TTX), known to block neuronal transmission, and depletion of extracellular Ca2+ inhibited phosphorylation induced by tetraethylammonium (TEA), a non-selective K+ channel blocker. Mutation of Ser229 to Ala229 enhanced the current density. Taken together, elevation of the neuronal transmission stimulates the phosphorylation of Kv1.4 at Ser229 via the Ca2+ influx through NMDA receptor. Thus, it is possible that neuronal transmission regulates neuronal excitability partially through the phosphorylation of Kv1.4S229.  相似文献   

17.
Kv2.1 is a potassium channel α-subunit abundantly expressed throughout the brain. It is a main component of delayed rectifier current (I(K)) in several neuronal types and a regulator of excitability during high-frequency firing. Here we identify AMIGO (amphoterin-induced gene and ORF), a neuronal adhesion protein with leucine-rich repeat and immunoglobin domains, as an integral part of the Kv2.1 channel complex. AMIGO shows extensive spatial and temporal colocalization and association with Kv2.1 in the mouse brain. The colocalization of AMIGO and Kv2.1 is retained even during stimulus-induced changes in Kv2.1 localization. AMIGO increases Kv2.1 conductance in a voltage-dependent manner in HEK cells. Accordingly, inhibition of endogenous AMIGO suppresses neuronal I(K) at negative membrane voltages. In conclusion, our data indicate AMIGO as a function-modulating auxiliary subunit for Kv2.1 and thus provide new insights into regulation of neuronal excitability.  相似文献   

18.
19.
Shaker-related or Kv1 voltage-gated K(+) channels play critical roles in regulating the excitability of mammalian neurons. Native Kv1 channel complexes are octamers of four integral membrane alpha subunits and four cytoplasmic beta subunits, such that a tremendous diversity of channel complexes can be assembled from the array of alpha and beta subunits expressed in the brain. However, biochemical and immunohistochemical studies have demonstrated that only certain complexes predominate in the mammalian brain, suggesting that regulatory mechanisms exist that ensure plasma membrane targeting of only physiologically appropriate channel complexes. Here we show that Kv1 channels assembled as homo- or heterotetrameric complexes had distinct surface expression characteristics in both transfected mammalian cells and hippocampal neurons. Homotetrameric Kv1.1 channels were localized to endoplasmic reticulum, Kv1.4 channels to the cell surface, and Kv1.2 channels to both endoplasmic reticulum and the cell surface. Heteromeric assembly with Kv1.4 resulted in dose-dependent increases in cell surface expression of coassembled Kv1.1 and Kv1.2, while coassembly with Kv1.1 had a dominant-negative effect on Kv1.2 and Kv1.4 surface expression. Coassembly with Kv beta subunits promoted cell surface expression of each Kv1 heteromeric complex. These data suggest that subunit composition and stoichiometry determine surface expression characteristics of Kv1 channels in excitable cells.  相似文献   

20.
Transient outward K+ currents are particularly important for the regulation of membrane excitability of neurons and repolarization of action potentials in cardiac myocytes. These currents are modulated by PKC (protein kinase C) activation, and the K+- channel subunit Kv4.2 is a major contributor to these currents. Furthermore, the current recorded from Kv4.2 channels expressed in oocytes is reduced by PKC activation. The mechanism underlying PKC regulation of Kv4.2 currents is unknown. In the present study, we determined that PKC directly phosphorylates the Kv4.2 channel protein. In vitro phosphorylation of the intracellular N- and C-termini of Kv4.2 GST (glutathione transferase) tagged fusion protein revealed that the C-terminal of Kv4.2 was phosphorylated by PKC, whereas the N-terminal was not. Amino acid mapping and site-directed mutagenesis revealed that the phosphorylated residues on the Kv4.2 C-terminal were Ser447 and Ser537. A phospho-site-specific antibody showed that phosphorylation at the Ser537 site was increased in the hippocampus in response to PKC activation. Surface biotinylation experiments revealed that mutation to alanine of both Ser447 and Ser537 in order to block phosphorylation at both of the PKC sites increased surface expression compared with wild-type Kv4.2. Electrophysiological recordings of the wild-type and both the alanine and aspartate mutant Kv4.2 channels expressed with KChIP3 (Kv4 channel-interacting protein 3) revealed no significant difference in the half-activation or half-inactivation voltage of the channel. Interestingly, Ser537 lies within a possible ERK (extracellular-signal-regulated kinase)/MAPK (mitogen-activated protein kinase) recognition (docking) domain in the Kv4.2 C-terminal sequence. We found that phosphorylation of Kv4.2 by PKC enhanced ERK phosphorylation of the channel in vitro. These findings suggest the possibility that Kv4.2 is a locus for PKC and ERK cross-talk.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号