首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 905 毫秒
1.
Innate immunity plays an important role in protecting birds early in development. The strength of innate immunity in nestlings appears to be affected by heritable and early maternal effects, as well as later environmental effects. To explore factors affecting innate immunity, we conducted a partial cross‐fostering experiment in nestling tree swallows Tachycineta bicolor. The ability of nestling blood plasma to kill Escherichia coli in vitro was influenced by heritable or early maternal effects and was unrelated to body condition of nestlings or brood size of the foster nest. The relative importance of heritable and early maternal effects versus environmental effects on nestling hematocrit (packed volume of red blood cells) and body condition were also examined. Hematocrit was significantly influenced by the nest in which nestlings were reared, though it was not related to nestling body condition. Body condition was significantly influenced by the nest in which nestlings were reared, though it was also weakly influenced by heritable or early maternal effects. In summary, heritable and early maternal effects are stronger predictors than rearing conditions of innate immunity in nestling tree swallows. Furthermore, hematocrit is largely environmentally determined but is not related to body condition or innate immunity, as measured in this study.  相似文献   

2.
Life history theory predicts a trade-off between number and quality of offspring. Reduced quality with increasing brood size may arise from a decrease in body condition or in immunocompetence that would be important in fighting off virulent parasites by immunologically naive offspring. We tested the effect of rearing conditions on immune function of nestling great tits (Parus major) by reducing or increasing broods by two hatchlings. In the middle of the nestling period (on day 8), nestlings from enlarged broods developed lower T cell responses [as measured from the cutaneous swelling reaction to injection with phytohaemagglutinin (PHA)] and tended to have lower total leukocyte and lymphocyte concentrations in their peripheral blood than nestlings from reduced broods. Brood size manipulation affected the PHA response of nestlings most strongly in small clutches, suggesting that nestling immune function was dependent on their parents’ condition, as estimated by original clutch size. Intra-brood differences in nestling mortality were unrelated to immune parameters, but nestlings in broods without mortality had a stronger PHA response, higher concentration of lymphocytes and higher body mass on day 15 than nestlings in broods with mortality. These results support the prediction that the immune function of altricial birds is affected by rearing conditions, and that growth and immune parameters are related to inter-brood differences in nestling survival. Received: 1 February 1999 / Accepted: 19. July 1999  相似文献   

3.
The onset of incubation before the end of laying imposes asynchrony at hatching and, therefore, a size hierarchy in the brood. It has been argued that hatching asynchrony might be a strategy to improve reproductive output in terms of quality or quantity of offspring. However, little is known about the mediating effect of hatching asynchrony on offspring quality when brood reduction occurs. Here, we investigate the relationship between phenotypic quality and hatching asynchrony in Common Kestrel Falco tinnunculus nestlings in Spain. Hatching asynchrony did not increase breeding success or nestling quality. Furthermore, hatching asynchrony and brood reduction had different effects on nestlings’ phytohaematogglutinin (PHA)‐mediated immune response and nestling growth. In asynchronous and reduced broods (in which at least one nestling died), nestlings showed a stronger PHA‐mediated immune response and tended to have a smaller body size compared with nestlings raised in synchronous and reduced broods. When brood reduction occurred in broods hatched synchronously, there was no effect on nestling size, but nestlings had a relatively poor PHA‐mediated immune response compared with nestlings raised in asynchronous and reduced broods. We suggest that resources for growth can be directed to immune function only in asynchronously hatched broods, resulting in improved nestling quality, as suggested by their immune response. We also found that males produced a greater PHA‐mediated immune response than females only in brood‐reduced nests without any effect on nestling size or condition, suggesting that females may trade off immune activities and body condition, size or weight. Overall, our results suggest that hatching pattern and brood reduction may mediate resource allocation to different fitness traits. They also highlight that the resolution of immune‐related trade‐offs when brood reduction occurs may differ between male and female nestlings.  相似文献   

4.
Plumage ornamentation often signals the quality of males and, therefore, female birds may choose elaborately ornamented mates to increase their fitness. Such mate choice may confer both direct and indirect benefits to the offspring. Males with elaborate ornaments may provide good genes, which can result in better nestling growth, survival or resistance against parasitic infections. However, these males may also provision their offspring with more food or food of better quality, resulting in nestlings growing at a higher rate or fledging in better condition. In this study, we examined if there was an association between male ornamentation and malaria infection in Collared Flycatchers (Ficedula albicollis). We also investigated offspring performance in relation to malaria infection in the parents and the quality of the genetic and rearing fathers (assessed by the size of two secondary sexual characters) under simulated good and bad conditions (using brood size manipulation). We found that secondary sexual characters did not signal the ability of males to avoid parasitic infections, and malaria infection in the genetic and the rearing parents had no effect on nestling growth and fledging size. Our results do show, however, that it may be beneficial for the females to mate with males with a large forehead patch because wing feathers of nestlings reared by large-patched males grew at a higher rate. Fast feather growth can result in earlier fledging which, in turn, could improve nestling survival in highly variable environments or under strong nest predation.  相似文献   

5.
This paper aims at partitioning genetic and environmental contribution to the phenotypic variance in nestling immune function measured with the hypersensitivity test after inoculation with phytohaemagglutinin. A cross-fostering experiment with artificial enlargement of some broods was conducted. Variation in nestling immune response was related to their common origin, which suggests heritable component of cell-mediated immunity. A common rearing environment also explained a significant part of variation. However, deterioration of rearing conditions as simulated by enlargement of brood size did not affect nestling immunocompetence, although it affected nestling body mass. Variation in body mass explained some of the variation in immune response related to rearing environment, which means that growth is more sensitive to the shifts in rearing conditions than the development of immune function. Heritable variation in immune response suggests that there should be potential for selection to operate and the micro evolutionary changes in immunity of flycatcher nestlings are possible.  相似文献   

6.
ABSTRACT Multiple factors potentially affect nestling survival and maternal reproductive success. However, little is known about the relative importance of different factors when operating simultaneously or whether the same factors are important for nestlings and their mothers. We determined the effect of hatching asynchrony, individual egg size, mean egg size, nestling sex, and clutch initiation date on the survival of individual nestlings and on maternal reproductive success in Common Grackles (Quiscalus quiscula) from 2004 to 2006 in central Illinois. Factors most important to maternal success differed from those important for individual nestling growth and survival. Hatching asynchrony had the greatest within‐nest influence on the fate of nestlings; the earlier a nestling hatched relative to siblings, the greater its mass and likelihood of fledging. Clutch size had the greatest influence on maternal reproductive success, with females with larger clutches fledging more young. Thus, both nestling survival and maternal success were largely determined by a single, albeit different, factor. A possible explanation for the apparent unimportance of most factors we measured in determining maternal success is that we did not consider variation among females. Individual variation in maternal attributes such as condition, size, age, experience, or mate quality may result in females tailoring clutch attributes (i.e., egg size, sex, and degree of hatching asynchrony) in ways that allow them to maximize their reproductive success. The discordance between factors that benefited mothers versus their offspring illustrates the importance of considering the maternal consequences of any factor that appears to affect offspring survival. Factors that increase the mass and survival of some offspring may not result in increased maternal reproductive success.  相似文献   

7.
Variable environments impose constraints on adaptation by modifying selection gradients unpredictably. Optimal bird development requires an adequate thermal range, outside which temperatures can alter nestling physiology, condition and survival. We studied the effect of temperature and nest heat exposure on the reproductive success of a population of double‐brooded Spotless Starlings Sturnus unicolor breeding in a nestbox colony in central Spain with a marked intra‐seasonal variation in temperature. We assessed whether the effect of temperature differed between first and second broods, thus constraining optimal nest‐site choice. Ambient temperature changed greatly during the chick‐rearing period and had a strong influence on nestling mass and all body size measures we recorded, although patterns of clutch size or nestling mortality were not influenced. This effect differed between first and second broods: nestlings were found to have longer wings and bills with increasing temperature in first broods, whereas the effect was the opposite in second broods. Ambient temperature was not related to nestling body mass or tarsus‐length in first broods, but in second broods, nestlings were lighter and had smaller tarsi with higher ambient temperatures. The exposure of nestboxes to heat influenced nestling morphology: heat exposure index was negatively related to nestling body mass and wing‐length in second broods, but not in first broods. Furthermore, there was a positive relationship between nest heat exposure and nestling dehydration. Our results suggest that optimal nest choice is constrained by varying environmental conditions in birds breeding over prolonged periods, and that there should be selection for parents to switch from sun‐exposed to sun‐protected nest‐sites as the season progresses. However, nest‐site availability and competition for sites are likely to impose constraints on this choice.  相似文献   

8.
Animals should invest in the immune system to protect themselves from parasites, but the cost of immune responses may limit investment depending on resource availability. In birds' broods, senior and junior chicks in size hierarchies face different rearing conditions, and thus we predicted that factors affecting immune response should differ between them. In asynchronously hatched hoopoe Upupa epops broods, we found that the immune response of senior nestlings was not related to their body condition, but positively related to risk of parasitism (which was indirectly estimated by laying date). This suggests that their immunocompetence is not limited by access to resources, and they can differentially invest in immune response with increasing risk of parasitism. On the other hand, immune response of junior nestlings was related to their body condition, but secondarily also to risk of parasitism. Our results agree with previous studies that have found significant influence of nutritional status and risk of parasitism on nestlings immune defence, but show that the effects of these environmental factors on nestling immunocompetence differ between nestlings occupying high and low rank positions in size hierarchies. The possible influence of maternal effects on the results found is also discussed.  相似文献   

9.
Genetic estimates of the variability of immune responses are rarely examined in natural populations because of confounding environmental effects. As a result, and because of the difficulty of pinpointing the genetic determinants of immunity, no study has to our knowledge examined the contribution of specific genes to the heritability of an immune response in wild populations. We cross-fostered nestling house sparrows to disrupt the association between genetic and environmental effects and determine the heritability of the response to a classic immunological test, the phytohaemagglutinin (PHA)-induced skin swelling. We detected significant heritability estimates of the response to PHA, of body mass and tarsus length when nestlings were 5 and 10 days old. Variation at Mhc genes, however, did not explain a significant portion of the genetic variation of nestling swelling to PHA. Our results suggest that while PHA-induced swelling is influenced by the nest of origin, the importance of additive genetic variation relative to non-additive genetic variation and the genetic factors that influence the former in wild populations still need to be identified for this trait.  相似文献   

10.
Environmental conditions often vary in space and time, and this may explain variation in the expression of phenotypic traits related to individual quality, such as ornamental coloration. Furthermore, the direction and strength of the relationship between coloured trait expression and individual quality might vary under contrasting conditions. These issues have been explored in adult birds but much less so in nestlings, which are more likely to experience different selective pressures and different physiological trade‐offs than adults. Here, we empirically investigated the effects of contrasting breeding and diet conditions on the expression of carotenoid‐based colour traits displayed by marsh harrier (Circus aeruginosus) nestlings. We studied the variation in coloration, body condition, and immune responsiveness of nestlings in four populations over a 5‐year period. We characterized spatiotemporal differences in rearing conditions experienced by C. aeruginosus nestlings in terms of breeding (laying date, clutch size, and number of nestlings hatched and fledged) and diet (percentage of mammal in diet and prey diversity) conditions. We found that breeding conditions influenced the co‐variation between coloration and immune responsiveness in female nestlings, and that diet conditions influenced the condition‐dependence of nestling coloration in later‐hatched nestlings. In addition, breeding conditions influenced nestling body condition and immune responsiveness, whereas diet conditions influenced nestling coloration and body condition. Our study highlights that nestling phenotype (levels of signalling, circulating carotenoids, and immunity) varies both spatially and temporally, and that some of this variation is related to differences in breeding and diet conditions. Moreover, under contrasting conditions, the direction of the relationships between nestling carotenoid‐based coloration and nestling quality may also vary. In order to fully understand the evolution and maintenance of colour traits in nestling birds, studies and experiments should ideally be replicated under contrasting rearing conditions. © 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, ?? , ??–??.  相似文献   

11.
Cell-mediated immunity is an important vertebrate defense against pathogens, but components of this response may vary in quality. Such variation could arise through the effects of ecology on optimal immunocompetence. We used injections of phytohaemagglutinin (PHA) to measure the factors influencing T-cell proliferation in nestling house sparrows (Passer domesticus). Bivariate analyses revealed positive associations with nestling mass and size, but no effect of ectoparasites. The response to PHA was, however, strongly affected by brood identity. A mixed model with brood identity as a random factor and nestling mass, size, number of ectoparasites, parental feeding rate, clutch size, brood size at hatching, and date uncovered significant positive correlations between PHA response and both nestling mass and the brood size at hatching. Because many of these variables are related hierarchically, we used path analysis to explore the relationships in more detail. We found that a nestling immune response was affected by several indirect paths. Brood size at hatch had both positive and negative paths, and date in the season had several indirect negative effects through its effect on brood size and nestling mass. The approach used and the results obtained offer some new ideas for incorporating immune responses into life history theory.  相似文献   

12.
Visual signals of quality in offspring, such as plumage colour, should honestly advertise need and/or body condition, but links between nutritional status, physiological performance and the expression of colours are complex and poorly understood. We assess how food stress during rearing affected two physiological measures (T‐cell‐mediated immune function and corticosterone level in feathers: CORTf) and how these two variables were related to carotenoid and melanin coloration in Northern Flicker Colaptes auratus nestlings. We were also interested in how these two physiological measures were influenced by the sex of the nestling. We experimentally manipulated brood size to alter levels of food availability to nestlings during development. We measured carotenoid‐based colour (chroma and brightness) in wing feathers and the size of melanin spots on breast feathers. In agreement with our prediction, nestlings in the reduced brood treatment had better body condition and stronger immune responses than those in the control and brood enlargement treatments. This supports the hypothesis that immune responses are energetically costly. In contrast, CORTf was not related to nestling body condition or sex and was unaffected by brood size manipulation. Nestlings of both sexes with stronger T‐cell‐mediated immune responses had larger melanin spots but only males with higher immune responses also had brighter flight feathers. Feather brightness decreased with increasing CORTf levels. Our study is one of the few to examine the relationship between multiple physiological and plumage measures in nestlings and shows that plumage colour and immune function signalled body condition of nestlings, but that feather corticosterone levels did not.  相似文献   

13.
While evidence is accumulating that stress-induced glucocorticoid responses help organisms to quickly adjust their physiology and behaviour to life-threatening environmental perturbations, the function and the ecological factors inducing variation in baseline glucocorticoid levels remain poorly understood. In this study we investigated the effects of brood size by experimentally manipulating the number of nestlings per brood and the effect of weather condition on baseline corticosterone levels of nestling Alpine swifts (Apus melba). We also examined the potential negative consequences of an elevation of baseline corticosterone on nestling immunity by correlating corticosterone levels with ectoparasite intensity and the antibody production towards a vaccine. Although nestlings reared in enlarged broods were in poorer condition than nestlings reared in reduced broods, they showed similar baseline corticosterone levels. In contrast, nestling baseline corticosterone levels were higher immediately after cold and rainy episodes with strong winds. Neither nestling infestation rate by ectoparastic flies nor nestling antibody production against a vaccine was correlated with baseline corticosterone levels. Thus, our results suggest that altricial Alpine swift nestlings can quickly modulate baseline corticosterone levels in response to unpredictable variations in meteorological perturbation but not to brood size which may be associated with the degree of sibling competition. Apparently, short-term elevations of baseline corticosterone have no negative effects on nestling immunocompetence.  相似文献   

14.
Post-mating sexually selected signals are expected to indicateparental quality. The good parent model assumes that expressionof the sexual character positively reflects parental ability,resulting in a potential link between the exaggeration of thecharacter and nestling-fitness traits. We tested this predictionin a population of a monogamous passerine, the magpie (Picapica), for which nest size is known to act as a post-matingsexually selected signal. We provided a food supplement to halfof the magpie nestlings in each nest, keeping the other halfas control nestlings. We found that food-supplemented nestlingsexperienced a significantly higher T-cell-mediated immune responseand a tendency to an increased condition index. In accordancewith the good parent model, we found that nest size was positivelyrelated to T-cell mediated immune response for control magpie,whereas this relationship was nonexistent in food-supplementednestlings. In addition, the difference in T-cell mediated immuneresponse between food-supplemented and control nestlings ofthe same nest was principally explained by nest size. Basedon our results, we discuss that magpie pairs with large nestsprovided their nestlings with higher quality food as comparedto pairs with smaller nests, nest size thereby being an indicatorof parental ability. To our knowledge, this is the first studyshowing a link between a post-mating sexually selected signaland nestling immunocompetence, a trait closely related to fitnessin birds.  相似文献   

15.
Knowledge of the quantitative genetics of resistance to parasitism is key to appraise host evolutionary responses to parasite selection. Here, we studied effects of common origin (i.e. genetic and pre-hatching parental effects) and common rearing environment (i.e. post-hatching parental effects and other environment effects) on variance in ectoparasite load in nestling Alpine swifts (Apus melba). This colonial bird is intensely parasitized by blood sucking louse-flies that impair nestling development and survival. By cross-fostering half of the hatchlings between pairs of nests, we show strong significant effect of common rearing environment on variance (90.7% in 2002 and 90.9% in 2003) in the number of louse-flies per nestling and no significant effect of common origin on variance in the number of louse-flies per nestling. In contrast, significant effects of common origin were found for all the nestling morphological traits (i.e. body mass, wing length, tail length, fork length and sternum length) under investigation. Hence, our study suggests that genetic and pre-hatching parental effects play little role in the distribution of parasites among nestling Alpine swifts, and thus that nestlings have only limited scope for evolutionary responses against parasites. Our results highlight the need to take into consideration environmental factors, including the evolution of post-hatching parental effects such as nest sanitation, in our understanding of host-parasite relationships.  相似文献   

16.
Traditionally, studies of sexually size-dimorphic birds and mammals report that the larger sex is more sensitive to adverse environmental conditions during ontogeny. However, recent studies in avian species that exhibit moderate size-dimorphism indicate that the smaller sex may be more sensitive to poor rearing conditions. To better understand sex-specific sensitivity in a passerine exhibiting moderate size-dimorphism, we examined growth, cell-mediated immunity (CMI) and survival of European starling Sturnus vulgaris nestlings following an experimental reduction of maternal rearing ability (via a feather-clipping manipulation). Contrary to conventional theory, daughters showed reduced growth in both body mass and measures of structural size in response to the maternal treatment. In contrast, sons showed no reductions in any of these traits in relation to the treatment. No sex-specific differences in nestling CMI were found for either group, although CMI of nestlings raised by manipulated mothers were higher than those of control nestlings. Finally, fledging sex ratios did not change from those at hatching indicating that neither sex appeared differentially sensitive to the maternal treatment in terms of mortality. These results reveal that variation in the quality of the rearing environment can have significant effects on the smaller sex of a passerine exhibiting moderate dimorphism and as such support recent studies of species with small-moderate sexual size-dimorphism. Combined results suggest that sex-specific effects of environmental variation on nestling development may be both context- (i.e., brood size, resource level, hatching order) and temporally- (when during development they occur) specific. Furthermore, more studies are needed that examine multiple traits at several developmental stages and then follow the sexes over the longer-term to examine potential effects on fitness.  相似文献   

17.
Summary First clutches of double-brooded eastern phoebes Sayornis phoebe were manipulated (up two eggs, down 2 eggs or no change) to test for intraseasonal reproductive tradeoffs and to test whether size of first brood influenced food delivery rates to nestlings and nestling quality in second broods.Considering all nests from both broods, rate of feeding nestlings increased linearly with brood size but nestling mass per nest decreased with increasing brood size. High nestling weights in small broods may have resulted from parents delivering better quality food, but we did not test this.Among treatment groups in first broods, nestlings from decreased broods weighed more than those in control or increased broods. Treatment did not influence the likelihood that second nests would be attempted after successful first nests nor did it alter the interval between nests. Nestlings of parents that renested weighed more than those of parents that did not, regardless of treatment, suggesting that post-fledging care may preclude renesting. Mass of individual females did not change between broods, regardless of brood size. Clutch sizes of second attempts were not affected by manipulations of first broods but increasing first broods reduced the number of nestlings parents were able to raise to day 11 in their second broods. However, manipulation of first broods did not affect mean nestling mass per nest of nestlings that survived to day 11.In phoebes, parents of small first broods are able to raise nestlings in better condition. We predict that in harsh years, parents of small first broods would be more likely to renest. Parents of enlarged first broods sacrificed quality of offspring in second broods, which seems a reasonable strategy if nestlings from second broods have lower reproductive value.  相似文献   

18.
Elena Arriero 《Oecologia》2009,159(4):697-704
Rearing conditions may influence ontogeny and functioning of the immune system. Activation of different mechanisms involved in host disease resistance and their internal regulation can be affected by intrinsic and extrinsic factors influencing development. I investigated how rearing environment can influence associations between humoral and cellular constituents of immune defence in nestling blue tits (Cyanistes caeruleus). The ability to mount a cell-mediated immune response was estimated as a hypersensitivity reaction to phytohaemagglutinin, and the ontogeny of humoral immunity was determined by assessing circulating levels of total IgG in 15-day-old nestlings. Heterogeneity in rearing conditions was evoked by placing nest-boxes in areas differing in habitat structural characteristics, and examining natural variation in nest ectoparasite infestations, hatching date, brood size and brood sex-ratio. Habitat characteristics, parasitism and hatching date may shape associations between different components of the immune system in developing birds. I discuss the effects of rearing conditions on the interaction between different arms of the immune system and the implications for understanding negative correlations within the immune system at the individual and brood level.  相似文献   

19.
Carotenoids are important as pigments for bright coloration of animals, and as physiologically active compounds with a wide array of health-related functions. Carotenoid-dependent coloration may have evolved as a signal to conspecifics; however, factors that may limit availability of carotenoids are poorly known. We investigated how the acquisition of carotenoids may be constrained by availability in the environment, diet, genetic make-up and health status of wild American kestrels (Falco sparverius). Plasma concentrations of siblings at the time of fledging showed a high degree of resemblance; however, a cross-fostering experiment revealed that variance was largely explained by nest of rearing, rather than nest of origin, thus indicating a low genetic component. A multivariate analysis of attributes of nestlings (sex, size, plasma proteins, immune function), parental reproduction (laying date, clutch size) and rearing conditions (brood size, size hierarchy, nestling mortality) showed only a small significant effect of leucocyte differentials on carotenoid concentrations of nestlings. A strong environmental effect on plasma carotenoids was demonstrated by levels of adult kestrels being correlated within mated pairs, and having a significant association with the abundance of voles, the primary prey species, per territory.  相似文献   

20.
We investigated whether the variation in T-cell-mediated immune function of blue tit nestlings affected their fledgling success and the probability of local survival. We studied the relationship between immune function and survival under two rearing conditions: control, unmanipulated, and experimentally enlarged broods. Brood enlargement had negative effects on nestling immune response. Immune response was positively related to fledgling success and it predicted the probability of local recruitment. However, the relationship between immune response and the probability of recruitment was significantly positive only among control broods and nonsignificant among enlarged broods. The effect of immune response on the recruitment probability was not affected by variation in body mass. Our study suggests that selection for immune responsiveness seems to be weak or even absent under unfavourable rearing conditions as simulated by brood size enlargement. Therefore, year-to-year environmental variation and environmental heterogeneity may constrain evolution towards higher immune responsiveness.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号