首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
The temporal variability of size-fractioned autotrophic biomassat three depth levels (1, 8 and 25 m) was studied during thewinter-spring transition at two oceanographic stations in ConcepciónBay. Size spectra were obtained on eight occasions by two differentmethods: (i) determining the biomass of seven autotrophic sizefractions by in vivo fluorescence; and (ii) measuring the filamentlength of chain-forming diatoms through direct microscopy. Aclear vertical gradient of biomass was found in all profiles,with maximum values in the surface layer (1 and 8 m levels).Values of chlorophyll were on average 6.2 (range 1.08–25.67)times higher at 1 m than at 25 m, and 7.4 (range 1.15–26.83)times more at 8 m than at 25 m. On a temporal basis, total biomassincreased from low average values in winter (2.5 mg chl-a m–3)to high values in late spring (11.6 mg chl-a m–3). Duringthe whole sampling period (June 8-November 19), the nano- andnet-plankton (1.8–40 µm and 40–335 µmsize fractions respectively) were more abundant near the surface(1 and 8 m depth) than close to the bottom (25 m depth); however,the picoplankton fraction (<1.8 (µm) showed an inverserelationship, with a slight trend to increase near the bottomtoward spring. The highest absolute biomass was concentratedin the net-plankton fraction during the whole period and therelative importance of the picoplankton decreased from winter(6.50 and 15.5% for shallow and bottom levels) to spring (1.5and 10.3% for shallow and bottom levels). This relative effectis caused by the higher absolute values of biomass observedin the net-plankton fraction toward spring. These changing patternsshould have an impact in the size-composition and abundanceof higher trophic levels, mainly through grazing, in particularby modifying food availability to microfJagellates, ciliatesand filter-feeding zooplankton.  相似文献   

2.
In May 1994, we investigated the short-term development of theplanktonic community in the epi- and metalimnion of an oligo-mesotrophiclake (Piburger See, Tyrol), focusing on trophic links betweenprotists and picoplankton, but also including phyto- and zooplankton.Uptake experiments with fluorescently labelled bacteria (FLB)and picocyanobacteria (FIC) were performed in order to comparethe importance of both prey types as carbon sources for bacterivorousprotists. Heterotrophic nanoflagellates (HNF) were responsiblefor {small tilde}90% of total protozoan picoplanktivory (FLB+ FLC); ciliates accounted for {small tilde}10%. A selectivityindex related to prey density showed that both HNF and ciliatesclearly preferred FLC over FLB. The mean cell size of autotrophic(prokaryotic) picoplankton (APP) was nearly three times larger(0.323 µm3) and much less variable than mean bacterialcell volume (0.122 µm3). Although APP biomass was on averageonly 8.6% of total picoplankton biomass, pico-cyanobacteriaaccounted for a mean 15.9% of total HNF carbon uptake. We calculatedthat total HNF grazing could match potential APP maximum growthrates at the beginning of the study period. A strong decreasein HNF individual clearance rate (CR) on APP was clearly relatedto a fall in the percentage of choanofiagellates (from 75 to{small tilde}10% of the HNF community). A simultaneous decreasein HNF biomass and CR was followed by a steep increase in APPabundance; APP abundance and HNF biomass were highly negativelycorrelated both in the epi- and the metalimnion (r1 EM = –0.879,r1 META = =0.907; P = 0.001). Total rotifer abundance increasedby a factor of 50 within 2 weeks and was also negatively correlatedwith HNF biomass (r1 EM = –0.852, P < 0.001; r1 META= –0.659, P < 0.05). HNF grazing was found to exerta strong short-term control on picocyanobacteria and this linkwas probably broken by an increase in metazooplankton, especiallydue to rotifer predation on HNF.  相似文献   

3.
Population dynamics of bacterioplankton in an oligotrophic lake   总被引:4,自引:0,他引:4  
The population ecology of bacterioplankton was studied overa 3 year period in Mirror Lake, an oligotrophic lake in thenortheastern USA. Bacterial population density, biomass, andrates of biomass production in the epilimnion and hypolimnionwere examined for their relationship with several environmentalparameters. Bacterioplankton density fluctuated between 0.5and 7 x l0 bacteria ml–1, with highest values in the anoxichypolimnion. At all depths there was a trend towards a higherdensity of bacteria from spring to midsummer, followed by adecline in late summer to early autumn. Cocci tended to dominatebacterial cell shapes from winter to midsummer, after whichrod-shaped cells became most abundant. Rod-shaped cells contributedthe most to bacterioplankton biomass at all depths and timesof year. The mean annual biovolume of all bacterioplankton was0.12 µ cell–1. The mean annual areal bacterioplanktonbiomass was 11–12 mmol C m–2. The percentage ofbacterial to phytoplankton biomass per volume in summertimewas 27% in the epilimnion and 11% in the hypolimnion. Averageannual and summertime bacterial production estimated using the[3H]thymidine method was similar to previous estimates of bacterialproduction measured in Mirror Lake using other methods. Theaverage ratio of bacterial to net phytoplankton production pervolume was 0.34 in the epilimnion, and between 0.65 and 1 1.depending on depth, in the hypolimnion during summer. Of severalvariables considered in regression analyses, only temperatureexplained >50% of the variance in bacterial production inboth the hypolimnion and epilimnion. Above 14°C, however,bacterial production and growth rate in the epilimnion werenot clearly related to temperature. During the period of midsummerhypolimnetic anoxia, despite colder temperatures in the hypolimnion,bacterial production was up to 10 times greater than in theepilimnion.  相似文献   

4.
Bacterial growth and losses due to bacterivory in a mesotrophic lake   总被引:3,自引:0,他引:3  
Bacterial secondary production and rates of bacterivory weredetermined from samples collected from mesotrophic Lake Arlington.Bacterial production and losses were determined by comparingthe growth of natural bacterial assemblages in the presenceof predators (unfiltered samples) to growth in the absence ofpredators (water filtered through 1.0 (im porosity filters).Growth rates of heterotrophic nanoflagellates (HNF) were estimatedfrom growth in the absence of predators (water filtered through5.0 µm porojity filters). Bacterial growth rates rangedbetween 0.002 and 0.069 h–1 and averaged 0.026 h–1.HNF grew at rates ranging between 0.003 and 0.107 h–1and averaged 0.028 h Grazing rates ranged between 0.002and 0.043 h–1, and averaged 0.018 h. The annual averagerate of bacterial biomass synthesis was 3.2 –g Clh–1 and {small tilde}69% of this production was grazed.Temporal changes in growth and grazing rates suggest a tightlycoupled predator-prey linkage in this lake. 1Present address: Hydrobiological Institute, Czech Academy ofSciences, Na sddkach 7, 370 05 teski Budjovice, Czech Republic  相似文献   

5.
The growth of heterotrophic nanoflagellates (HNF) in mesotrophicLake Constance was measured in situ during a 13 month period.Experiments were conducted with 10 µm pre-filtered lakewater incubated in diffusion chambers at 3 m water depth atthe sampling location for 24 h. Growth rates were calculatedfrom changes in cell numbers occurring during the period ofincubation. Growth rates of all dominant taxa showed pronouncedseasonal variation (–0.13 to 1.76 day–1 and weregenerally highest in summer at high water temperatures. In situgrowth rates were well below maximum growth rates known forthe respective and similar species from laboratory experiments.While water temperature was a key parameter positively relatedto the growth of all HNF species, the effect of various potentialfood items was taxon specific and less clear. Bacterial abundancewas equally important as temperature for growth in the smallbactenvorous Spumella sp., but was insignificant for growthrates of the larger omnivorous Kathablepharis sp. In Spuniellasp., 84% of the observed seasonal variation of its growth ratecould be explained by temperature and bacterial food supply.Based on these results, a multiple linear regression equationwith temperature and bacterial concentration as dependent variableswas calculated for the growth rate of Spumella. Taxon-specificproduction rates were derived from growth rates and averagebiomass of these two species, and compared to total HNF productionestimated from previously measured community growth rates andbiomass in Lake Constance. Production peaks of Spumella sp.and Kathablepharis sp. alternated seasonally. Total HINF productionranged from –0.01 to 10 mg C m–3 day–1. Theaverage seasonal production varied between 1.4 and 33 mg C m–3day–1 over 6 consecutive years. These small protozoa thuscontribute a substantial amount to total zooplankton productionin Lake Constance.  相似文献   

6.
We investigated the dynamics and diversity of heterotrophic bacteria, autotrophic and heterotrophic flagellates, and ciliates from March to July 2002 in the surface waters (0–50 m) of Lake Bourget. The heterotrophic bacteria consisted mainly of “small” cocci, but filaments (>2 μm), commonly considered to be grazing-resistant forms under increased nanoflagellate grazing, were also detected. These elongated cells mainly belonged to the Cytophaga-Flavobacterium (CF) cluster, and were most abundant during spring and early summer, when mixotrophic or heterotrophic flagellates were the main bacterial predators. The CF group strongly dominated fluorescent in situ hybridization–detected cells from March to June, whereas clear changes were observed in early summer when Beta-proteobacteria and Alpha-proteobacteria increased concomitantly with maximal protist grazing pressures. The analysis of protist community structure revealed that the flagellates consisted mainly of cryptomonad forms. The dynamics of Cryptomonas sp. and Dinobryon sp. suggested the potential importance of mixotrophs as consumers of bacteria. This point was verified by an experimental approach based on fluorescent microbeads to assess the potential grazing impact of all protist taxa in the epilimnion. From the results, three distinct periods in the functioning of the epilimnetic microbial loop were identified. In early spring, mixotrophic and heterotrophic flagellates constituted the main bacterivores, and were regulated by the availability of their resources mainly during April (phase 1). Once the “clear water phase” was established, the predation pressure of metazooplankton represented a strong top-down force on all microbial compartments. During this period only mixotrophic flagellates occasionally exerted a significant bacterivory pressure (phase 2). Finally, the early summer was characterized by the highest protozoan grazing impact and by a rapid shift in the carbon pathway transfer, with a fast change-over of the main predators contribution, i.e., mixotrophic, heterotrophic flagellates and ciliates in bacterial mortality. The high abundance of ciliates during this period was consistent with the high densities of resources (heterotrophic nanoflagellates, algae, bacteria) in deep layers containing the most chlorophyll. Bacteria, as ciliates, responded clearly to increasing phytoplankton abundance, and although bacterial grazing impact could vary largely, bacterial abundance seemed to be primarily bottom-up regulated (phase 3).  相似文献   

7.
Time series of phytoplankton biomass and taxonomic compositionhave been obtained for the 3 years 1992, 1993 and 1994 in thenorthern part of the Southern Ocean (station Kerfix, 5040'S,6825;E) Autotrophic biomass was low throughout the year (<0.2mg m–3 except during a short period in summer when a maximumof 1.2 mg chlorophyll (Chl) a m– was reached. During winter,the integrated biomass was low (<10 mg m–2) and associatedwith deeply mixed water, whereas the high summer biomass (>20mg m–2) was associated with increased water column stability.During summer blooms, the >10 µ;m size fraction contributed60% to total integrated biomass. Large autotrophic dinoflagellates,mainly Prorocentrum spp., were associated with the summer phytoplankton maxima and accounted for >80% of the total autotrophcarbon biomass. In November and December, the presence of thelarge heterotrophic dinoflagellates Protoperidinium spp. andGyro dinium spp. contributed a high proportion of total carbonbiomass. During winter, the <10 µm size fraction contributed80% of total Chi a biomass with domination of the picoplanktonsize fraction. The natural assemblage included mainly nakedflagellates such as species of the Prasinophyceae, Cryptophyceaeand Prymnesiophyceae. During spring, picocyanobacteria occurredin sub-surface water with a maximum abundance in September of106 cells 1–1  相似文献   

8.
Microbial food web in a large shallow lake (Lake Balaton, Hungary)   总被引:2,自引:2,他引:0  
Seasonal variations of phyto-, bacterio- and colourless flagellate plankton were followed across a year in the large shallow Lake Balaton (Hungary). Yearly average chlorophyll-a concentration was 11 µg 1–1, while the corresponding values of bacterioplankton and heterotrophic nanoflagellate (HNF) plankton biomass (fresh weight) were 0.24 mg 1–1 and 0.35 mg 1–1, respectively. About half of planktonic primary production was channelled through bacterioplankton on the yearly basis. However, there was no significant correlation between phytoplankton biomass and bacterial abundance. Bacterial specific growth rates were in the range of 0.009 and 0.09 h–1, and ended to follow the seasonal changes in water temperature. In some periods of the year, predator-prey relationships between the HNF and bacterial abundance were obvious. The estimated HNF grazing on bacteria varied between 3% and 227% of the daily bacterial production. On an annual basis, 87% of bacterial cell production was grazed by HNF plankton.  相似文献   

9.
1. The seasonal development of crustacean zooplankton, heterotrophic nanoflagellates (HNF) and bacteria was examined in Grosser Binnensee, a shallow, eutrophic lake in northern Germany. The grazing impact of Daphnia on bacteria and nanoflagellates was estimated from field data on population abundances and from clearance rates obtained in laboratory experiments. 2. The seasonal succession of zooplankton showed distinct peaks of Daphnia magna, cyclopopid copepods, Bosmina longirostris and Daphnia galeata and D. hynlina. The population dynamics of Dapfinia had the strongest impact on all sestonic components. Daphnia maxima coincided with clearwater phases, and were negatively correlated with particulate organic carbon (POC), HNF and phytoplankton. Bacterial abundance was only slightly affected although daphnids were at times more important as bacterial consumers than HNF, as estimated from measured bacterial clearance rates. Other crustaceans (copepods, Bosmina) were probably of minor importance as grazers of bacteria and nanoplankton. 3. HNF abundance varied from 550 ml?1 to more than 30000 ml?1. HNF appeared to be suppressed by daphnids and reached highest densities when copepods dominated the metazooplankton. The variation in HNF abundance was not reflected in the concentration of heterotrophic bacteria, which fluctuated rather irregularly between 5 and 20 ± 106 ml?1. Long filamentous bacteria which were probably resistant to protozoan grazing, however, appeared parallel to the development of HNF. These bacterial cells, although small in number, could comprise more than 30% of the total bacterial biomass.  相似文献   

10.
In situ growth of heterotrophic nanoflagellates (HNF) in Lake Donghu, a eutrophic shallow lake in mainland China, was studied from January 1999 to March 2000 using a modified Weisse protocol. The study results indicated that the growth rates of HNF showed pronounced seasonal variation (–0.37–1.25 d–1), reaching the maximum during spring to early summer. When the water temperature was higher than 25.5°C, HNF growth was inversely proportional to water temperature. There was an effect by bacterial abundance and autotrophic picoplankton on HNF growth that depended on location. HNF biomass was the highest in late spring, and the HNF production ranged from –2.25 to 35.45 mg l–1 d–1 with mean of 3.17 mg l–1d–1. When considered in the context of biomass and production data for zooplankton in Lake Donghu, it was evident that HNF contributed significantly to the total zooplankton production in Lake Donghu. These in situ studies indicate that temperature and food supply are the major determinants of HNF abundance and productivity.  相似文献   

11.
Pelagic carbon metabolism in a eutrophic lake during a clear-water phase   总被引:1,自引:0,他引:1  
Dissolved and paniculate organic carbon (DOC and POC, respectively),primary production, bacterial production, bacterial carbon demandand community grazing were measured for 9 weeks in eutrophicFrederiksborg Slotssø. The period covered the declineof the spring bloom, a clear-water phase and a summer phasewith increasing phytoplankton biomass. The process rates andchanges in pools of organic carbon were combined in a carbonbudget for the epilimnion. The POC budget showed a close balancefor both the post-spring bloom and the clear-water phase, whilea surplus was found in the summer phase. Production of POC wasdominated by phytoplankton (2/3) compared to bacteria (1/3)during all phases, and there was a significant correlation betweenphytoplankton and bacterial production rates (r2 = 0.48, P <0.039). Bacterial demand for DOC was balanced by productionand changes in the pool of DOC during the decline of the springbloom, but the calculated demand exceeded the supply by 81 and167%, respectively, during the other two periods. The discrepancywas most probably due to an underestimation of bacterial growthefficiency and an overestimation of in situ bacterial productionin carbon units. Production of bacterial substrate by zooplanktonactivity was estimated to be higher than the direct excretionof organic carbon from phytoplankton. The biological successionwas regulated by the balance between area primary productionand community grazing. The clear-water phase was initiated bya combination of low primary production due to low surface irradianceand high community grazing (100 mmol C m–2 day–1),which caused a decrease in phytoplankton biomass. However, dueto the high initial phytoplankton biomass, community grazingwas not high enough to cause a significant decrease in areaprimary production. The summer phase was initiated by a decreasein community grazing followed by an increase in phytoplanktonbiomass. Based on these observations and calculations of areaprimary production as a function of chlorophyll concentrations,we suggest that the possibility for zooplankton to regulatephytoplankton biomass in temperate lakes decreases with increasingnutrient level.  相似文献   

12.
Annual variation and vertical distribution in the abundanceand cell volume of heterotrophic nanoflagellates (HNF) was studiedon the SW coast of Finland, the Baltic Sea. HNF cell numbersand mean cell volume varied annually from 90 to 104 cells ml–1,and from 3 to 32 µm3, respectively, with maxima in earlysummer. The proportion of choanoflagellates in the HNF communitywas 0–23%. Statistical analysis revealed the verticaldifferences in HNF abundance to be insignificant, but verticaldifferences in the size structure of HNF communities were found,especially during thermal stratification. The majority (>80%)of HNF were small (maximum dimension 2–4 µm); theproportion of large (>7 µm) cells were only 2–4%of the HNF abundance. An empirical equation for the relationshipbetween HNF cell length and volume is presented, and the measurementof flagellate volume by epifluorescence microscopy is discussed.  相似文献   

13.
Although both nutrient inputs and zooplankton grazing are importantto phytoplankton and bacteria in lakes, controversy surroundsthe relative importance of grazing pressure for these two groupsof organisms. For phytoplankton, the controversy revolves aroundwhether zooplankton grazers, especially large cladocerans likeDaphnia, can effectively reduce phytoplankton populations regardlessof nutrient conditions. For bacteria, little is known aboutthe balance between possible direct and indirect effects ofboth nutrients and zooplankton grazing. However, there is evidencethat bacteria may affect phytoplankton responses to nutrientsor zooplankton grazing through direct or apparent competition.We performed a mesocosm experiment to evaluate the relativeimportance of the effects of nutrients and zooplankton grazingfor phytoplankton and bacteria, and to determine whether bacteriamediate phytoplankton responses to these factors. The factorialdesign crossed two zooplankton treatments (unsieved and sieved)with four nutrient treatments (0, 0.5, 1.0 and 2.0 µgphosphorus (P) l–1 day–1 together with nitrogen(N) at a N:P ratio of 20:1 by weight). Weekly sieving with 300µm mesh reduced the average size of crustacean zooplanktonin the mesocosms, decreased the numbers and biomass of Daphnia,and increased the biomass of adult copepods. Nutrient enrichmentcaused significant increases in phytoplankton chlorophyll a(4–5x), bacterial abundance and production (1.3x and 1.6x,respectively), Daphnia (3x) and total zooplankton biomass (2x).Although both total phytoplankton chlorophyll a and chlorophylla in the <35 µm size fraction were significantly lowerin unsieved mesocosms than in sieved mesocosms, sieving hadno significant effect on bacterial abundance or production.There was no statistical interaction between nutrient and zooplanktontreatments for total phytoplankton biomass or bacterial abundance,although there were marginally significant interactions forphytoplankton biomass <35 µm and bacterial production.Our results do not support the hypothesis that large cladoceransbecome less effective grazers with enrichment; rather, the differencebetween phytoplankton biomass in sieved versus unsieved zooplanktontreatments increased across the gradient of nutrient additions.Furthermore, there was no evidence that bacteria buffered phytoplanktonresponses to enrichment by either sequestering P or affectingthe growth of zooplankton.  相似文献   

14.
Bacterial and microflagellate biomass and production and grazing onbacteria were compared weekly at a fixed station in Santa Rosa Sound,Florida, starting in February and ending in October. For bothpopulations the weekly variation in biomass and production was aslarge as the seasonal variation. Cycles for biomass and production ofthese organisms were generally out of phase, rendering it difficultto estimate the net grazing of bacteria by microflagellates atindividual time points. For evaluation of factors that control thefate of carbon cycled by bacterial, experiments were conducted toexamine bacterial growth rates in the absence of predators. Thisexamination resulted in low bacterial growth rates when biomass washigh, and rapid growth rates typically occurred near minimumpopulations. Further analysis suggested that microflagellatepredation was greater than bacterial production during minimumbacterial growth rates. With integration of production and grazingrates over the study period, factors controlling bacterial growthwere examined. Using this approach, 71% of the bacterial productionwas grazed by < 8.0µm predators. The microflagellate biomassproduction was 41% of the grazing rate on bacteria. The total amountof bacterial production assimilated into microflagellate biomass was29%. However, based on the variations in biomass and activity of themicrobial assemblages, it appears that substrate and predation exertalternating control on bacterial abundance and production.  相似文献   

15.
The seasonal distribution of plankton in a Mediterranean hypersalinecoastal lagoon has been studied through a dataset, comprisingthe taxonomic composition and the size–abundance distributionof both phyto- and zooplankton, measured by image analysis techniquesduring a one-year time series of weekly samplings. The studiedorganisms ranged from small nanoplanktonic heterotrophic flagellates(2 µm diameter) to fish larvae (>2 µm). The phytoplanktonannual succession was characterized by a winter period dominatedby Rhodomonas spp. and Cryptomonas spp. with Cyclotella spp.as the main diatom represented, a spring phase where diatoms(mainly Cyclotella) were the dominant group with some monospecificblooms of other diatoms (mainly of Chaetoceros sp.), a summerphase characterized by diatoms with blooms of Niztschia closterium,and a post-summer phase where dinoflagellates increased withpeaks of Ceratium furca. High densities of the microbial foodweb elements, flagellates and ciliates, indicate the importanceof the microbial loop in the ecosystem. Meroplankton contributedwidely to the seasonal character of the zooplankton distribution.Copepods, represented by Oithona nana, Centropages ponticusand Acartia spp. (mainly latisetosa), remained relatively constantthroughout the year, exhibiting a lower density in the warmerwater period (July–September). At the end of the samplingperiod, a massive proliferation of copepods (>1000 ind l–1), mainly due to O. nana, took place. The autotrophsto heterotrophs biovolume ratio (A:H) remained lower than 1throughout the year except when, occasionally, large phytoplanktoncells bloomed. Persistent very low values of A:H suggest thatadditional sources of energy, such as the microbial loop ordetrital pathways, would be needed to sustain the high heterotrophicbiovolume found in the lagoon.  相似文献   

16.
The contribution of nanoplankton (< 10 µm fraction)to winter – spring (1977 – 78) and summer (1978,1979) phytoplankton nitrogen dynamics in lower NarragansettBay was estimated from ammonium, nitrate and urea uptake ratesmeasured by 15N tracer methods. During the winter – spring,an average of 80% of chlorophyll a and nitrogen uptake was associatedwith phytoplankton retained by a 10 µm screen. In contrast,means of 51 – 58% of the summer chlorophyll a standingcrops and 64 – 70% of nitrogen uptake were associatedwith cells passing a 10 µm screen. Specific uptake ratesof winter – spring nanoplankton populations were consistentlylower than those of the total population. Specific uptake ratesof fractionated and unfractionated summer populations were notsignificantly different. Ammonium uptake averaged between 50and 67% of the total nitrogen uptake for both the total populationand the < 10µm fraction. The total population and the10 µm fraction displayed similar preferences for individualnitrogen species. Though composed of smaller cells, flagellatedominated nanoplankton assemblages may not necessarily takeup nitrogen at faster rates than diatom dominated assemblagesof larger phytoplankters in natural populations. 1Present address: Australian Institute of Marine Science, P.M.B.No. 3, Townsville M.S.O., Qld. 4810, Australia  相似文献   

17.
A dual radioactive-labelled bacteria technique using Vibrio(DRLV), developed for laboratory studies on bacterivory, hasbeen refined for use at the concentrations of prey and predatorstypcially found at sea. Experiments with estuarine water collectedin spring and in autumn showed that bacterivorous nanoflagellates(HNF) (concentration 1.38±0.35x103 HNF ml–1) ingested2.7±0.96 DRLV flagellate1–1 h–1 at concentrationsof 0.8–2.2x106 DRLV ml–1 in the presence of 2.04±0.68x106natural bacteria ml–1. The method was also applied tosamples collected in October in the Celtic Sea, when on average1 ml of water from the surface layer contained 1.41±0.16x106natural bacteria, 14.6x103 cyanobacteria, 530±170 HNF,7.3±3.0x103 phototrophic nanoflagellates (1.5–4µm), 49.0±26.5 phototrophic dinoflagellates, 36.3±12.6heterotrophic dinoflagellates and 21.3±9.5 Leucocryptosmarina. Under these conditions the grazing rate in most samplesdid not exceed the coefficient of variation of the method (2%),although we estimate the grazing rate was -1.6 DRLV HNF–1h–1 and on one occasion a rate of 2.45 was recorded. Thegross growth efficiency for protein of -30% displayed by naturalHNF means that they could release about  相似文献   

18.
The abundance, biomass and community structure of phytoplankton,bacterioplankton and protozooplankton in a maritime Antarcticlake were determined at approximately monthly intervals fromDecember 1994 to February 1996 and compared with data from earlierstudies. Heywood Lake has become significantly eutrophic duringthe last three decades because of excreta from the expandingfur seal population in its catchment. Marked seasonal variationsin the abundance, composition and productivity of biota werecorrelated with the seasonality of both physical factors andnutrient levels. Protozooplankton were abundant, diverse andusually dominated by heterotrophic nanoflagellates (HNF), withHNF abundance peaking at 2.35 x 107 l–1 in summer. Highnumbers of naked amoebae were sometimes present, reaching amaximum of 4.8 x 103 l–1 in March. An estimated 89 speciesof protozoa were observed during the study, indicating substantiallymore diversity than is found in continental Antarctic lakes.Diversity was highest in spring and lowest in winter, when theentire water column became anoxic and the plankton were dominatedby bacteria and a few species of relatively large anaerobicflagellates. The current status of the lake is compared withdata for continental Antarctic and lower latitude lakes. Earlierstudies of biota and physical/chemical parameters in HeywoodLake are used to examine the effects of eutrophication overthree decades. Observed changes include increased microbialabundance and changes in both community structure and seasonalpatterns.  相似文献   

19.
Combined methods of size fractionation and single-cell isolationwere used to investigate the seasonal variation of phytoplanktondynamics in Tokyo Bay with an emphasis on primary productivity.Red tides occurred in Tokyo Bay from spring to autumn; a diatom,Skeletonema costatum, and a raphidophycean, Heterosigma akashiwo,were the most important primary producers. Small diatoms andflagellates, including these species, were dominant and showedrapid changes of phytoplankton community structure within severaldays in summer. The nanoplankton (3–20 µm) fractioncontributed most to chlorophyll a concentration and primaryproductivity during spring to autumn, whereas the microplankton(>20 µm) contribution was remarkable in winter. Picoplankton(<3 µm phytoplankton) remained relatively constantthroughout the year. A significant reverse relationship wasobtained between assimilation rate and chlorophyll a contentfor the total and nanoplankton population; the assimilationrate was high at the initial phase of the bloom, then decreasedto a minimum level at the peak of the bloom. Factors controllingthe reduction of assimilation rates at the peak, and changesin phytoplankton community structure, are discussed.  相似文献   

20.
The seasonal development of bacteria was studied in the hypertrophiccoastal lagoon Ciénaga Grande de Santa Marta (Caribbeancoast of Colombia). This large but only 1.5 m deep lagoon issubject to strong seasonal variations of salinity from almostfully marine (April/May) to brackish conditions in October/November.Chlorophyll ranged from 6 to 182 µg L–1, and grossprimary production amounted to 1690 g C m–2 per year.Total bacterial number (TBN) ranged from 6.5 to 90.5 x 109 cellsL–1 and bacterial biomass (BBM) from 77 to 1542 µgC L–1, which are among the highest ever reported for naturalcoastal waters. Neither TBN nor BBM varied significantly withsalinity, phytoplankton or seston concentrations. Only the bacterialmean cell volume showed a significant relation to salinity,being highest (0.066 µm3) during the period of increasingand lowest (0.032 µm3) during decreasing salinity. Bacterialprotein accounted for 24% (19–26%) and phytoplankton proteinfor 57% (53–71%) of total seston protein. The ratio (annualmean) of bacterial carbon to phytoplankton carbon was 0.44 (range0.04–1.43). At low phytoplankton abundance [chlorophylla (Chl a) < 25 µg L–1], bacterial carbon wasalmost equal to phytoplankton biomass (i.e. the mean ratio was1.04). In contrast, at Chl a > 100 µg L–1, BBMwas low compared to phytoplankton biomass (the mean ratio was0.16). In general, BBM varied less than phytoplankton biomass.Most probably, the missing correlation between bacterial andphytoplankton variables was due to (i) organic material partlyderived from allochthonous sources serving as food resourcefor bacteria and (ii) a strong resuspension of bacteria fromthe sediment caused by frequent wind-induced mixing of the veryshallow lagoon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号