首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The physical properties and chemical composition of microsomal membranes were examined during a 7 day period of ice encasement in crown tissue of winter wheat (Triticum aestivum L. cv Norstar). Membrane damage, detected as an increase in microviscosity and electrolyte leakage, began between 1 and 3 days of icing, and was associated with a reduction in the recovery of microsomal membranes from stressed tissue, an increase in the microsomal free fatty acid:total fatty acid ratio, and a decrease in the phospholipid:total fatty acid ratio. These trends were amplified between 3 and 7 days of ice encasement. Examination of the free and total fatty acid fractions showed there was a slight, but not statistically significant (P = 0.05) reduction in the degree of unsaturation of the total fatty acid fraction. The composition of the free and total fatty acid fractions were very similar during ice encasement. Furthermore, analysis of phospholipid classes revealed no significant change in the relative amounts of phosphatidylcholine, phosphatidylethanolamine, phosphatidic acid, or lysophospholipids in microsomal membranes during icing. Membrane injury during ice encasement apparently involves hydrolysis of the ester bond between glycerol and the acyl groups of the phospholipid resulting in loss of the phosphate-containing polar head group and a concomitant accumulation of free fatty acids in the bilayer.  相似文献   

2.
The degree of fatty acid unsaturation and average chain length are closely similar for microsomal membranes from exponential-phase trophozoites and cysts ofAcanthamoeba castellanii despite significant differences in fatty acid composition. The same trend was apparent for total fatty acids extracted from whole cells. The observations suggest that the organism regulates these lipid parameters during differentiation in order to maintain optimum membrane lipid viscosity, and are consistent with previous electron spin resonance measurements indicating that the fluidity of microsomal membranes does not change during encystment. About 75% of the microsomal fatty acids are unsaturated for both cysts and amoebae. Wide-angle X-ray diffraction of phospholipid liposomes prepared from lipid extracts of the membranes has indicted that this high level of unsaturation renders the phospholipid exclusively liquid-crystalline at temperatures as low as 9°C for rough microsomes and-1.5°C for smooth microsomes. Thus, by retaining a high proportion of unsaturated fatty acids throughout its differentiation cycle, the organism gains some protection in its natural soil habitat against lateral phase separation of membrane lipids.  相似文献   

3.
ABSTRACT. Growth of Acanthamoeba castellanii in batch culture at 30° C was associated with marked changes in cellular fatty acid composition. The largest change occurred in the linoleate to oleate ratio, which was maximal in early- to mid-exponential phase cultures but decreased approximately 10-fold as cells approached stationary phase. The higher degree of lipid unsaturation in young cultures was accentuated by a greater proportion of 20-carbon polyunsaturated fatty acids than in stationary phase cultures. The unsaturation index (average number of double bonds per fatty acid) was maximal in mid-exponential phase cultures after 24 hours growth. Incorporation of [1-14C]acetate into polyunsaturated fatty acids in short-term (2 hour) experiments was high in 12 and 24 hour old cultures, where linoleate and eicosadienoate accounted for up to 26% of total labelled fatty acids. Incorporation of [1-14CJacetate into these fatty acids was negligible in stationary phase cultures. These results were correlated with changes in the specific activity of the Δ12-desaturase. Δ12-Desaturase activity was greatest in microsomal membranes isolated from early- to mid-exponential phase cells, but declined by approximately 50% as cultures progressed towards stationary phase. Membrane fractionation studies revealed that although some differences in fatty acid composition between plasma-membrane, mitochondrial (enriched), and microsomal membrane fractions were evident, the large changes in lipid unsaturation in whole cells of A. castellanii could not be accounted for by differential development of particular subcellular membranes.  相似文献   

4.
Microsomal Membrane Changes during the Ripening of Apple Fruit   总被引:7,自引:1,他引:6       下载免费PDF全文
The changes in leakage and viscosity of microsomal membranes from apples (Malus sylvestris cv Calville de San Sauveur) at different stages of ripening were examined. These changes were correlated with those in the lipid composition of the membranes, sterols, phospholipids, and fatty acids of the phospholipids. The greatest changes in membrane properties occurred as the fruit reached its climacteric and this corresponded with a change in the sterol:phospholipid ratio in the membranes. Changes were also found in fatty acid unsaturation level, but primarily in the postclimacteric stage of ripening.  相似文献   

5.
The lipolytic activities of mitochondrial and microsomal fractions ('microsomes') isolated from foetal, suckling and adult rat liver were compared. The catabolism of endogenous phospholipids was followed by measuring the loss of phospholipids and the appearance of non-esterified fatty acids and lysophosphatides. The rate of mitochondrial phospholipid catabolism does not change significantly during development, but the rate of lipolysis of microsomal phospholipids increases 3-fold during development. Balance studies showed that, in mitochondria and microsomes of foetal, suckling and adult rat liver, fatty acid formation is greatly in excess of the fatty acids that can be accounted for by measuring phospholipid disappearance and lysophosphatide appearance. The hypothesis that this excess fatty acid formation resulted from the lipolysis of mitochondrial and microsomal triacylglycerols were tested and confirmed by preliminary experiments. Mitochondria and microsomes isolated from all developmental ages investigated had phospholipases with A1 and A2 activities. The degree of unsaturation of the fatty acids derived from the phospholipids of mitochondria did not vary significantly during development.  相似文献   

6.
The comparative responses of ten spring wheat cultivars to water stress were investigated. Wheat plants were cultured under hydroponics conditions (Hoagland nutrient) to the stage of three-leaf seedlings. Then, the water medium was supplemented with PEG (drought) or NaCl (salinity) to obtain a water status equal to −1.5 MPa. After a 2-day treatment, the changes in the following parameters were determined: fresh and dry weight, macro- and microelement accumulation, membrane injury (electrolyte leakage, lipid peroxidation) and fatty acid content of the phospholipid fraction of plasmalemma (in comparison to plants not stressed, taken as a control). Generally, the plants were more significantly influenced by water stress stimulated by PEG than by NaCl treatment, as compared to the plants cultivated in the control media. The results of the decrease in water content in leaves and electrolyte leakage from cells corresponded well with the intensity of lipid peroxidation (determined by malondialdehyde—MDA-content) and were chosen for the selection of investigated genotypes for tolerance to both stresses. The more tolerant genotypes exhibited the opposite changes in phospholipid fatty acid unsaturation for two applied stresses i.e. NaCl treatment caused a decrease in unsaturation whereas in PEG-treated plants an increase in unsaturation was observed. These changes were reversed for less tolerant plants, i.e. NaCl treatment influenced an increase in fatty acid unsaturation whereas in PEG-treated plants a decrease in unsaturation was measured. The ratio of U/S (unsaturated to saturated fatty acids) correlated with the total amount of accumulated macroelements. The content of Mg, Ca and S in leaves of plants undergoing both stress factors (NaCl and PEG) dropped whereas the K and P content increased in leaves of wheat seedlings cultured on media containing NaCl only. For microelements, a decrease in the accumulation of these nutrients was detected in all investigated seedlings. However, a greater reduction in the level of these elements occurred in seedlings grown on media with PEG in comparison to those grown on NaCl containing media.  相似文献   

7.
The effects of normobaric hyperoxia on both microsomal membrane fluidity and mechanism of phospholipid synthesis in rabbit liver and kidney have been studied. Hyperoxia induces in both organs an impairment of de novo synthesis of glycerolipids which could be due to an inactivation of acyltransferase activities involved in the initial formation of phosphatidic acid. The ability to replace phospholipid fatty acids by reacylation mechanism decreases slightly in the hyperoxic kidney, while it does not change in the hyperoxic liver. Concerning the effect of high arterial pO2 on microsomal membrane fluidity, the hyperoxic liver shows a more fluid environment within the membrane core of microsomes; however, no difference was shown in that of microsomal membrane core of hyperoxic kidney. An insight into the lipid composition of microsomes indicates that liver microsomal membranes have lower cholesterol content and higher unsaturation degree of phospholipid fatty acids, whereas hyperoxic kidney microsomes become more saturated and did not show any difference in their cholesterol content. In both hyperoxic liver and kidney microsomes, phospholipid content decreases in agreement with the depression of phosphatidic acid biosynthesis. These results are discussed in relation to the values of microsomal membrane microviscosity obtained.  相似文献   

8.
Growth of a choline requiring auxotroph of Neurospora crassa on medium lacking exogenous choline produces large changes in the levels of phosphatidylethanolamine and phosphatidylcholine. Whole cell fatty acid distributions were found to vary widely between different phospholipid species of normally growing, choline-supplemented cultures with phosphatidylcholine showing the highest levels of unsaturation and anionic phospholipids and cardiolipin having the lowest. In these lipids, choline deprivation produced little change in fatty acid profiles of phosphatidylethanolamine, whereas changes in fatty acids of phosphatidylcholine and acidic phospholipids resulted in increased levels of unsaturation at both growth temperatures. Microsomal phospholipids also showed fatty acid variability with sharp decreases in phosphatidylcholine unsaturates and increases in acidic phospholipid unsaturated fatty acids at low growth temperatures. Fluorescence polarization of 1,6-diphenylhexatriene in vesicles formed from total cellular and microsomal lipids showed that choline deprivation produces changes in thermotropic properties in the lipids in deprived cultures at either growth temperature. The effective differences in fluorescence polarization between choline-deprived and supplemented cultures grown at a given temperature were found to be comparable to those produced by temperature acclimation in normally growing cultures over a temperature range of 22 K.  相似文献   

9.
Cell membranes and vesicles composed of extracted phospholipids isolated from rats chronically-fed ethanol develop a resistance to disordering by ethanol in vitro (membrane tolerance) and a decreased partitioning of ethanol into the membranes. The anionic lipid phosphatidylinositol (PtdIns) is the only microsomal phospholipid from the ethanol-fed rats that confers tolerance to vesicles of microsomal phospholipids from control rats in a paradigm where phospholipid classes are sequentially swapped. To investigate the molecular basis of this adaptation, the fatty acid content of microsomal PtdIns extracted from the livers of rats chronically fed ethanol for 5 weeks and their calorically-matched controls was analyzed by gas-liquid chromatography (GLC) and 1H-NMR spectroscopy. Chronic ethanol consumption caused an 8.4% decrease in arachidonic acid [20:4(n - 6)], a 20.0% increase in oleic acid [18: 1(n - 9)] and a 47.1% increase in the quantitatively minor fatty acid [20:3(n - 6)]. 1H-NMR was used to quantitatively assay compositional changes in the delta 5 olefinic moiety of the acyl chains in PtdIns, an approach that should be broadly applicable to other lipid systems. After chronic ethanol feeding PtdIns had decreased delta 5 unsaturates (-7.9% NMR, -8.2% GLC) and a corresponding increase in delta 5 saturates (+5.4% NMR, +5.3% GLC). In the other phospholipids, chronic ethanol feeding caused alterations in the fatty acid compositions specific for each phospholipid. PtdIns was the only microsomal phospholipid that exhibited a significant decrease in both the polyunsaturate pool and the ratio of the total olefinic content to the saturated fatty acid content. The major adaptive response in rat liver microsomal PtdIns to chronic ethanol administration involves a decrease in arachidonic acid [20:4 (n - 6)], which is partly compensated for by increases in oleic acid [18:1(n - 9)] and eicosatrienoic acid [20:3 (n - 6)], resulting in a depressed unsaturation and polyunsaturation index. The decreased unsaturation at the delta 5 position may have special functional relevance, due to the proximity of this position to the membrane surface, where ethanol is believed to reside. Whether these acyl changes are merely coincident with, or causative of, membrane tolerance requires further elucidation.  相似文献   

10.
Age-induced changes in cellular membranes of imbibed soybean seed axes   总被引:1,自引:0,他引:1  
The physical and chemical properties of microsomal membranes and cellular antioxidant systems were investigated in imbibed soybean ( Glycine max L. Merr. cv. Maple Arrow) seeds following aging for 5 years at room temperature. The loss of germination capacity in aged seeds was associated with increased solute leakage during imbibition and with a loss of membrane phospholipid. Higher levels of free fatty acids were observed in the microsomal membranes from aged seeds. However, there was no change in fatty acid saturation. Wide angle X-ray diffraction studies indicated the presence of gel phase in addition to liquid-crystalline phase lipid domains in the membranes of aged seeds. Those from fresh seeds were exclusively liquid-crystalline. Fluorescence depolarization, using diphenylhexatriene, suggested that the microviscosity of the membrane bilayer was increased by aging. Aged seeds had a lower antioxidant potential in the lipid fraction, lower tocopherol content, and reduced ascorbate:dehydroxyascorbate ratio indicating that the aging process was associated with exposure to an oxidative stress.  相似文献   

11.
The effects of drought stress and/or low temperature stress on total lipid and phospholipid content and fatty acid composition of leaves of cucumber ( Cucumis sativus L.) genotypes differing in growth response at suboptimal temperature were studied. Both drought and low temperature resulted in reduced growth, especially in cv. Farbio, the genotype least tolerant to low temperature. Drought resulted in an increase in total lipid and phospholipid per g fresh weight. On a lipid basis no change in phospholipids or fatty acid content was observed. The fatty acid composition was changed by drought and low temperature, resulting in an increase in the degree of unsaturation. The genotype-specific reaction to treatment for total lipid content and the degree of unsaturation point to the possibility of a genetic origin for drought-induced lipid changes, which may be used in a breeding program for improved growth at suboptimal temperature.  相似文献   

12.
The relationship between lipid composition, the physical properties of microsomal phospholipids and the kinetics of liver UDP-glucuronyltransferase was studied in microsomes from guinea pigs supplied with a normal or a fat-free diet for 28 days. Fatty acid deficiency did not modify either the cholesterol/phospholipid molar ratio or the polar head group composition, but exclusively redistributed the unsaturated fatty acid pattern, by partially exchanging oleic for linoleic acid. This phenomenon accounts for the decrease of both rotational and translational mobilities of the fluorescent probes 1,6-diphenyl-1,3,5-hexatriene (DPH) and pyrene respectively. When the thermotropic behaviour of the different systems was assessed, no transition temperature (gel-liquid-crystalline) between 10 and 40 degrees C was seen as a consequence of the lower degree of unsaturation, either in the microsomal membranes or in the total lipid or total phospholipid extracts from the treated animals. In spite of this, the polarization ratio of trans-parinaric acid and the fluorescence intensity of merocyanine 540 revealed that a significant lateral phase separation occurred at 20-22 degrees C in the extracted phospholipids, which was smoother in the total lipid fractions and in the native microsomal membranes. Fatty acid deficiency caused an upward shift of the midpoint temperature of the lateral phase separation. Furthermore, the phosphatidylcholine extracted from the 'normal' microsomes showed a lateral phase separation centred at a lower temperature than that extracted from 'fat-deficient' microsomes. In contrast, the Arrhenius plot of UDP-glucuronyltransferase from 'normal' microsomes exhibited a change in slope at a higher temperature than that from treated microsomes. These results would suggest that fatty acid deficiency in guinea-pig liver microsomes, while rigidizing the bulk lipids, would segregate the most unsaturated phosphatidylcholine molecules towards the UDP-glucuronyltransferase microenvironment, in accordance with our previous results with cholesterol incorporation [Castuma & Brenner (1986) Biochemistry 25, 4733-4738].  相似文献   

13.
Differences in the susceptibility of plant membrane lipids to peroxidation   总被引:5,自引:0,他引:5  
Peroxidation of three membrane lipid preparations from plants was initiated using Fe-EDTA and ascorbate and quantified as the production of aldehydes and loss of esterified fatty acids. Using liposomes prepared from commercial soybean asolecithin, the degree of peroxidation was shown to be dependent on: the free radical dose, which was varied by the ascorbate concentration; the presence of tocopherol in the liposome; the configuration, of the liposome, multilamellar or unilamellar; and time after initiation. There were dramatic interactions among these factors which led to the conclusion that in comparing the susceptibility of different membrane preparations it is essential to examine the kinetics of the peroxidation reactions. The composition of the liposome was a major determinant of the degree of peroxidation and of the type of degradative reactions initiated by the oxygen free radicals. A fresh polar lipid extract from Typha pollen had very similar fatty acid composition to the soybean asolecithin, but was more resistant to peroxidation as shown by less aldehyde production and increased retention of unsaturated fatty acids after treatment. Similarly, microsomal membranes from the crowns of non-acclimated and cold acclimated winter wheat (Triticum aestivum L.) seedlings had a much higher linolenic acid content than soybean asolecithin but was much more resistant to peroxidation. In the winter wheat microsomes, the loss of esterified fatty acids was not selective for the unsaturated fatty acids; consequently, even with 40% degradation, the degree of unsaturation in the membrane did not decrease. These different reaction mechanisms which occur in plant membranes may explain why measurements of fatty acid unsaturation fail to detect peroxidative reactions during processes such as senescence, aging and environmental stress.  相似文献   

14.
We studied: (1) concentrations and fatty acid compositions of plasma non-esterified fatty acids, neutral lipids, and phospholipids, and (2) fatty acid composition of flight muscle phospholipids in wintering, premigratory, and spring and fall migrating western sandpipers ( Calidris mauri). Plasma neutral lipid and phospholipid levels were elevated in migrants, reflecting high rates of fat deposition. An important role of phospholipids in fattening is suggested by the fact that the amount of fatty acids in plasma phospholipids was similar to, or in spring as much as twice, that of neutral lipids. Changes in the ratio of plasma neutral lipids to phospholipids may indicate seasonal changes in triacylglycerol stores of invertebrate prey. Monounsaturation and total unsaturation of plasma neutral lipids and phospholipids increased during migration. Muscle phospholipids were more monounsaturated in spring and fall, but total unsaturation was reduced in fall. Arachidonic acid [20:4(n-6)] was especially abundant in muscle phospholipids in winter (29%) and declined during migration (19-22%), contributing to a decline in the ratio of n-6 to n-3 fatty acids. The abundance of plasma phospholipids and variability of neutral lipid to phospholipid ratio indicates that measurement of plasma phospholipids will improve methods for assessment of fattening rates of birds. The functional significance of changes in muscle phospholipids is unclear, but may relate to depletion of essential n-6 fatty acids during exercise.  相似文献   

15.
Summary

The aim of this work was to study the adaptation of enzymatic antioxidant cell defense to the nature of the membrane polyunsaturated fatty acids (PUFA). 3T3 Swiss fibroblasts were grown for 5 days in a medium supplemented with 50 μM linoleic acid (LA) or eicosapentaenoic acid (EPA) and compared t control cells (C). The phospholipid fatty acid content was evaluated: LA were enriched in n-6 PUFA (27.8%) in comparison to C (6.7%) or EPA (5.6%); EPA were enriched in n-3 PUFA (26.2%) in comparison to LA (4.4%) or C (4.6%). The fatty acid double bond index (DBI) increased from C to LA and EPA. The activities of the three key enzymatic antioxidant defenses, SOD, GPx and GST, increased with the degree of unsaturation of the phospholipid fatty acids. In the cells with fatty acids that are very sensitive to oxidative stress, the higher activities of SOD and GPx might act to limit the initiation of lipid peroxidation and the higher activities of GST and GPx to decrease the toxic effects of the various species produced from lipid degradation.  相似文献   

16.
The phospholipid and phospholipid fatty acid content of ram spermatozoa decreased during maturation in the epididymis but interpretation of the results was complicated by a possible seasonal factor. Loss of individual fatty acids was selective, resulting in an increase in unsaturation during maturation. Testicular spermatozoa and fluid collected directly into chloroform-methanol contained about 7 times more neutral lipid fatty acid than testicular spermatozoa collected for 6--18 h, separated from the rete testis fluid and then extracted; the difference was not due to lipid in the rete testis fluid. Thin-layer chromatography indicated that cholesterol esters and triglycerides were the neutral lipids which were not lost during collection. Epididymal spermatozoa contained only slightly less neutral lipid fatty acid than continuously collected testicular spermatozoa.  相似文献   

17.
The relationships of potato (Solanum tuberosum L.) tuber membrane permeability and membrane lipid composition to sugar accumulation were examined. Tubers from four potato cultivars were stored for 40 weeks at 3°C and 9°C. Rates of tuber membrane electrolyte leakage, total fatty acid composition, free fatty acid composition, and sugar content were measured throughout the storage period. Storage of tubers at 3°C caused dramatic increases in total fatty acid unsaturation, membrane permeability, and sugar content compared to tubers stored at 9°C. Cultivars with higher levels of fatty acid unsaturation had lower rates of membrane electrolyte leakage and lower sugar contents. We propose that high initial levels or high induced levels of membrane lipid unsaturation mitigate increases in tuber membrane permeability during storage, thus positively influencing the processing quality of stored potato tubers.  相似文献   

18.
The present study examines the time dependent effects of n-6 and n-3 polyunsaturated fatty acids on liver microsomal lipid metabolism in FVB mice fed a diet supplemented with a mixture of free fatty acids (mainly 18:3n-6 and 20:5n-3) at 25 mg/g diet. Significant changes in the fatty acid composition of total liver and microsomal lipids were observed after 7 days on the diets. Thereafter, some animals remained on the same diet while others were fed a diet supplemented with hydrogenated coconut oil (HCO). With the exception of 20:5n-3 which showed a slower recovery, establishment of the HCO pattern was rapid indicating that the diet-induced changes could be easily reversed. The unsaturation index, the cholesterol/phospholipid ratio and the microviscosity of the microsomal membranes were not affected by these dietary manipulations. Unsaturated fatty acid supplementation reduced the activity of 9 desaturase by 50%. Feeding the HCO diet to mice previously fed the EPA/GLA diet led to a progressive increase in 9 desaturase activity, reaching 80% of the day zero values after 14 days. The monoene content of hepatic total lipids reflected, in most cases, the changes in enzyme activity. This study shows that a low dose of a n-3 and n-6 free fatty acid mixture increases the quantities of members of the n-3 family, without loss of n-6 fatty acids in microsomal membranes and modifies the activity of 9 desaturase without altering the microsome physicochemical parameters.  相似文献   

19.
The membrane lipid composition of Tetrahymena pyriformis NT-I was observed to change in a manner markedly dependent on the progress of culture age. The pellicular, mitochondrial and microsomal membranes were isolated from cell harvested at various growth phases (I, early exponential; II, mid-exponential; III, late exponential; IV, early stationary; V, late stationary) and their lipid composition was analyzed by thin-layer and gas-liquid chromatography. Although the phospholipid composition varied somewhat among membrane fractions, the most general age-dependent alteration was a considerable decrease in the content of phosphatidylethanolamine accompanied by a small increase in phosphatidylcholine. The 2-aminoethylphosphonolipid, enriched in the surface membrane pellicle, did not undergo a consistent change. As for fatty acid composition the most notable variation occurred in unsaturated fatty acids; a great increase in oleic and linoleic acids and a compensatory decrease in palmitoleic acid. This resulted in an augmented unsaturation of the overall phospholipid fatty acid profile of the aged membranes. The age-associated drastic decline in the palmitoleic acid content in membrane phospholipids could be accounted for by the markedly lowered activity of palmitoyl-CoA desaturase. The microsomes from the early exponential phase cells possess a 4-fold higher activity of the desaturase as compared to that of the late stationary phase microsomes. The decreased desaturase activity associated with the culture age was also reflected in the corresponding decrease in the conversion rate of [14C]palmitate to [14C]palmitoleate in cells labelled in vivo. The ESR spectra of the spin-labeled phospholipids extracted from the pellicular and microsomal membranes have led to the suggestion that these types of membrane would become more fluid with the age of growth.  相似文献   

20.
Lipid modifying enzymes play a key role in the development of cold stress tolerance in cold-resistant plants such as cereals. However, little is known about the role of the endogenous enzymes in cold-sensitive species such as cotton. Delta 12 fatty acid desaturases (FAD2), known to participate in adaptation to low temperatures through acyl chain modifications were used in gene expression studies in order to identify parameters of plant response to low temperatures. The induction of microsomal delta 12 fatty acid desaturases at an mRNA level under cold stress in plants is shown here for first time. Quantitative PCR showed that though both delta 12 omega 6 fatty acid desaturase genes FAD2-3 and FAD2-4 identified in cotton are induced under cold stress, FAD2-4 induction is significantly higher than FAD2-3. The induction of both isoforms was light regulated, in contrast a third isoform FAD2-2 was not affected by cold or light. Stress tolerance and light regulatory elements were identified in the predicted promoters of both FAD2-3 and FAD2-4 genes. Di-unsaturated fatty acid species rapidly increased in the microsomal fraction isolated from cotton leaves, following cold stress. Expression analysis patterns were correlated with the observed increase in both total and microsomal fatty acid unsaturation levels suggesting the direct role of the FAD2 genes in membrane adaptation to cold stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号