首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 365 毫秒
1.
Interaction between cell surface integrin receptors and extracellular matrix (ECM) components plays an important role in cell survival, proliferation, and migration, including tumor development and invasion of tumor cells. Matrix metalloproteinases (MMPs) are a family of metalloproteinases capable of digesting ECM components and are important molecules for cell migration. Binding of ECM to integrins initiates cascades of cell signaling events modulating expression and activity of different MMPs. The aim of this study is to investigate fibronectin–integrin-mediated signaling and modulation of MMPs. Our findings indicated that culture of human cervical cancer cell (SiHa) on fibronectin-coated surface perhaps sends signals via fibronectin–integrin-mediated signaling pathways recruiting focal adhesion kinase (FAK) extracellular signal regulated kinase (ERK), phosphatidyl inositol 3 kinase (PI-3K), integrin-linked kinase (ILK), nuclear factor-kappa B (NF-κB), and modulates expression and activation of mainly pro-MMP-9, and moderately pro-MMP-2 in serum-free culture medium.  相似文献   

2.
Matrix metalloproteinases (MMPs) degrade the extracellular matrix (ECM) and play critical roles in tissue repair, tumor invasion, and metastasis. MMPs are regulated by different cytokines, ECM proteins, and other factors. However, the molecular mechanisms by which osteopontin (OPN), an ECM protein, regulates ECM invasion and tumor growth and modulates MMP activation in B16F10 cells are not well defined. We have purified OPN from human milk and shown that OPN induces pro-MMP-2 production and activation in these cells. Moreover, our data revealed that OPN-induced membrane type 1 (MT1) MMP expression correlates with translocation of p65 (nuclear factor-kappaB (NF-kappaB)) into the nucleus. However, when the super-repressor form of IkappaBalpha (inhibitor of NF-kappaB) was transfected into cells followed by treatment with OPN, no induction of MT1-MMP expression was observed, indicating that OPN activates pro-MMP-2 via an NF-kappaB-mediated pathway. OPN also enhanced cell migration and ECM invasion by interacting with alpha(v)beta(3) integrin, but these effects were reduced drastically when the MMP-2-specific antisense S-oligonucleotide was used to suppress MMP-2 expression. Interestingly, when the OPN-treated cells were injected into nude mice, the mice developed larger tumors, and the MMP-2 levels in the tumors were significantly higher than in controls. The proliferation data indicate that OPN increases the growth rate in these cells. Both tumor size and MMP-2 expression were reduced dramatically when anti-MMP-2 antibody or antisense S-oligonucleotide-transfected cells were injected into the nude mice. To our knowledge, this is the first report that MMP-2 plays a direct role in OPN-induced cell migration, invasion, and tumor growth and that demonstrates that OPN-stimulated MMP-2 activation occurs through NF-kappaB-mediated induction of MT1-MMP.  相似文献   

3.
Controlled degradation of extracellular matrix (ECM) is essential in many physiological situations including developmental tissue remodeling, angiogenesis, tissue repair, and normal turnover of ECM. In addition, degradation of matrix components is an important feature of tumor growth, invasion, metastasis, and tumor-induced angiogenesis. Matrix metallo-proteinases (MMPs) are a family of zinc-dependent neutral endopeptidases, which are collectively capable of degrading essentially all ECM components. MMPs apparently play an important role in all the above mentioned aspects of tumor development. In addition, there is recent evidence that MMP activity is required for tumor cell survival. At present, several MMP inhibitors are in clinical trials of malignant tumors of different histogenetic origin. In this review we discuss the current view on the role of MMPs and their inhibitors in development and invasion of squamous cell carcinomas, as a basis for prognostication and therapeutic intervention in these tumors.  相似文献   

4.
Regulation of matrix metalloproteinase expression in tumor invasion.   总被引:87,自引:0,他引:87  
  相似文献   

5.
The breakdown of the extracellular matrix (ECM) by proteinases is an essential step in the process of cancer invasion and metastasis. Malignant progression is frequently associated with upregulated production and/or activity of one or several ECM degrading proteinases. Prominent among them are the matrix metalloproteinases (MMPs). The MMPs constitute a family of structurally related, zinc-dependent endopeptidases collectively capable of degrading essentially all the components of the extracellular matrix. At present, 23 members of the human MMP gene family are known. The increased expression and/or activity of one or more members of this family have been documented in essentially all human malignancies and some have been implicated in the process of angiogenesis. Prominent among those are MMP-2 and MT1-MMP, two metalloproteinases that form a cell membrane-associated complex leading to MMP-2 activation and ECM proteolysis. Here, we review our data that identified the type 1 insulin-like growth factor receptor (IGF-IR) as a regulator of tumor invasion and the synthesis of MT1-MMP and MMP-2 and report on the signal transduction pathways that mediate this regulation. These findings are discussed in the context of a broader review of the role of the IGF-IR/IGF axis in the regulation of tumor invasion and metastasis.  相似文献   

6.
The degradation of extracellular matrix (ECM) during physio-pathological processes involves, essentially, two proteolytic systems: the plasmin (ogen) system and the matrix metalloproteinase (MMP) family. Enzyme activity necessitates the formation of proteolytic cascades acting in the pericellular environment. Several proteins (proteases, integrins, matrix, inhibitors, activators...) participate to enzyme catalysis forming assemblies within specialized plasma membrane structures (invadopodia, caveolae). MMP-mediated ECM degradation leads to the formation of peptides (matricryptins, matrikins) which, in turn, can modulate MMP expression. MMPs (especially gelatinases) can also activate growth factors as pro TGF beta or liberate those factors from matrix sites. Interaction between matrix and gelatinases was shown to influence enzyme activation through several mechanisms. Finally, thrombospondins 1 and 2, matricellular proteins, can regulate gelatinase A by favoring its endocytosis. Those data emphasize the potential interest of certain matrikins or pseudo-matrikins as therapeutic agents to control cell invasion.  相似文献   

7.
Matrix metalloproteinase-mediated degradation of extracellular matrix is a crucial event for invasion and metastasis of malignant cells. The expressions of matrix metalloproteinases (MMPs) are regulated by different cytokines and growth factors. VEGF, a potent angiogenic cytokine, induces invasion of ovarian cancer cells through activation of MMPs. Here, we demonstrate that invasion and scattering in SKOV-3 cells were induced by VEGF through the activation of p38 MAPK and PI3K/AKT pathways. VEGF induced the expression of MMP-2, MMP-9, and MMP-13 and hence regulated the metastasis of SKOV-3 ovarian cancer cells, and the activities of these MMPs were reduced after inhibition of PI3K/AKT and p38 MAPK pathways. Interestingly, VEGF induced expression of ETS-1 factor, an important trans-regulator of different MMP genes. ETS-1 bound to both MMP-9 and MMP-13 promoters. Furthermore, VEGF acted through its receptor to perform the said functions. In addition, VEGF-induced MMP-9 and MMP-13 expression and in vitro cell invasion were significantly reduced after knockdown of ETS-1 gene. Again, VEGF-induced MMP-9 and MMP-13 promoter activities were down-regulated in ETS-1 siRNA-transfected cells. VEGF enriched ETS-1 in the nuclear fraction in a dose-dependent manner. VEGF-induced expression of ETS-1 and its nuclear localization were blocked by specific inhibitors of the PI3K and p38 MAPK pathways. Therefore, based on these observations, it is hypothesized that the activation of PI3K/AKT and p38 MAPK by VEGF results in ETS-1 gene expression, which activates MMP-9 and MMP-13, leading to the invasion and scattering of SKOV-3 cells. The study provides a mechanistic insight into the prometastatic functions of VEGF-induced expression of relevant MMPs.  相似文献   

8.
9.
Metalloproteinases (MMPs) are a cluster of at least 23 enzymes belonging to the more wide family of endopeptidases called Metzincins, whose structure is characterized by the presence of a zinc ion at the catalytic site. Although the general view of MMPs as physiologic scissors involved in extracellular matrix (ECM) degradation and tissue remodeling is still valid, additional functions have recently emerged, including the ability to cleave non ECM molecules such as growth factors, cytokines and chemokines from their membrane-anchored proforms. These functions are utilized by tumor cells and are fundamental in the determination of tumor progression and invasion. The effect of MMPs activity in cancer progression has been traditionally associated with the acquisition by tumor cells of an invasive phenotype, an indispensable requisite for the metastatic spreading of cancer cells. In addition to the traditional view, a new role for MMPs in creating a favourable microenvironment has been proposed, so that MMPs are not only involved in cell invasion, but also in signaling pathways that control cell growth, inflammation, or angiogenesis. Finally, recent evidence suggest a role of MMPs in the so called "pre-metastatic niche" that is the hypothesis of an early distant modification of the premetastatic site by primary cancer cells. This new hypothesis is changing our traditional view about MMPs and provides important insights into the effective time window for the therapeutic use of MMP inhibitors. In this review we provide the main available data about the ability of MMPs in creating a suitable microenvironment for tumor growth in metastatic sites and we indicate the implication of these data on the potential use of MMP inhibitors in the metastatic therapy.  相似文献   

10.
Matrix metalloproteinases (MMPs) are a superfamily of Zn2+‐dependent proteases that are capable of cleaving the proteinaceous component of the extracellular matrix (ECM). The ECM is a critical medium for cell–cell interactions and can also directly signal cells through cell surface ECM receptors, such as integrins. In addition, many growth factors and signaling molecules are stored in the ECM. Thus, ECM remodeling and/or degradation by MMPs are expected to affect cell fate and behavior during many developmental and pathological processes. Numerous studies have shown that the expression of MMP mRNAs and proteins associates tightly with diverse developmental and pathological processes, such as tumor metastasis and mammary gland involution. In vivo evidence to support the roles of MMPs in these processes has been much harder to get. Here, we will review some of our studies on MMP11, or stromelysin‐3, during the thyroid hormone‐dependent amphibian metamorphosis, a process that resembles the so‐called postembryonic development in mammals (from a few months before to several months after birth in humans when organ growth and maturation take place). Our investigations demonstrate that stromelysin‐3 controls apoptosis in different tissues via at least two distinct mechanisms. Birth Defects Research (Part C) 90:55–66, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

11.
Matrix metalloproteinase stromelysin-3 in development and pathogenesis   总被引:1,自引:0,他引:1  
The extracellular matrix (ECM) serves as a medium for cell-cell interactions and can directly signal cells through cell surface ECM receptors, such as integrins. In addition, many growth factors and signaling molecules are stored in the ECM. Thus, ECM remodeling and/or degradation plays a critical role in cell fate and behavior during many developmental and pathological processes. ECM remodeling/degradation is, to a large extent, mediated by matrix metalloproteinases (MMPs), a family of extracellular or membrane-bound, Zn2+-dependent proteases that are capable of digesting various proteinaceous components of the ECM. Of particular interest among them is the MMP11 or stromelysin-3, which was first isolated as a breast cancer associated protease. Here, we review some evidence for the involvement of this MMP in development and diseases with a special emphasis on amphibian metamorphosis, a postembryonic, thyroid hormone-dependent process that transforms essentially every organ/tissue of the animal.  相似文献   

12.
Matrix metalloproteinases in tumor-host cell communication   总被引:11,自引:0,他引:11  
The microenvironment or stroma immediately surrounding tumor cells consists of a three-dimensional extracellular matrix (ECM) and stromal cells such as fibroblasts and inflammatory cells. The matrix metalloproteinases (MMPs) constitute a family of over 24 members, which collectively are capable of degrading virtually the entire ECM. Strict regulation of MMP expression is critical in order to maintain proper ECM homeostasis, but in disease states such as cancer there is often a high level of MMP activity at the tumor-stroma interface. Several studies have documented the importance of MMP-mediated ECM destruction in the successful dissemination of several tumor types, but it has become increasingly clear that they are also involved in earlier stages of tumorigenesis. MMPs are implicated in a wide variety of roles that can assist tumor initiation, growth, migration, angiogenesis, the selection of apoptosis-resistant subpopulations, and in invasion and metastasis. Interestingly, the factors responsible for many of these effects are derived from the cell surfaces of the tumor or stromal cells or are embedded in the ECM. Therefore, the MMPs can no longer be thought of solely as ECM destructionists, but as part of an elegant communication system through which the tumor interacts with the stroma.  相似文献   

13.
Cell migration during wound healing is a complex process that involves the expression of a number of growth factors and cytokines. One of these factors, transforming growth factor-beta (TGF-β) controls many aspects of normal and pathological cell behavior. It induces migration of keratinocytes in wounded skin and of epithelial cells in damaged cornea. Furthermore, this TGF-β-induced cell migration is correlated with the production of components of the extracellular matrix (ECM) proteins, and expression of integrins and matrix metalloproteinases (MMPs). MMP digests ECMs and integrins during cell migration, but the mechanisms regulating their expression and the consequences of their induction remain unclear. It has been suggested that MMP-14 activates cellular signaling processes involved in the expression of MMPs and other molecules associated with cell migration. Because of the manifold effects of MMP-14, it is important to understand the roles of MMP-14 not only the cleavage of ECM but also in the activation of signaling pathways.  相似文献   

14.
15.
Das S  Banerji A  Frei E  Chatterjee A 《Life sciences》2008,82(9-10):467-476
Interactions between tumour cells and the extracellular matrix (ECM) strongly influence tumour development, affecting cell survival, proliferation and migration. Many of these interactions are mediated through a family of cell surface receptors named integrins. Fibronectin and its integrin receptors play important roles in tumour development. The alpha5beta 1 integrin interacts with the central cell adhesive region of fibronectin and requires both the RGD and synergy sites for maximal binding. Matrix metalloproteinases (MMPs) are a family of zinc dependent endopeptidases. They are capable of digesting the different components of the ECM and basement membrane. The ECM gives structural support to cells and plays a central role in cell adhesion, differentiation, proliferation and migration. Binding of ECM to integrins modulates expression and activity of the different MMPs. Our experimental findings demonstrate that cultivation of human breast cancer cells, MCF-7, in serum free medium in the presence of fibronectin upregulates the activity of MMP-2 and MMP-9. Blocking of alpha5beta 1 integrin with anti-alpha5 monoclonal antibody inhibits the fibronectin-induced MMP activation response appreciably. This strongly indicates alpha5beta 1 mediated signalling events in activation of MMP-2 and MMP-9. Phosphorylation of FAK and PI-3 kinase and the nuclear translocation of ERK and NF-kappaB upon fibronectin binding demonstrate possible participation of the FAK/PI-3K/ERK signalling pathways in the regulation of MMP-2 activity.  相似文献   

16.
Matrix metalloproteinases (MMPs) are extracellular matrix (ECM) degrading enzymes and have complex and specific regulation networks. This includes activation interactions, where one MMP family member activates another. ECM degradation and MMP activation can be initiated by several different stimuli including changes in ECM mechanical properties or intracellular contractility. These mechanical stimuli are known enhancers of metastatic potential. MMP-14 facilitates local ECM degradation and is well known as a major mediator of cell migration, angiogenesis and invasion. Recently, function blocking antibodies have been developed to specifically block MMP-14, providing a useful tool for research as well as therapeutic applications. Here we utilize a selective MMP-14 function blocking antibody to delineate the role of MMP-14 as an activator of other MMPs in response to changes in cellular contractility and ECM stiffness. Inhibition using function blocking antibodies reveals that MMP-14 activates soluble MMPs like MMP-2 and -9 under various mechanical stimuli in the pancreatic cancer cell line, Panc-1. In addition, inhibition of MMP-14 abates Panc-1 cell extension into 3D gels to levels seen with non-specific pan-MMP inhibitors at higher concentrations. This strengthens the case for MMP function blocking antibodies as more potent and specific MMP inhibition therapeutics.  相似文献   

17.
The WAVE3 cytoskeletal protein promotes cancer invasion and metastasis. We have shown that the WAVE3-mediated activation of cancer cell invasion is due, in part, to its regulation of expression and activity of key metalloproteinases (MMPs), including MMP9, which is centrally involved in invadopodia-mediated degradation of the extracellular matrix (ECM). MMP9 is also a major NFκB target gene, suggesting a potential linkage of WAVE3 to this pathway, which we sought to investigate. Mechanistically, we found that loss of WAVE3 in cancer cells leads to inhibition of NFκB signaling as a result of a decrease in the nuclear translocation of NFκB and therefore loss of activation of NFκB target genes. Conversely, overexpression of WAVE3 was sufficient to enhance NFκB activity. Both pharmacologic and genetic manipulations of NFκB effector molecules show that the biological consequence of loss of WAVE3 function in the NFκB pathway result the inhibition of invadopodia formation and ECM degradation by cancer cells, and these changes are a consequence of decreased MMP9 expression and activity. Loss of WAVE3 also sensitized cancer cells to apoptosis and cell death driven by TNFα, through the inhibition of the AKT pro-survival pathway. Our results identify a novel function of WAVE3 in NFκB signaling, where its activity is essential for the regulation of invadopodia and ECM degradation. Therefore, targeted therapeutic inhibition of WAVE3 will sensitize cancer cells to apoptosis and cell death, and suppress cancer invasion and metastasis.  相似文献   

18.
19.
Anchorage of cells to "heparin" – binding domains that are prevalent in extracellular matrix (ECM) components is thought to occur primarily through the syndecans, a four-member family of transmembrane heparan sulfate proteoglycans that communicate environmental cues from the ECM to the cytoskeleton and the signaling apparatus of the cell. Known activities of the syndecans trace to their highly conserved cytoplasmic domains and to their heparan sulfate chains, which can serve to regulate the signaling of growth factors and morphogens. However, several emerging studies point to critical roles for the syndecans' extracellular protein domains in tumor cell behavior to include cell adhesion and invasion. Although the mechanisms of these activities remain largely unknown, one possibility involves "co-receptor" interactions with integrins that may regulate integrin function and the cell adhesion-signaling phenotype. Thus, alterations in syndecan expression, leading to either overexpression or loss of expression, both of which take place in tumor cells, may have dramatic effects on tumor cell invasion.  相似文献   

20.
Alteration in the density and composition of extracellular matrix (ECM) occurs in tumors. The alterations toward both stiffness and degradation are contributed to tumor growth and progression. Cancer-associated fibroblasts (CAFs) are the main contributors to ECM stiffness and degradation. The cells interact with almost all cells within the tumor microenvironment (TME) that could enable them to modulate ECM components for tumorigenic purposes. Cross-talks between CAFs with cancer cells and macrophage type 2 (M2) cells are pivotal for ECM stiffness and degradation. CAFs induce hypoxia within the TME, which is one of the key inducers of both stiffness and degradation. Cancer cell modulatory roles in integrin receptors are key for adjusting ECM constituents to either fates. Cancer cell proliferation, migration, and invasion as well as angiogenesis are consequences of ECM stiffness and degradation. ECM stiffness in a transforming growth factor-β (TGF-β) related pathway could make a bridge in the basement membrane, and ECM degradation in a matrix metalloproteinase (MMP)-related pathway could make a path in the TME, both of which contribute to cancer cell invasion. ECM stiffness is also obstructive for drug penetration to the tumor site. Therefore, it would be a promising strategy to make a homeostasis in ECM for easy penetration of chemotherapeutic drugs and increasing the efficacy of antitumor approaches. MMP and TGF-β inhibitors, CAF and M2 reprogramming toward their normal counterparts, reduction of TME hypoxia and hampering integrin signaling are among the promising approaches for the modulation of ECM in favor of tumor regression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号