首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 842 毫秒
1.
Insect outbreaks exert landscape-level influences, yet quantifying the relative contributions of various exogenous and endogenous factors that contribute to their pattern and spread remains elusive. We examine an outbreak of mountain pine beetle covering an 800 thousand ha area on the Chilcotin Plateau of British Columbia, Canada, during the 1970s and early 1980s. We present a model that incorporates the spatial and temporal arrangements of outbreaking insect populations, as well as various climatic factors that influence insect development. Onsets of eruptions of mountain pine beetle demonstrated landscape-level synchrony. On average, the presence of outbreaking populations was highly correlated with outbreaking populations within the nearest 18  km the same year and local populations within 6 km in the previous two years. After incorporating these spatial and temporal dependencies, we found that increasing temperatures contributed to explaining outbreak probabilities during this 15  yr outbreak. During collapse years, landscape-level synchrony declined while local synchrony values remained high, suggesting that in some areas host depletion was contributing to population decline. Model forecasts of outbreak propensity one year in advance at a 12 by 12  km scale provided 80% accuracy over the landscape, and never underestimated the occurrence of locally outbreaking populations. This model provides a flexible approach for linking temperature and insect population dynamics to spatial spread, and complements existing decision support tools for resource managers.  相似文献   

2.
Aim Our aim is to examine the historical breach of the geoclimatic barrier of the Rocky Mountains by the mountain pine beetle (Dendroctonus ponderosae Hopkins). This recent range expansion from west of the North American continental divide into the eastern boreal forest threatens to provide a conduit to naïve pine hosts in eastern North America. We examine the initial expansion events and determine potential mechanism(s) of spread by comparing spread patterns in consecutive years to various dispersal hypotheses such as: (1) meso‐scale atmospheric dispersal of insects from source populations south‐west of the Rocky Mountains in British Columbia (i.e. their historical range), (2) anthropogenic transport of infested plant material, and (3) spread of insect populations across adjacent stands via corridors of suitable habitat. Location British Columbia, Canada. Methods We explore potential mechanism(s) of invasion of the mountain pine beetle using spatial point process models for the initial 3 years of landscape‐level data collection, 2004–2006. Specifically, we examine observed patterns of infestation relative to covariates reflecting various dispersal hypotheses. We select the most parsimonious models for each of the initial 3 years of invasion using information criteria statistics. Results The initial range expansion and invasion of the beetle was characterized by aerial deposition along a strong north‐west to south‐east gradient, with additional aerial deposition and localized dispersal from persisting populations in following years. Main conclusions Following deposition of a wave front of mountain pine beetles parallel to the Rocky Mountains via meso‐scale atmospheric dispersal, the areas of highest intensity of infestations advanced up to 25 km north‐east towards jack pine (Pinus banksiana) habitat in a single year. There appeared to be no association between putative anthropogenic movement of infested materials and initial range expansion of the mountain pine beetle across the continental divide.  相似文献   

3.
Huapeng Chen 《Ecography》2014,37(4):344-356
This study documents the spatiotemporal patterns of mountain pine beetle infestations by applying a novel approach based on a landscape infestation dynamics conceptual model in combination with morphological spatial pattern analysis using the mountain pine beetle infested pine mortality data (1960–2010) collected by the annual British Columbia aerial overview survey. The pattern analysis at the provincial level reveals that the 1980s outbreak did not crash as originally thought. The current outbreak is most likely a result of the progressive buildup of the epidemic infestations during the transition period (1985–1995) under favourable weather conditions and substantially improved host resources. This is also true for the Northeast and Cariboo areas of the province specifically, even though the infestations in the Cariboo area remained at incipient‐epidemic levels during the transition period after the 1980s outbreak crashed in 1985. In the Southeast area, the current outbreak apparently continued from the outbreak that initiated in the late 1970s and early 1980s. The 1980s outbreak originated from multiple spatially separate locations whereas the current outbreak initiated from a single location in Tweedsmuir Provincial Park. The centralized and self‐amplifying buildup of the current outbreak implicates at least three substantial expansions that occurred in 2002, 2006, and 2008. This study suggests that at the provincial level, as well as for the Northeast and Southeast areas of the province, the current outbreak is declining but most likely will continue for many years given the ongoing and future warming climate and a large proportion of pines that remain in the habitats of mountain pine beetles. This study also suggests that dispersals, particularly long‐distance dispersal, may play a key role in driving the spread and expansion of the current outbreak although uncertainty remains due to the local dynamics of the beetle populations.  相似文献   

4.
Aim The spatial extent of western Canada’s current epidemic of mountain pine beetle, Dendroctonus ponderosae Hopkins (Coleoptera: Curculionidae, Scolytinae), is increasing. The roles of the various dispersal processes acting as drivers of range expansion are poorly understood for most species. The aim of this paper is to characterize the movement patterns of the mountain pine beetle in areas where range expansion is occurring, in order to describe the fine‐scale spatial dynamics of processes associated with mountain pine beetle range expansion. Location Three regions of Canada’s Rocky Mountains: Kicking Horse Pass, Yellowhead Pass and Pine Pass. Methods Data on locations of mountain pine beetle‐attacked trees of predominantly lodgepole pine (Pinus contorta var. latifolia) were obtained from annual fixed‐wing aircraft surveys of forest health and helicopter‐based GPS surveys of mountain pine beetle‐damaged areas in British Columbia and Alberta. The annual (1999–2005) spatial extents of outbreak ranges were delineated from these data. Spatial analysis was conducted using the spatial–temporal analysis of moving polygons (STAMP), a recently developed pattern‐based approach. Results We found that distant dispersal patterns (spot infestations) were most often associated with marginal increases in the areal size of mountain pine beetle range polygons. When the mountain pine beetle range size increased rapidly relative to the years examined, local dispersal patterns (adjacent infestation) were more common. In Pine Pass, long‐range dispersal (> 2 km) markedly extended the north‐east border of the mountain pine beetle range. In Yellowhead Pass and Kicking Horse Pass, the extension of the range occurred incrementally via ground‐based spread. Main conclusions Dispersal of mountain pine beetle varies with geography as well as with host and beetle population dynamics. Although colonization is mediated by habitat connectivity, during periods of low overall habitat expansion, dispersal to new distant locations is common, whereas during periods of rapid invasion, locally connected spread is the dominant mode of dispersal. The propensity for long‐range transport to establish new beetle populations, and thus to be considered a driver of range expansion, is likely to be determined by regional weather patterns, and influenced by local topography. We conclude that STAMP appears to be a useful approach for examining changes in biogeograpical ranges, with the potential to reveal both fine‐ and large‐scale patterns.  相似文献   

5.
Climate change can markedly impact biology, population ecology, and spatial patterns of eruptive insects due to the direct influence of temperature on insect development and population success. The mountain pine beetle Dendroctonus ponderosae (Coleoptera: Curculionidae), is a landscape‐altering insect that infests forests of North America. Abundant availability of host trees due to altered disturbance regimes has facilitated an unprecedented, landscape‐wide outbreak of this pest in British Columbia and Alberta, Canada, during the past decade. A previous outbreak in the 1980s, in central British Columbia, collapsed due to host depletion and extreme cold weather events. Despite the importance of such extreme weather events and other temperature‐related signals in modulating an outbreak, few landscape‐level models have studied the associations of extreme cold events with outbreak occurrences. We studied the individual associations of several biologically‐relevant cold temperature variables, and other temperature/degree‐day terms, with outbreak occurrences in a spatial‐temporal logistic regression model using data from the current outbreak. Timing, frequency, and duration of cold snaps had a severe negative association with occurrence of an outbreak in a given area. Large drops in temperature (>10°C) or extreme winter minimum temperatures reduced the outbreak probability. We then used the model to apply eight different climate change scenarios to the peak year of the current outbreak. Our scenarios involved combinations of increasing annual temperature and different variances about this trend. Our goal was to examine how spatial outbreak pattern would have changed in the face of changing thermal regime if the underlying outbreak behaviour remained consistent. We demonstrate that increases in mean temperature by 1°C to 4°C profoundly increased the risk of outbreaks with effects first being manifested at higher elevations and then at increasing latitudes. However, increasing the variance associated with a mean temperature increase did not change the overall trend in outbreak potential.  相似文献   

6.
Environmental change has a wide range of ecological consequences, including species extinction and range expansion. Many studies have shown that insect species respond rapidly to climatic change. A mountain pine beetle epidemic of record size in North America has led to unprecedented mortality of lodgepole pine, and a significant range expansion to the northeast of its historic range. Our goal was to determine the spatial genetic variation found among outbreak population from which genetic structure, and dispersal patterns may be inferred. Beetles from 49 sampling locations throughout the outbreak area in western Canada were analysed at 13 microsatellite loci. We found significant north-south population structure as evidenced by: (i) Bayesian-based analyses, (ii) north-south genetic relationships and diversity gradients; and (iii) a lack of isolation-by-distance in the northernmost cluster. The north-south structure is proposed to have arisen from the processes of postglacial colonization as well as recent climate-driven changes in population dynamics. Our data support the hypothesis of multiple sources of origin for the outbreak and point to the need for population specific information to improve our understanding and management of outbreaks. The recent range expansion across the Rocky Mountains into the jack/lodgepole hybrid and pure jack pine zones of northern Alberta is consistent with a northern British Columbia origin. We detected no loss of genetic variability in these populations, indicating that the evolutionary potential of mountain pine beetle to adapt has not been reduced by founder events. This study illustrates a rapid range-wide response to the removal of climatic constraints, and the potential for range expansion of a regional population.  相似文献   

7.
Since 2010, several moose (Alces alces) populations have declined across North America. These declines are believed to be broadly related to climate and landscape change. At the western reaches of moose continental range, in the interior of British Columbia, Canada, wildlife managers have reported widespread declines of moose populations. Disturbances to forests from a mountain pine beetle (Dendroctonum ponderosae) outbreak and associated salvage logging infrastructure in British Columbia are suspected as a mechanism manifested in moose behavior and habitat selection. We examined seasonal differences in moose habitat selection in response to landscape change from mountain pine beetle salvage logging infrastructure: dense road networks and large intensive forest harvest cutblocks. We used 157,447 global positioning system locations from 83 adult female moose from 2012 to 2016 on the Bonaparte Plateau at the southern edge of the Interior Plateau of central British Columbia to test whether increased forage availability, landscape features associated with increased mortality risk, or the cumulative effects of salvage logging best explain female moose distribution using resource selection functions in an information-theoretic framework. We tested these hypotheses across biological seasons, defined using a cluster analysis framework. The cumulative effects of forage availability and risk best predicted resource selection of female moose in all seasons; however, the covariates included in the cumulative models varied between seasons. The top forage availability model better explained moose habitat use than the top risk model in all seasons, except for the calving and fall seasons where the top risk model (distance to road) better predicted moose space use. Selection of habitat that provides forage in winter, spring, and summer suggests that moose seasonally trade predation risk for the benefits of foraging in early seral vegetation communities in highly disturbed landscapes. Our results identified the need for intensive landscape-scale management to stem moose population declines. Additional research is needed on predator densities, space use, and calf survival in relation to salvage logging infrastructure. © 2020 The Wildlife Society.  相似文献   

8.
The largest forest pest epidemic in Canadian history caused by the mountain pine beetle (MPB) and its fungal associates has killed over 15 million hectares of forest. Sixty simple sequence repeat regions were identified from Grosmannia clavigera, an MPB associated fungus. Eight loci genotyped in 53 isolates from two populations in British Columbia, Canada revealed three to 10 alleles per locus and gene diversities of 0 to 0.79. All but two of these loci showed length polymorphism in Leptographium longiclavatum, a related MPB fungal associate. These microsatellites will be useful in population genetic studies of these fungi.  相似文献   

9.
Aim Bark beetle outbreaks have recently affected extensive areas of western North American forests, and factors explaining landscape patterns of tree mortality are poorly understood. The objective of this study was to determine the relative importance of stand structure, topography, soil characteristics, landscape context (the characteristics of the landscape surrounding the focal stand) and beetle pressure (the abundance of local beetle population eruptions around the focal stand a few years before the outbreak) to explain landscape patterns of tree mortality during outbreaks of three species: the mountain pine beetle, which attacks lodgepole pine and whitebark pine; the spruce beetle, which feeds on Engelmann spruce; and the Douglas‐fir beetle, which attacks Douglas‐fir. A second objective was to identify common variables that explain tree mortality among beetle–tree host pairings during outbreaks. Location Greater Yellowstone ecosystem, Wyoming, USA. Methods We used field surveys to quantify stand structure, soil characteristics and topography at the plot level in susceptible stands of each forest type showing different severities of infestation (0–98% mortality; n= 129 plots). We then used forest cover and beetle infestation maps derived from remote sensing to develop landscape context and beetle pressure metrics at different spatial scales. Plot‐level and landscape‐level variables were used to explain outbreak severity. Results Engelmann spruce and Douglas‐fir mortality were best predicted using landscape‐level variables alone. Lodgepole pine mortality was best predicted by both landscape‐level and plot‐level variables. Whitebark pine mortality was best – although poorly – predicted by plot‐level variables. Models including landscape context and beetle pressure were much better at predicting outbreak severity than models that only included plot‐level measures, except for whitebark pine. Main conclusions Landscape‐level variables, particularly beetle pressure, were the most consistent predictors of subsequent outbreak severity within susceptible stands of all four host species. These results may help forest managers identify vulnerable locations during ongoing outbreaks.  相似文献   

10.
Warmer climates are predicted to increase bark beetle outbreak frequency, severity, and range. Even in favorable climates, however, outbreaks can decelerate due to resource limitation, which necessitates the inclusion of competition for limited resources in analyses of climatic effects on populations. We evaluated several hypotheses of how climate impacts mountain pine beetle reproduction using an extensive 9‐year dataset, in which nearly 10,000 trees were sampled across a region of approximately 90,000 km2, that was recently invaded by the mountain pine beetle in Alberta, Canada. Our analysis supports the hypothesis of a positive effect of warmer winter temperatures on mountain pine beetle overwinter survival and provides evidence that the increasing trend in minimum winter temperatures over time in North America is an important driver of increased mountain pine beetle reproduction across the region. Although we demonstrate a consistent effect of warmer minimum winter temperatures on mountain pine beetle reproductive rates that is evident at the landscape and regional scales, this effect is overwhelmed by the effect of competition for resources within trees at the site level. Our results suggest that detection of the effects of a warming climate on bark beetle populations at small spatial scales may be difficult without accounting for negative density dependence due to competition for resources.  相似文献   

11.
Assessments of population genetic structure and demographic history have traditionally been based on neutral markers while explicitly excluding adaptive markers. In this study, we compared the utility of putatively adaptive and neutral single‐nucleotide polymorphisms (SNPs) for inferring mountain pine beetle population structure across its geographic range. Both adaptive and neutral SNPs, and their combination, allowed range‐wide structure to be distinguished and delimited a population that has recently undergone range expansion across northern British Columbia and Alberta. Using an equal number of both adaptive and neutral SNPs revealed that adaptive SNPs resulted in a stronger correlation between sampled populations and inferred clustering. Our results suggest that adaptive SNPs should not be excluded prior to analysis from neutral SNPs as a combination of both marker sets resulted in better resolution of genetic differentiation between populations than either marker set alone. These results demonstrate the utility of adaptive loci for resolving population genetic structure in a nonmodel organism.  相似文献   

12.
Principal components analysis, followed by K-means cluster analysis, was used to detect variations in the timing and magnitude of Pinus contorta Dough ex Loud. growth releases attributed to mountain pine beetle outbreaks in 31 stands of central British Columbia. Four major growth release patterns were identified from 1970 to 2000. Variations in the timing of growth releases among clustered stands corresponded well to aerial survey data indicating the timing of beetle outbreaks in the study area. Redundancy analysis was used to determine how variations in the timing and magnitude of growth releases attributed to beetle outbreaks changed with variations in climate or stand conditions over the study area. The first RDA axis, which accounted for 39% of the variations in growth patterns among stands, was significantly (P〈0.05) correlated with gradients in the percentage of pine in stands killed by mountain pine beetle, summer aridity, variation in summer precipitation, distance from initial infestation site, average pine age, and maximum August temperatures. The second RDA axis explained 6% of the variations and was significantly correlated with gradients in the beetle climate suitability index, extreme cold month temperatures, and site index. Comparisons of growth release patterns with aerial survey data and redundancy analyses indicated that dendrochronological techniques are useful for identifying mountain pine beetle outbreaks in central British Columbia, particularly among stands that had a density high enough to produce a growth release signal. Provided future studies account for interannual weather fluctuations, identification of growth increases due to stand thinning caused by beetle outbreaks will be useful for reconstructing the history of beetle outbreaks over much longer time periods.  相似文献   

13.
Mountain pine beetle, Dendroctonus ponderosae Hopkins (Coleoptera: Curculionidae, Scolytinae), is a significant forest disturbance agent with a widespread distribution in western North America. Population success is influenced by temperatures that drive phenology and ultimately the adult emergence synchrony required to mass attack and kill host trees during outbreaks. In addition to lifestage‐specific developmental rates and thresholds, oviposition timing can be a source of variance in adult emergence synchrony, and is a critical aspect of mountain pine beetle phenology. Adaptation to local climates has resulted in longer generation times in southern compared to northern populations in common gardens, and the role of oviposition rate in these differences is unclear. Oviposition rates and fecundity in a northern population have been described, although data are lacking for southern populations. We assessed southern mountain pine beetle oviposition rates and fecundity in a range of temperatures using a non‐destructive technique that included frequent X‐ray imaging. We found that oviposition rate and fecundity vary independently such that a female with high oviposition rate did not necessarily have high fecundity and vice versa. Observed fecundity within the 30‐day experimental period was lowest at the lowest temperature, although estimated potential fecundity did not differ among temperatures. Females at varying temperatures have the potential to lay similar numbers of eggs, although it will take longer at lower temperatures. Southern mountain pine beetle reared in Pinus strobiformis Engelm. (Pinaceae) had a higher upper threshold for oviposition, a similar lower threshold, and slightly greater potential fecundity compared to a northern population reared in Pinus contorta Douglas. A comparison of modeled oviposition rates between the two populations, which could be influenced by host tree, suggests that differences in oviposition rate do not explain observed differences in total generation time. Our oviposition model will facilitate development of a phenology model for southern mountain pine beetle populations.  相似文献   

14.
Aim To understand how the biophysical environment influences patterns of infection by non‐native blister rust (caused by Cronartium ribicola) and mortality caused by native mountain pine beetles (Dendroctonus ponderosae) in whitebark pine (Pinus albicaulis) communities, to determine how these disturbances interact, and to gain insight into how climate change may influence these patterns in the future. Location High‐elevation forests in south‐west Montana, central Idaho, eastern and western Oregon, USA. Methods Stand inventory and dendroecological methods were used to assess stand structure and composition and to reconstruct forest history at sixty 0.1‐ha plots. Patterns of blister rust infection and mountain pine beetle‐caused mortality in whitebark pine trees were examined using nonparametric Kruskal–Wallis ANOVA, Mann–Whitney U‐tests, and Kolmogorov–Smirnov two‐sample tests. Stepwise regression was used to build models of blister rust infection and mountain pine beetle‐related mortality rates based on a suite of biophysical site variables. Results Occurrence of blister rust infections was significantly different among the mountain ranges, with a general gradient of decreasing blister rust occurrence from east to west. Evidence of mountain pine beetle‐caused mortality was identified on 83% of all dead whitebark pine trees and was relatively homogenous across the study area. Blister rust infected trees of all ages and sizes uniformly, while mountain pine beetles infested older, larger trees at all sites. Stepwise regressions explained 64% and 58% of the variance in blister rust infection and beetle‐caused mortality, respectively, indicating that these processes are strongly influenced by the biophysical environment. More open stand structures produced by beetle outbreaks may increase the exposure of surviving whitebark pine trees to blister rust infection. Main conclusions Variability in the patterns of blister rust infection and mountain pine beetle‐caused mortality elucidated the fundamental dynamics of these disturbance agents and suggests that the effects of climate change will be complex in whitebark pine communities and vary across the species’ range. Interactions between blister rust and beetle outbreaks may accelerate declines or facilitate the rise of rust resistance in whitebark pine depending on forest conditions at the time of the outbreak.  相似文献   

15.
Principal components analysis, followed by K-means cluster analysis, was used to detect variations in the timing and magnitude of Pinus contorta Dougl. ex Loud. growth releases attributed to mountain pine beetle outbreaks in 31 stands of central British Columbia. Four major growth release patterns were identified from 1970 to 2000.Variations in the timing of growth releases among clustered stands corresponded well to aerial survey data indicating the timing of beetle outbreaks in the study area. Redundancy analysis was used to determine how variations in the timing and magnitude of growth releases attributed to beetle outbreaks changed with variations in climate or stand conditions over the study area. The first RDA axis, which accounted for 39% of the variations in growth patterns among stands, was significantly (P<0.05) correlated with gradients in the percentage of pine in stands killed by mountain pine beetle, summer aridity, variation in summer precipitation, distance from initial infestation site, average pine age, and maximum August temperatures. The second RDA axis explained 6% of the variations and was significantly correlated with gradients in the beetle climate suitability index, extreme cold month temperatures, and site index. Comparisons of growth release patterns with aerial survey data and redundancy analyses indicated that dendrochronological techniques are useful for identifying mountain pine beetle outbreaks in central British Columbia, particularly among stands that had a density high enough to produce a growth release signal. Provided future studies account for interannual weather fluctuations, identification of growth increases due to stand thinning caused by beetle outbreaks will be useful for reconstructing the history of beetle outbreaks over much longer time periods.  相似文献   

16.
1. The relationship between occupancy and spatial contagion during the spread of eruptive and invasive species demands greater study, as it could lead to improved prediction of ecosystem damage. 2. We applied a recently developed model that links occupancy and its fractal dimension to model the spatial distribution of mountain pine beetle infestations in British Columbia, Canada. We showed that the distribution of infestation was scale-invariant in at least 24 out of 37 years (mostly in epidemic years), and presented some degree of scale-invariance in the rest. There was a general logarithmic relationship between fractal dimension and infestation occupancy. Based on the scale-invariance assumption, we further assessed the interrelationships for several landscape metrics, such as correlation length, maximum cluster size, total edge length and total number of clusters. 3. The scale-invariance assumption allows fitting the above metrics, and provides a framework to establish the scaling relationship between occupancy and spatial contagion. 4. We concluded that scale-invariance dominates the spread of mountain pine beetle. In this context, spatial aggregation can be predicted from occupancy, hence occupancy is the only variable one needs to know in order to predict the spatial distributions of populations. This supports the hypothesis that fractal dispersal kernels may be abundant among outbreaks of pests and invasive species.  相似文献   

17.
Principal components analysis, followed by K-means cluster analysis, was used to detect variations in the timingand magnitude of Pinus contorfa Dougl. ex Loud. growth releases attributed to mountain pine beetle outbreaks in31 stands of central British Columbia. Four major growth release patterns were identified from 1970 to 2000.Variations in the timing of growth releases among clustered stands corresponded well to aerial survey dataindicating the timing of beetle outbreaks in the study area. Redundancy analysis was used to determine howvariations in the timing and magnitude of growth releases attributed to beetle outbreaks changed with variationsin climate or stand conditions over the study area. The first RDA axis, which accounted for 39% of the variations ingrowth patterns among stands, was significantly (P<0.05) correlated with gradients in the percentage of pine instands killed by mountain pine beetle, summer aridity, variation in summer precipitation, distance from initialinfestation site, average pine age, and maximum August temperatures. The second RDA axis explained 6% of thevariations and was significantly correlated with gradients in the beetle climate suitability index, extreme coldmonth temperatures, and site index. Comparisons of growth release patterns with aerial survey data and redun-dancy analyses indicated that dendrochronological techniques are useful for identifying mountain pine beetleoutbreaks in central British Columbia, particularly among stands that had a density high enough to produce agrowth release signal. Provided future studies account for interannual weather fluctuations, identification ofgrowth increases due to stand thinning caused by beetle outbreaks will be useful for reconstructing the history ofbeetle outbreaks over much longer time periods.  相似文献   

18.
ABSTRACT To better understand distribution and density of fishers (Martes pennanti) in industrial forests of north-central British Columbia, Canada, we examined factors affecting the probability of a potential home range being occupied by 10 radiotagged resident fishers in the Sub-Boreal Spruce biogeoclimatic zone between 1996 and 2000. Percentage of a home range in wetlands and recently logged (within past 12 yr) best predicted likelihood of occupancy by each fisher. Probability of a home range area being occupied by a resident fisher decreased with increasing amounts of wetlands and recent logging present in the area. We estimated that a 5% increase in wetlands or recent logging decreased the relative probability of occupancy of a potential home range by 50%. The accelerated rate of timber harvest in forests affected by mountain pine beetle (Dendroctonus ponderosae) infestations may have substantial implications for the ability of the landscape of central British Columbia to support sustainable populations of fishers.  相似文献   

19.
Climate change and the outbreak ranges of two North American bark beetles   总被引:2,自引:0,他引:2  
Abstract
  • 1 One expected effect of global climate change on insect populations is a shift in geographical distributions toward higher latitudes and higher elevations. Southern pine beetle Dendroctonus frontalis and mountain pine beetle Dendroctonus ponderosae undergo regional outbreaks that result in large‐scale disturbances to pine forests in the south‐eastern and western United States, respectively.
  • 2 Our objective was to investigate potential range shifts under climate change of outbreak areas for both bark beetle species and the areas of occurrence of the forest types susceptible to them.
  • 3 To project range changes, we used discriminant function models that incorporated climatic variables. Models to project bark beetle ranges employed changed forest distributions as well as changes in climatic variables.
  • 4 Projected outbreak areas for southern pine beetle increased with higher temperatures and generally shifted northward, as did the distributions of the southern pine forests.
  • 5 Projected outbreak areas for mountain pine beetle decreased with increasing temperature and shifted toward higher elevation. That trend was mirrored in the projected distributions of pine forests in the region of the western U.S. encompassed by the study.
  • 6 Projected outbreak areas for the two bark beetle species and the area of occurrence of western pine forests increased with more precipitation and decreased with less precipitation, whereas the area of occurrence of southern pine forests decreased slightly with increasing precipitation.
  • 7 Predicted shifts of outbreak ranges for both bark beetle species followed general expectations for the effects of global climate change and reflected the underlying long‐term distributional shifts of their host forests.
  相似文献   

20.
British Columbia (BC) forests are estimated to have become a net carbon source in recent years due to tree death and decay caused primarily by mountain pine beetle (MPB) and related post‐harvest slash burning practices. BC forest biomass has also become a major source of wood pellets, exported primarily for bioenergy to Europe, although the sustainability and net carbon emissions of forest bioenergy in general are the subject of current debate. We simulated the temporal carbon balance of BC wood pellets against different reference scenarios for forests affected by MPB in the interior BC timber harvesting area using the Carbon Budget Model of the Canadian Forest Sector (CBM‐CFS3). We evaluated the carbon dynamics for different insect‐mortality levels, at the stand‐ and landscape level, taking into account carbon storage in the ecosystem, wood products and fossil fuel displacement. Our results indicate that current harvesting practices, in which slash is burnt and only sawdust used for pellet production, require between 20–25 years for beetle‐impacted pine and 37–39 years for spruce‐dominated systems to reach pre‐harvest carbon levels (i.e. break‐even) at the stand‐level. Using pellets made from logging slash to replace coal creates immediate net carbon benefits to the atmosphere of 17–21 tonnes C ha?1, shortening these break‐even times by 9–20 years and resulting in an instant carbon break‐even level on stands most severely impacted by the beetle. Harvesting pine dominated sites for timber while using slash for bioenergy was also found to be more carbon beneficial than a protection reference scenario on both stand‐ and landscape level. However, harvesting stands exclusively for bioenergy resulted in a net carbon source unless the system contained a high proportion of dead trees (>85%). Systems with higher proportions of living trees provide a greater climate change mitigation if used for long lived wood products.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号