首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mutant lines defective for each of the four starch debranching enzyme (DBE) genes (AtISA1, AtISA2, AtISA3, and AtPU1) detected in the nuclear genome of Arabidopsis (Arabidopsis thaliana) were produced and analyzed. Our results indicate that both AtISA1 and AtISA2 are required for the production of a functional isoamylase-type of DBE named Iso1, the major isoamylase activity found in leaves. The absence of Iso1 leads to an 80% decrease in the starch content in both lines and to the accumulation of water-soluble polysaccharides whose structure is similar to glycogen. In addition, the residual amylopectin structure in the corresponding mutant lines displays a strong modification when compared to the wild type, suggesting a direct, rather than an indirect, function of Iso1 during the synthesis of amylopectin. Mutant lines carrying a defect in AtISA3 display a strong starch-excess phenotype at the end of both the light and the dark phases accompanied by a small modification of the amylopectin structure. This result suggests that this isoamylase-type of DBE plays a major role during starch mobilization. The analysis of the Atpu1 single-mutant lines did not lead to a distinctive phenotype. However, Atisa2/Atpu1 double-mutant lines display a 92% decrease in starch content. This suggests that the function of pullulanase partly overlaps that of Iso1, although its implication remains negligible when Iso1 is present within the cell.  相似文献   

2.
This study characterized genetic interactions between the maize (Zea mays) genes dull1 (du1), encoding starch synthase III (SSIII), and isa2, encoding a noncatalytic subunit of heteromeric isoamylase-type starch-debranching enzyme (ISA1/ISA2 heteromer). Mutants lacking ISA2 still possess the ISA1 homomeric enzyme. Eight du1(-) mutations were characterized, and structural changes in amylopectin resulting from each were measured. In every instance, the same complex pattern of alterations in discontinuous spans of chain lengths was observed, which cannot be explained solely by a discrete range of substrates preferred by SSIII. Homozygous double mutants were constructed containing the null mutation isa2-339 and either du1-Ref, encoding a truncated SSIII protein lacking the catalytic domain, or the null allele du1-R4059. In contrast to the single mutant parents, double mutant endosperms affected in both SSIII and ISA2 were starch deficient and accumulated phytoglycogen. This phenotype was previously observed only in maize sugary1 mutants impaired for the catalytic subunit ISA1. ISA1 homomeric enzyme complexes assembled in both double mutants and were enzymatically active in vitro. Thus, SSIII is required for normal starch crystallization and the prevention of phytoglycogen accumulation when the only isoamylase-type debranching activity present is ISA1 homomer, but not in the wild-type condition, when both ISA1 homomer and ISA1/ISA2 heteromer are present. Previous genetic and biochemical analyses showed that SSIII also is required for normal glucan accumulation when the only isoamylase-type debranching enzyme activity present is ISA1/ISA heteromer. These data indicate that isoamylase-type debranching enzyme and SSIII work in a coordinated fashion to repress phytoglycogen accumulation.  相似文献   

3.
The aim of this work was to understand the initial steps of starch breakdown inside chloroplasts. In the non-living endosperm of germinating cereal grains, starch breakdown is initiated by alpha-amylase secreted from surrounding cells. However, loss of alpha-amylase from Arabidopsis does not prevent chloroplastic starch breakdown (Yu, T.-S., Zeeman, S. C., Thorneycroft, D., Fulton, D. C., Dunstan, H., Lue, W.-L., Hegemann, B., Tung, S.-Y., Umemoto, T., Chapple, A., Tsai, D.-L., Wang, S.-M, Smith, A. M., Chen, J., and Smith, S. M. (2005) J. Biol. Chem. 280, 9773-9779), implying that other enzymes must attack the starch granule. Here, we present evidence that the debranching enzyme isoamylase 3 (ISA3) acts at the surface of the starch granule. Atisa3 mutants have more leaf starch and a slower rate of starch breakdown than wild-type plants. The amylopectin of Atisa3 contains many very short branches and ISA3-GFP localizes to granule-like structures inside chloroplasts. We suggest that ISA3 removes short branches from the granule surface. To understand how some starch is still degraded in Atisa3 mutants we eliminated a second debranching enzyme, limit dextrinase (pullulanase-type). Atlda mutants are indistinguishable from the wild type. However, the Atisa3/Atlda double mutant has a more severe starch-excess phenotype and a slower rate of starch breakdown than Atisa3 single mutants. The double mutant accumulates soluble branched oligosaccharides (limit dextrins) that are undetectable in the wild-type and the single mutants. Together these results suggest that glucan debranching occurs primarily at the granule surface via ISA3, but in its absence soluble branched glucans are debranched in the stroma via limit dextrinase. Consistent with this model, chloroplastic alpha-amylase AtAMY3, which could release soluble branched glucans, is induced in Atisa3 and in the Atisa3/Atlda double mutant.  相似文献   

4.
5.
Several studies have suggested that debranching enzymes (DBEs) are involved in the biosynthesis of amylopectin, the major constituent of starch granules. Our systematic analysis of all DBE mutants of Arabidopsis thaliana demonstrates that when any DBE activity remains, starch granules are still synthesized, albeit with altered amylopectin structure. Quadruple mutants lacking all four DBE proteins (Isoamylase1 [ISA1], ISA2, and ISA3, and Limit-Dextrinase) are devoid of starch granules and instead accumulate highly branched glucans, distinct from amylopectin and from previously described phytoglycogen. A fraction of these glucans are present as discrete, insoluble, nanometer-scale particles, but the structure and properties of this material are radically altered compared with wild-type amylopectin. Superficially, these data support the hypothesis that debranching is required for amylopectin synthesis. However, our analyses show that soluble glucans in the quadruple DBE mutant are degraded by α- and β-amylases during periods of net accumulation, giving rise to maltose and branched malto-oligosaccharides. The additional loss of the chloroplastic α-amylase AMY3 partially reverts the phenotype of the quadruple DBE mutant, restoring starch granule biosynthesis. We propose that DBEs function in normal amylopectin synthesis by promoting amylopectin crystallization but conclude that they are not mandatory for starch granule synthesis.  相似文献   

6.
To examine the role of isoamylase1 (ISA1) in amylopectin biosynthesis in plants, a genomic DNA fragment from Aegilops tauschii was introduced into the ISA1-deficient rice (Oryza sativa) sugary-1 mutant line EM914, in which endosperm starch is completely replaced by phytoglycogen. A. tauschii is the D genome donor of wheat (Triticum aestivum), and the introduced fragment effectively included the gene for ISA1 for wheat (TaISA1) that was encoded on the D genome. In TaISA1-expressing rice endosperm, phytoglycogen synthesis was substantially replaced by starch synthesis, leaving only residual levels of phytoglycogen. The levels of residual phytoglycogen present were inversely proportional to the expression level of the TaISA1 protein, although the level of pullulanase that had been reduced in EM914 was restored to the same level as that in the wild type. Small but significant differences were found in the amylopectin chain-length distribution, gelatinization temperatures, and A-type x-ray diffraction patterns of the starches from lines expressing TaISA1 when compared with wild-type rice starch, although in the first two parameters, the effect was proportional to the expression level of TaISA. The impact of expression levels of ISA1 on starch structure and properties provides support for the view that ISA1 is directly involved in the synthesis of amylopectin.  相似文献   

7.
The STA8 locus of Chlamydomonas reinhardtii was identified in a genetic screen as a factor that controls starch biosynthesis. Mutations of STA8 cause a significant reduction in the amount of granular starch produced during nutrient limitation and accumulate phytoglycogen. The granules remaining in sta8 mutants are misshapen, and the abundance of amylose and long chains in amylopectin is altered. Mutations of the STA7 locus, which completely lack isoamylase activity, also cause accumulation of phytoglycogen, although sta8 and sta7 mutants differ in that there is a complete loss of granular starch in the latter. This is the first instance in which mutations of two different genetic elements in one plant species have been shown to cause phytoglycogen accumulation. An analytical procedure that allows assay of isoamylase in total extracts was developed and used to show that sta8 mutations cause a 65% reduction in the level of this activity. All other enzymes known to be involved in starch biosynthesis were shown to be unaffected in sta8 mutants. The same amount of total isoamylase activity (approximately) as that present in sta8 mutants was observed in heterozygous triploids containing two sta7 mutant alleles and one wild-type allele. This strain, however, accumulates normal levels of starch granules and lacks phytoglycogen. The total level of isoamylase activity, therefore, is not the major determinant of whether granule production is reduced and phytoglycogen accumulates. Instead, a qualitative property of the isoamylase that is affected by the sta8 mutation is likely to be the critical factor in phytoglycogen production.  相似文献   

8.
Plants contain two types of alpha(1-->6) glucan hydrolase (starch-debranching enzyme [DBE]). Mutations that affect the pullulanase-type DBE have not been described, although defects in isoamylase-type DBE, known in many plant species, indicate a function in starch biosynthesis. We describe a null mutation of a pullulanase-type DBE gene, a Mutator insertion in maize Zpu1. Plants homozygous for the zpu1-204 mutation are impaired in transient and storage starch degradation. Thus, hydrolytic activity of pullulanase-type DBE contributes to starch catabolism. Developing zpu1-204 endosperm accumulates branched maltooligosaccharides not found in the wild type and is deficient in linear maltooligosaccharides, indicating that the pullulanase-type DBE functions in glucan hydrolysis during kernel starch formation. Furthermore, in a background deficient in isoamylase-type DBE, zpu1-204 conditions a significant accumulation of phytoglycogen in the kernel that is not seen in the wild type. Therefore, pullulanase-type DBE partially compensates for the defect in isoamylase-type DBE, suggesting a function during starch synthesis as well as degradation.  相似文献   

9.
In this study, we investigated which enzymes are involved in debranching amylopectin during transient starch degradation. Previous studies identified two debranching enzymes, isoamylase 3 (ISA3) and limit dextrinase (LDA), involved in this process. However, plants lacking both enzymes still degrade substantial amounts of starch. Thus, other enzymes/mechanisms must contribute to starch breakdown. We show that the chloroplastic α-amylase 3 (AMY3) also participates in starch degradation and provide evidence that all three enzymes can act directly at the starch granule surface. The isa3 mutant has a starch excess phenotype, reflecting impaired starch breakdown. In contrast, removal of AMY3, LDA, or both enzymes together has no impact on starch degradation. However, removal of AMY3 or LDA in addition to ISA3 enhances the starch excess phenotype. In plants lacking all three enzymes, starch breakdown is effectively blocked, and starch accumulates to the highest levels observed so far. This provides indirect evidence that the heteromultimeric debranching enzyme ISA1-ISA2 is not involved in starch breakdown. However, we illustrate that ISA1-ISA2 can hydrolyze small soluble branched glucans that accumulate when ISA3 and LDA are missing, albeit at a slow rate. Starch accumulation in the mutants correlates inversely with plant growth.  相似文献   

10.
The aim of this work was to characterize starch synthesis, composition, and granule structure in Arabidopsis leaves. First, the potential role of starch-degrading enzymes during starch accumulation was investigated. To discover whether simultaneous synthesis and degradation of starch occurred during net accumulation, starch was labeled by supplying (14)CO(2) to intact, photosynthesizing plants. Release of this label from starch was monitored during a chase period in air, using different light intensities to vary the net rate of starch synthesis. No release of label was detected unless there was net degradation of starch during the chase. Similar experiments were performed on a mutant line (dbe1) that accumulates the soluble polysaccharide, phytoglycogen. Label was not released from phytoglycogen during the chase indicating that, even when in a soluble form, glucan is not appreciably degraded during accumulation. Second, the effect on starch composition of growth conditions and mutations causing starch accumulation was studied. An increase in starch content correlated with an increased amylose content of the starch and with an increase in the ratio of granule-bound starch synthase to soluble starch synthase activity. Third, the structural organization and morphology of Arabidopsis starch granules was studied. The starch granules were birefringent, indicating a radial organization of the polymers, and x-ray scatter analyses revealed that granules contained alternating crystalline and amorphous lamellae with a periodicity of 9 nm. Granules from the wild type and the high-starch mutant sex1 were flattened and discoid, whereas those of the high-starch mutant sex4 were larger and more rounded. These larger granules contained "growth rings" with a periodicity of 200 to 300 nm. We conclude that leaf starch is synthesized without appreciable turnover and comprises similar polymers and contains similar levels of molecular organization to storage starches, making Arabidopsis an excellent model system for studying granule biosynthesis.  相似文献   

11.
Debranching enzymes, which hydrolyze α-1 and 6-glucosidic linkages in α-polyglucans, play a dual role in the synthesis and degradation of starch in plants. A transposon-inserted rice mutant of isoamylase3 (isa3) contained an increased amount of starch in the leaf blade at the end of the night, indicating that ISA3 plays a role in the degradation of transitory starch during the night. An epitope-tagged ISA3 expressed in Escherichia coli exhibited hydrolytic activity on β-limit dextrin and amylopectin. We investigated whether ISA3 plays a role in amyloplast development and starch metabolism in the developing endosperm. ISA3-green fluorescent protein (GFP) fusion protein expressed under the control of the rice ISA3 promoter was targeted to the amyloplast stroma in the endosperm. Overexpression of ISA3 in the sugary1 mutant, which is deficient in ISA1 activity, did not convert water-soluble phytoglycogen to starch granules, indicating that ISA1 and ISA3 are not functionally redundant. Both overexpression and loss of function of ISA3 in the endosperm generated pleomorphic amyloplasts and starch granules. Furthermore, chloroplasts in the leaf blade of isa3 seedlings were large and pleomorphic. These results suggest that ISA3 facilitates starch metabolism and affects morphological characteristics of plastids in rice.  相似文献   

12.
This is the first report on regulation of the isoamylase1 gene to modify the structure of amylopectin and properties of starch by using antisense technology in plants. The reduction of isoamylase1 protein by about 94% in rice endosperm changed amylopectin into a water-insoluble modified amylopectin and a water-soluble polyglucan (WSP). As compared with wild-type amylopectin, the modified amylopectin had more short chains with a degree of polymerization of 5-12, while their molecular sizes were similar. The WSP, which structurally resembled the phytoglycogen in isoamylase-deficient sugary-1 mutants, accounted for about 16% of the total alpha-polyglucans in antisense endosperm, and it was distributed throughout the whole endosperm unlike in sugary-1 mutant. The reduction of isoamylase activity markedly lowered the gelatinization temperature from 54 to 43 degrees C and the viscosity, and modified X-ray diffraction pattern and the granule morphology of the starch. The activity of pullulanase, the other type of starch debranching enzyme, in the antisense endosperm was similar to that in wild-type, whereas it is deficient in sugary-1 mutants. These results indicate that the isoamylase1 is essential for amylopectin biosynthesis in rice endosperm, and that alteration of the isoamylase activity is an effective means to modify the physicochemical properties and granular structure of starch.  相似文献   

13.
The formation of intermediary glucans, mature starch, and phytoglycogen was studied using leaves of Arabidopsis thaliana wild type and dbe mutant, which lacks plastidic isoamylase (Zeeman, S. C., Umemoto, T., Lue, W. L., Au-Yeung, P., Martin, C., Smith, A. M., and Chen, J. (1998) Plant Cell 10, 1699-1711). A new approach to the study of starch biosynthesis was developed based on "very short pulse" labeling of leaf starch through photosynthetic fixation of (14)CO(2). This allowed selective analysis of the structure of starch formed within a 30-s period. This time frame is shorter than the period required for the formation of a single crystalline amylopectin lamella and consequently permits a direct analysis of intermediary structures during granule formation. Analysis of chain length distribution showed that the most recently formed outer layer of the granules has a structure different from the mature starch. The outer layer is enriched in short chains that are 6-11 glucose residues long. Side chains with 6 glucose residues are the shortest abundant chains formed, and they are formed exclusively by transfer from donor chains of 12 glucose residues or longer. The labeling pattern shows that chain transfer resulting in branching is a rapid and efficient process, and the preferential labeling of shorter chains in the intermediary granule bound glucan is suggested to be a direct consequence of efficient branching. Although similar, the short chain intermediary structure is not identical to phytoglycogen, which is an even more highly branched molecule with very few longer chains (more than 40 glucose residues). Pulse and chase labeling profiles for the dbe mutant showed that the final structure is more highly branched than the intermediary structures, which implies that branching of phytoglycogen occurs over a longer time period than branching of starch.  相似文献   

14.
15.
This study assessed the impact on starch metabolism in Arabidopsis leaves of simultaneously eliminating multiple soluble starch synthases (SS) from among SS1, SS2, and SS3. Double mutant ss1- ss2- or ss1- ss3- lines were generated using confirmed null mutations. These were compared to the wild type, each single mutant, and ss1- ss2- ss3- triple mutant lines grown in standardized environments. Double mutant plants developed similarly to the wild type, although they accumulated less leaf starch in both short-day and long-day diurnal cycles. Despite the reduced levels in the double mutants, lines containing only SS2 and SS4, or SS3 and SS4, are able to produce substantial amounts of starch granules. In both double mutants the residual starch was structurally modified including higher ratios of amylose:amylopectin, altered glucan chain length distribution within amylopectin, abnormal granule morphology, and altered placement of α(1→6) branch linkages relative to the reducing end of each linear chain. The data demonstrate that SS activity affects not only chain elongation but also the net result of branch placement accomplished by the balanced activities of starch branching enzymes and starch debranching enzymes. SS3 was shown partially to overlap in function with SS1 for the generation of short glucan chains within amylopectin. Compensatory functions that, in some instances, allow continued residual starch production in the absence of specific SS classes were identified, probaby accomplished by the granule bound starch synthase GBSS1.  相似文献   

16.
Isoamylase-type starch debranching enzymes (ISA) play important roles in starch biosynthesis in chloroplast-containing organisms, as shown by the strict conservation of both catalytically active ISA1 and the noncatalytic homolog ISA2. Functional distinctions exist between species, although they are not understood yet. Numerous plant tissues require both ISA1 and ISA2 for normal starch biosynthesis, whereas monocot endosperm and leaf exhibit nearly normal starch metabolism without ISA2. This study took in vivo and in vitro approaches to determine whether organism-specific physiology or evolutionary divergence between monocots and dicots is responsible for distinctions in ISA function. Maize (Zea mays) ISA1 was expressed in Arabidopsis (Arabidopsis thaliana) lacking endogenous ISA1 or lacking both native ISA1 and ISA2. The maize protein functioned in Arabidopsis leaves to support nearly normal starch metabolism in the absence of any native ISA1 or ISA2. Analysis of recombinant enzymes showed that Arabidopsis ISA1 requires ISA2 as a partner for enzymatic function, whereas maize ISA1 was active by itself. The electrophoretic mobility of recombinant and native maize ISA differed, suggestive of posttranslational modifications in vivo. Sedimentation equilibrium measurements showed recombinant maize ISA1 to be a dimer, in contrast to previous gel permeation data that estimated the molecular mass as a tetramer. These data demonstrate that evolutionary divergence between monocots and dicots is responsible for the distinctions in ISA1 function.Semicrystalline starch enables photosynthetic eukaryotes to store large quantities of Glc over extended time periods compared with other species, in which the soluble polymer glycogen functions to store carbohydrate reserves (Ball and Morell, 2003). Eukaryotes gained the capacity to photosynthesize after the capture of a cyanobacterial endosymbiont by a glycogen-metabolizing host cell. In the lineage that evolved subsequently, known as the Archaeplastida, select glucan-storage enzymes encoded within the host nucleus, the endosymbiont, and potentially a prokaryotic parasite located within the host cell developed so as to generate the branched glucan polymer amylopectin (Ball et al., 2011, 2013). Such molecules are highly similar to glycogen in terms of chemical structure, but the molecular architecture of amylopectin enables the formation of semicrystalline structures (Buléon et al., 1998). These latter then assemble into higher order structures leading to starch granule formation. The advent of starch granules is likely to have been critical for the evolution of chloroplast-containing organisms, including the spread of land plants on the Earth’s surface, because they enable the storage of photosynthetically generated Glc for many hours in tissues such as leaves during diurnal cycles or for months to years in seeds.An important aspect of the evolutionary change from glycogen to starch is the use of particular α(1→6)-glucosidases, referred to as isoamylase-type starch debranching enzymes (ISA), in the production of amylopectin (Ball et al., 1996; Myers et al., 2000; Hennen-Bierwagen et al., 2012). A suite of genes encoding the enzymes that accomplish starch biosynthesis was established early in the evolution of chloroplast-containing organisms (i.e. the Chloroplastida) prior to the divergence of distantly related groups including green algae and land plants. Included in this gene set are three paralogs that encode the proteins ISA1, ISA2, and ISA3, each of which is highly conserved in chloroplast-containing species. ISA1 of vascular plants and bryophytes, for example, are approximately 70% identical over more than 600 residues, and between land plants and prasinophyte algae this value is about 60%. ISA1 or ISA2 deficiencies in potato (Solanum tuberosum) tuber, Arabidopsis (Arabidopsis thaliana) leaf, Chlamydomonas reinhardtii cells, and cereal endosperms result in reduced starch content, altered amylopectin structure, and the appearance of soluble, branched glucans similar to native glycogen (James et al., 1995; Mouille et al., 1996; Nakamura et al., 1996; Bustos et al., 2004; Delatte et al., 2005; Wattebled et al., 2005). Such soluble polymers, referred to as phytoglycogen, have not been observed in wild-type plants. Thus, ISA1 and ISA2 functions are important determinants of whether storage glucans are semicrystalline or soluble. ISA3, in contrast, functions primarily in starch catabolism (Wattebled et al., 2005; Delatte et al., 2006).ISA1 and ISA2 appear to function together in Arabidopsis leaf as a single entity, because essentially identical phenotypes are observed in single mutants lacking either protein or double mutants lacking both of them (Zeeman et al., 1998; Delatte et al., 2005; Wattebled et al., 2005). Biochemical analysis of native and recombinant proteins has shown directly that ISA1 and ISA2 function together in a complex. ISA activity was first purified from potato tuber and found to contain two distinct polypeptides identified as ISA1 and ISA2 (Ishizaki et al., 1983; Hussain et al., 2003). Heteromultimers containing these two proteins were also purified from rice (Oryza sativa) and maize (Zea mays) endosperm (Utsumi and Nakamura, 2006; Kubo et al., 2010). Finally, a mixture of native and recombinant rice proteins demonstrated directly that specific enzymatic activities are provided by ISA1 and ISA2 functioning together in a heteromultimeric complex (Utsumi and Nakamura, 2006). ISA1 is the catalytic subunit within this complex, whereas ISA2 is noncatalytic, owing to amino acid substitutions at residues that are essentially invariant in the GH13 family of glycoside hydrolases (i.e. the α-amylase superfamily), several of which participate in the catalytic mechanism (Hussain et al., 2003; Utsumi and Nakamura, 2006). Despite lacking catalytic activity, ISA2 proteins are conserved in all chloroplast-containing species that have been examined, which rules out recently evolved mutations and, to the contrary, suggests a functional selective advantage.The necessity for the ISA1/ISA2 heteromultimer is not obvious in light of the fact that, in some instances, ISA1 by itself can condition normal levels of starch and the suppression of phytoglycogen accumulation. Cyanidioschyzon merolae, a species within the Rhodophyta lineage of the Archaeplastida family, contains semicrystalline starch and amylopectin with physical characteristics similar to that of Chloroplastida species (Hirabaru et al., 2010). The C. merolae genome contains elements that encode ISA1 and ISA3 yet lacks a homolog encoding ISA2 (Coppin et al., 2005). Thus, in some instances, starch can be generated, and phytoglycogen accumulation suppressed, without an ISA2 protein. Cereal endosperms provide additional evidence that ISA2 is not strictly required for normal starch levels and the suppression of phytoglycogen accumulation. Mutants or transgenic lines lacking ISA2 are known in rice (Utsumi et al., 2011) and maize (Kubo et al., 2010). Endosperm from these plants exhibits normal starch levels, with amylopectin structure essentially the same as the wild type, and lacks phytoglycogen. ISA activity presumably is provided in the endosperm of these mutants by a homomultimeric enzyme containing only ISA1.The reason why ISA2 is strictly conserved in the Chloroplastida is not understood yet. Two explanations can be considered. One possibility is that the inherent structure of ISA1 in cereals, resulting from mutations accumulated specifically in this evolutionary lineage, allows it to act without ISA2. Another possibility is that metabolic differences in specific tissues (e.g. leaf versus endosperm) require specialized enzymatic properties of the ISA1/ISA2 heteromer that ISA1 by itself does not provide. To test these hypotheses, this study combined maize and Arabidopsis ISA1 and ISA2 isoforms both in vitro and in vivo. Maize ISA1 was found to be active without any ISA2 protein, either in vitro or in Arabidopsis leaves, whereas Arabidopsis ISA1 required an ISA2 partner in all instances. Thus, ISA1 appears to have evolved in the cereal lineage so that it no longer requires ISA2 for enzymatic activity or metabolic function in the generation of starch and the suppression of phytoglycogen accumulation.  相似文献   

17.
Two mutant lines of barley, Risø 17 and Notch‐2, were found to accumulate phytoglycogen in the grain. Like the sugary mutants of maize and rice, these phytoglycogen‐accumulating mutants of barley lack isoamylase activity in the developing endosperm. The mutants were shown to be allelic, and to have lesions in the isoamylase gene, isa1 that account for the absence of this enzyme. As well as causing a reduction in endosperm starch content, the mutations have a profound effect on the structure, number and timing of initiation of starch granules. There are no normal A‐type or B‐type granules in the mutants. The mutants have a greater number of starch granules per plastid than the wild‐type and, particularly in Risø 17, this leads to the appearance of compound starch granules. These results suggest that, as well as suppressing phytoglycogen synthesis, isoamylase in the wild‐type endosperm plays a role in determining the number, and hence the form, of starch granules.  相似文献   

18.
1. Branching enzymes from rat and rabbit liver, as well as from potato and maize were prepared. They were almost free from contaminating glucan-degrading enzymes. 2. In 'sweet corn' maize, two separate fractions with (alpha 1,4)glucan: (alpha 1,4)glucan alpha 6-glycosyltransferase activities were obtained. One of them synthesized amylopectin, the branched component of starch, in the presence of phosphorylase and Glc1P, while the other fraction synthesized phytoglycogen. Furthermore, in a maize variety which does not accumulate phytoglycogen, only one fraction of branching activity was found, that formed amylopectin under the above-mentioned conditions. 3. Comparative analyses performed with native (alpha 1,4)-(alpha 1,6)glucopolysaccharides, and those synthesized in vitro with the branching enzyme from the same tissue, demonstrated a close similarity between both glucans. 4. It may be concluded that the branching enzyme is responsible for the specific degree of (alpha 1,6) branch linkages found in the native polysaccharide.  相似文献   

19.
The activities of the two types of starch debranching enzymes, isoamylase and pullulanase, were greatly reduced in endosperms of allelic sugary-1 mutants of rice (Oryza sativa), with the decrease more pronounced for isoamylase than for pullulanase. However, the decrease in isoamylase activity was not related to the magnitude of the sugary phenotype (the proportion of the phytoglycogen region of the endosperm), as observed with pullulanase. In the moderately mutated line EM-5, the pullulanase activity was markedly lower in the phytoglycogen region than in the starch region, and isoamylase activity was extremely low or completely lost in the whole endosperm tissue. These results suggest that both debranching enzymes are involved in amylopectin biosynthesis in rice endosperm. We presume that isoamylase plays a predominant role in amylopectin synthesis, but pullulanase is also essential or can compensate for the role of isoamylase in the construction of the amylopectin multiple-cluster structure. It is highly possible that isoamylase was modified in some sugary-1 mutants such as EM-273 and EM-5, since it was present in significant and trace amounts, respectively, in these mutants but was apparently inactive. The results show that the Sugary-1 gene encodes the isoamylase gene of the rice genome.  相似文献   

20.
Isoamylases are debranching enzymes that hydrolyze alpha-1,6 linkages in alpha-1,4/alpha-1,6-linked glucan polymers. In plants, they have been shown to be required for the normal synthesis of amylopectin, although the precise manner in which they influence starch synthesis is still debated. cDNA clones encoding three distinct isoamylase isoforms (Stisa1, Stisa2, and Stisa3) have been identified from potato. The expression patterns of the genes are consistent with the possibility that they all play roles in starch synthesis. Analysis of the predicted sequences of the proteins suggested that only Stisa1 and Stisa3 are likely to have hydrolytic activity and that there probably are differences in substrate specificity between these two isoforms. This was confirmed by the expression of each isoamylase in Escherichia coli and characterization of its activity. Partial purification of isoamylase activity from potato tubers showed that Stisa1 and Stisa2 are associated as a multimeric enzyme but that Stisa3 is not associated with this enzyme complex. Our data suggest that Stisa1 and Stisa2 act together to debranch soluble glucan during starch synthesis. The catalytic specificity of Stisa3 is distinct from that of the multimeric enzyme, indicating that it may play a different role in starch metabolism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号