首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In a recent study of the North American biogeography of the red algae genus Hildenbrandia , the presence of group I introns were noted in the nuclear SSU rRNA gene of the marine species H. rubra (Hildenbrandiales). Group I introns in the nuclear encoded rRNAs have been previously reported in the Hildenbrandiales as well as the Bangiales. All reported introns within the red algae have been identified as belonging to the IC1 subclass and occur at two insertion sites in the nuclear small subunit rRNA (516 and 1506). However, an unclassified intron was discovered at position 989 in the nuclear SSU rRNA gene of a collection of H. rubra from British Columbia, Canada. We have determined that the intron is a member of the IE subclass and this is the first report of an IE intron and an intron in position 989 in the red algae. Phylogenetic analyses of the intron sequences reveal a close relationship between this group IE intron and similar ascomycete and basidiomycete fungal IE introns in the nuclear SSU rRNA genes at positions 989 and 1199. In addition, a common unique helix (structural signature) in the P13 domain of the Hildenbrandia intron and those of the fungi at the 989 and 1199 IE positions in the nuclear SSU rRNA gene also indicates a close relationship. Hence, this study provides evidence for a possible lateral transfer of the IE intron in position 989 between fungal and red algal nuclear SSU rRNA genes.  相似文献   

2.
In a recent study of the North American biogeography of the red algae genus Hildenbrandia, the presence of group I introns were noted in the nuclear SSU rRNA gene of the marine species H. rubra (Hildenbrandiales). Group I introns in the nuclear encoded rRNAs have been previously reported in the Hildenbrandiales as well as the Bangiales. All reported introns within the red algae have been identified as belonging to the IC1 subclass and occur at two insertion sites in the nuclear small subunit rRNA (516 and 1506). However, an unclassified intron was discovered at position 989 in the nuclear SSU rRNA gene of a collection of H. rubra from British Columbia, Canada. We have determined that the intron is a member of the IE subclass and this is the first report of an IE intron and an intron in position 989 in the red algae. Phylogenetic analyses of the intron sequences reveal a close relationship between this group IE intron and similar ascomycete and basidiomycete fungal IE introns in the nuclear SSU rRNA genes at positions 989 and 1199. In addition, a common unique helix (structural signature) in the P13 domain of the Hildenbrandia intron and those of the fungi at the 989 and 1199 IE positions in the nuclear SSU rRNA gene also indicates a close relationship. Hence, this study provides evidence for a possible lateral transfer of the IE intron in position 989 between fungal and red algal nuclear SSU rRNA genes.  相似文献   

3.
A previous study of the North American biogeography of the red algal genus Hildenbrandia noted the presence of group I introns in the nuclear small subunit (SSU) rRNA gene of the marine species H. rubra (Sommerf.) Menegh. Group IC1 introns have been previously reported at positions 516 and 1506 in the nuclear SSU RNA genes in the Bangiales and Hildenbrandiales. However, the presence of an unclassified intron at position 989 in a collection of H. rubra from British Columbia was noted. This intron is a member of the IE subclass and is the first report of this intron type in the red algae. Phylogenetic analyses of the intron sequences revealed a close relationship between this IE intron inserted at position 989 and similar fungal IE introns in positions 989 and 1199. The 989 IE introns formed a moderately to well‐supported clade, whereas the 1199 IE introns are weakly supported. Unique structural helices in the P13 domain of the 989 and 1199 IE introns also point to a close relationship between these two clades and provide further evidence for the value of secondary structural characteristics in identifying homologous introns in evolutionarily divergent organisms. The absence of the 989 IE intron in all other red algal nuclear SSU rRNA genes suggests that it is unlikely that this intron was vertically inherited from the common ancestor of the red algal and fungal lineages but rather is the result of lateral transfer between fungal and red algal nuclear SSU rRNA genes.  相似文献   

4.
Group I introns are widespread in eukaryotic organelles and nuclear- encoded ribosomal DNAs (rDNAs). The green algae are particularly rich in rDNA group I introns. To better understand the origins and phylogenetic relationships of green algal nuclear-encoded small subunit rDNA group I introns, a secondary structure-based alignment was constructed with available intron sequences and 11 new subgroup ICI and three new subgroup IB3 intron sequences determined from members of the Trebouxiophyceae (common phycobiont components of lichen) and the Ulvophyceae. Phylogenetic analyses using a weighted maximum-parsimony method showed that most group I introns form distinct lineages defined by insertion sites within the SSU rDNA. The comparison of topologies defining the phylogenetic relationships of 12 members of the 1512 group I intron insertion site lineage (position relative to the E. coli SSU rDNA coding region) with that of the host cells (i.e., SSU rDNAs) that contain these introns provided insights into the possible origin, stability, loss, and lateral transfer of ICI group I introns. The phylogenetic data were consistent with a viral origin of the 1512 group I intron in the green algae. This intron appears to have originated, minimally, within the SSU rDNA of the common ancestor of the trebouxiophytes and has subsequently been vertically inherited within this algal lineage with loss of the intron in some taxa. The phylogenetic analyses also suggested that the 1512 intron was laterally transferred among later-diverging trebouxiophytes; these algal taxa may have coexisted in a developing lichen thallus, thus facilitating cell- to-cell contact and the lateral transfer. Comparison of available group I intron sequences from the nuclear-encoded SSU rDNA of phycobiont and mycobiont components of lichens demonstrated that these sequences have independent origins and are not the result of lateral transfer from one component to the other.   相似文献   

5.
The nucleotide sequence of the gene coding for small ribosomal subunit RNA in the basidiomycete Ustilago maydis was determined. It revealed the presence of a group I intron with a length of 411 nucleotides. This is the third occurrence of such an intron discovered in a small subunit rRNA gene encoded by a eukaryotic nuclear genome. The other two occurrences are in Pneumocystis carinii, a fungus of uncertain taxonomic status, and Ankistrodesmus stipitatus, a green alga. The nucleotides of the conserved core structure of 101 group I intron sequences present in different genes and genome types were aligned and their evolutionary relatedness was examined. This revealed a cluster including all group I introns hitherto found in eukaryotic nuclear genes coding for small and large subunit rRNAs. A secondary structure model was designed for the area of the Ustilago maydis small ribosomal subunit RNA precursor where the intron is situated. It shows that the internal guide sequence pairing with the intron boundaries fits between two helices of the small subunit rRNA, and that minimal rearrangement of base pairs suffices to achieve the definitive secondary structure of the 18S rRNA upon splicing.  相似文献   

6.
7.
Chlorophyll synthesis is stimulated by red light in the green alga Ulva rigida C. Ag. and in the red alga Porphyra umbilicalis (L.) Kützing. Because the effect of red light showed some far-red reversibility in successive red and far-red light treatments, the involvement of phytochrome or a phytochrome-like photoreceptor is suggested. The extent of the response is dependent on exposure and photon fluence rate of red-light pulses. In addition to the effect of red light, a strong stimulation of chlorophyll synthesis by blue light was only observed in Ulva rigida. The effect of blue light shows also some far-red reversibility. In the green alga the accumulated chlorophyll is higher after blue light pulses than after red light pulses. In Porphyra umbilicalis , however, the contrary is observed. In Ulva rigida the involvement of a blue light photoreceptor in addition to phytochrome or a phytochrome-like photoreceptor is proposed. The different responses to red and blue light in both algae are explained in terms of their adaptation to the natural light environment.  相似文献   

8.
Although the examination of large subunit ribosomal RNA genes (LSU rDNA) is advanced in phylogenetic studies, no corresponding sequence data from trebouxiophytes have been published, with the exception of ‘Chlorellaellipsoidea Gerneck. We determined the LSU rDNA sequence of Chlorella vulgaris Beijerinck and of the symbiotic alga of green paramecium, Chlorella sp. NC64A. A total of 59 nucleotide substitutions were found in the LSU rDNA of the two species, which are disproportionately distributed. Primarily, 65% of the substitutions were encountered in the first 800 bp of the alignment. This segment apparently has evolved eight times faster than the complete SSU rDNA sequence, making it a good candidate for a phylogenetic marker and giving a resolution level intermediate between small subunit (SSU) rDNA and internal transcribed spacers. Green algae are known as a group I intron‐rich group along with rhodophytes and fungi. NC64A is particularly rich in the introns; five introns were newly identified from the LSU rDNA sequence, which we named Cnc.L200, Cnc.L1688, Cnc.L1926, Cnc.L2184 and Cnc.L2437, following the insertion positions. In the present study we analyzed these introns with three others (Cnc.S943, Cnc.S1367 and Cnc.S1512) that had already been found in NC64A SSU rDNA. Secondary structure modeling placed these introns in the group I intron family, with four introns belonging to subgroup C1 and the other four introns belonging to subgroup E. Five of the intron insertion positions are unique to the paramecian symbiont, which may indicate relatively recent events of intron infections that includes transpositions. Intron phylogeny showed unprecedented relationships; four Cnc. IC1 introns made a clade with some green algal introns with insertions at nine different positions, whereas four Cnc. IE introns made a clade with the S651 intron (Chlorella sp. AN 1–3), which lay as a sister to the S516 insertion position subfamily.  相似文献   

9.
Antitumor activity of marine algae   总被引:16,自引:2,他引:14  
Noda  Hiroyuki  Amano  Hideomi  Arashima  Koichi  Nisizawa  Kazutosi 《Hydrobiologia》1990,204(1):577-584
Powdered tissue from 46 species of air-dried marine algae (four green, 21 brown and 21 red algae) were screened for antitumor activity. Significant activity against Ehrlich carcinoma was found in the brown algae Scytosiphon lomentaria (69.8% inhibition), Lessonia nigrescens (60.0%), Laminaria japonica (57.6%), Sargassum ringgoldianum (46.5%), the red algae Porphyra yezoensis (53.2%) and Eucheuma gelatinae (52.1%) and the green alga Enteromorpha prolifera (51.7%). Five brown and four red algae showed appreciable antitumor activity against Meth-A fibrosarcoma. To identify specific molecules with antitumor activity, 15 kinds of polysaccharide preparations of seaweed origin and 24 kinds of lipid fractions extracted from various seaweeds were tested. Appreciable inhibition of Ehrlich carcinoma was found for fucoidan preparations from Undaria pinnatifida and Sargassum ringgoldianum, for carrageenans and for porphyran. Several glycolipid and phospholipid fractions from brown and red algae were effective against Meth-A fibrosarcoma.  相似文献   

10.
Olpidiopsis porphyrae sp. nov., a marine oomycete endoparasite that infects the commercially cultivated red alga Porphyra yezoensis, is described and its phylogenetic position based on molecular data and ultrastructural morphology is discussed. O. porphyrae infects the host Porphyra by means of encysted zoospores. Spherical-shaped holocarpic thalli develop within the cytoplasm of its algal host, which produce monoplanetic, subapically biflagellate zoospores. The characteristic features of this isolate are the ellipsoidal, unicellular thallus and simple holocarpic zoosporangial development, which show morphological similarity with the genus Olpidiopsis. Laboratory infection experiments with a wide range of green, brown, and red algae revealed that O. porphyrae infects several stages of the bangialean red algae (the genera Bangia and Porphyra). Molecular phylogenetic analyses inferred from both SSU rRNA and cox2 genes showed O. porphyrae branched before the main saprolegnian and peronosporalean lineages within the monophyletic oomycete clade, indicating its phylogenetic separation from them. A single or double K-body-like organelle, which contains tubular inclusions, is found located to one side of the zoospore nucleus and shows similarities to homologous organelles previously described in O. saprolegniae. The ultrastructural morphology of O. porphyrae with zoospore initials containing K-bodies and tubular mitochondrial cristae is characteristic of oomycetes. Group I intron-like multiple insertions were found in the SSU rRNA gene of O. porphyrae. This is the first report of SSU group I introns in the class Oomycetes.  相似文献   

11.
12.
Busse I  Preisfeld A 《Protist》2003,154(1):57-69
The gene coding for the small ribosomal subunit RNA of Ploeotia costata contains an actively splicing group I intron (Pco.S516) which is unique among euglenozoans. Secondary structure predictions indicate that paired segments P1-P10 as well as several conserved elements typical of group I introns and of subclass IC1 in particular are present. Phylogenetic analyses of SSU rDNA sequences demonstrate a well-supported placement of Ploeotia costata within the Euglenozoa; whereas, analyses of intron data sets uncover a close phylogenetic relation of Pco.S516 to S-516 introns from Acanthamoeba, Aureoumbra lagunensis (Stramenopila) and red algae of the order Bangiales. Discrepancies between SSU rDNA and intron phylogenies suggest horizontal spread of the group I intron. Monophyly of IC1 516 introns from Ploeotia costata, A. lagunensis and rhodophytes is supported by a unique secondary structure element: helix P5b possesses an insertion of 19 nt length with a highly conserved tetraloop which is supposed to take part in tertiary interactions. Neither functional nor degenerated ORFs coding for homing endonucleases can be identified in Pco.S516. Nevertheless, degenerated ORFs with His-Cys box motifs in closely related intron sequences indicate that homing may have occurred during evolution of the investigated intron group.  相似文献   

13.
Positions of multiple insertions in SSU rDNA of lichen-forming fungi   总被引:11,自引:3,他引:8  
Lichen-forming fungi, in symbiotic associations with algae, frequently have nuclear small subunit ribosomal DNA (SSU rDNA) longer than the 1,800 nucleotides typical for eukaryotes. The lichen-forming ascomycetous fungus Lecanora dispersa contains insertions at eight distinct positions of its SSU rDNA; the lichen-forming fungi Calicium tricolor and Porpidia crustulata each contain one insertion. Insertions are not limited to fungi that form lichens; the lichen ally Mycocalicium albonigrum also contains two insertions. Of the 11 insertion positions now reported for lichen-forming fungi and this ally, 6 positions are known only from lichen-forming fungi. Including the 4 newly reported in this study, insertions are now known from at least 17 positions among all reported SSU rDNA sequences. Insertions, most of which are Group I introns, are reported in fungal and protistan lineages and occur at corresponding positions in genomes as phylogenetically distant as the nuclei of fungi, green algae, and red algae. Many of these positions are exposed in the mature rRNA tertiary structure and may be subject to independent insertion of introns. Insertion of introns, accompanied by their sporadic loss, accounts for the scattered distribution of insertions observed within the SSU rDNA of these diverse organisms.   相似文献   

14.
The P4-P6 domain of group IC1 intron ribozymes such as that of the Tetrahymena autonomously folds into a hairpin-shaped structure in which the J5/5a region serves as a hinge. Phylogenetic comparisons of these IC1 introns suggested that the J5/5a region (termed Pc-J5/5a motif) in a subclass of IC1 introns such as the one from Pneumocystis carinii functions not only as a hinge but also as a receptor for a GAAA-tetraloop. We investigated the role of this motif by transplanting the structural unit, Pc-J5/5a motif, of Pneumocystis carinii into the P4-P6 domain of the Tetrahymena intron. The results showed that the Pc-J5/5a motif binds to a GAAA loop with high affinity and also facilitates the bending of the Tetrahymena P4-P6 domain more positively than the original J5/5a region.  相似文献   

15.
Our previous study of the North American biogeography of Bangia revealed the presence of two introns inserted at positions 516 and 1506 in the nuclear-encoded SSU rRNA gene. We subsequently sequenced nuclear SSU rRNA in additional representatives of this genus and the sister genus Porphyra in order to examine the distribution, phylogeny, and structural characteristics of these group I introns. The lengths of these introns varied considerably, ranging from 467 to 997 nt for intron 516 and from 509 to 1,082 nt for intron 1506. The larger introns contained large insertions in the P2 domain of intron 516 and the P1 domain of intron 1506 that correspond to open reading frames (ORFs) with His-Cys box homing endonuclease motifs. These ORFs were found on the complementary strand of the 1506 intron in Porphyra fucicola and P. umbilicalis (HG), unlike the 516 intron in P. abbottae, P. kanakaensis, P. tenera (SK), Bangia fuscopurpurea (Helgoland), and B. fuscopurpurea (MA). Frameshifts were noted in the ORFs of the 516 introns in P. kanakaensis and B. fuscopurpurea (HL), and all ORFs terminated prematurely relative to the amino acid sequence for the homing endonuclease I-Ppo I. This raises the possibility that these sequences are pseudogenes. Phylogenies generated using sequences of both introns and the 18S rRNA gene were congruent, which indicated long-term immobility and vertical inheritance of the introns followed by subsequent loss in more derived lineages. The introns within the florideophyte species Hildenbrandia rubra (position 1506) were included to determine relationships with those in the Bangiales. The two sequences of intron 1506 analyzed in Hildenbrandia were positioned on a well-supported branch associated with members of the Bangiales, indicating possible common ancestry. Structural analysis of the intron sequences revealed a signature structural feature in the P5b domain of intron 516 that is unique to all Bangialean introns in this position and not seen in intron 1506 or other group IC1 introns.  相似文献   

16.
A method for RNA isolation from marine macro-algae   总被引:35,自引:0,他引:35  
Sulfated, carboxylic polysaccharides and polyphenols found in marine macro-algae interfere with RNA isolation from these plants and inhibit RNA activities in vitro. Methods based on differential precipitation of RNA or carbohydrates in high salts were used to eliminate the acidic carbohydrates. To protect RNA from inactivation by oxidized polyphenols, strong reducing reagents were used to prevent polyphenol oxidation. RNA was successfully isolated from Macro-cystis pyrifera (brown alga), Porphyra schizophylla (red alga), and Enteromorpha intestinalis (green alga). mRNA isolated from the total RNA was shown to be translationally active.  相似文献   

17.
Chemical communications play an important role in plants, fungi, and algae. Volatile organic compounds in marine algae are released into the seawater. These compounds play a role as either pheromones or allelochemicals. We observed that the turbinid gastropod Lunella coronata coreensis inhabits the intertidal zone and often grazes the green alga Ulva pertusa. Feeding tests and feeding preference studies were performed with green, brown and red algae or by using the powdered freeze-dried seaweed in agar. The snails fed on U. pertusa preferentially compared to the other marine algae, and recognized chemoreception compounds from the alga but not their structural or morphological differences. From feeding tests using artificial foods, it is suggested that the feeding attractants are in the essential oil of the alga U. pertusa.  相似文献   

18.
In photosynthetic eukaryotes, relative silent-site nucleotide substitution rates (which can be used to approximate relative mutation rates) among mitochondrial, plastid, and nuclear genomes (mtDNAs, ptDNAs, and nucDNAs) are estimated to be 1:3:10 respectively for seed plants and roughly equal for green algae. These estimates correlate with certain genome characteristics, such as size and coding density, and have therefore been taken to support a relationship between mutation rate and genome architecture. Plants and green algae, however, represent a small fraction of the major eukaryotic plastid-bearing lineages. Here, we investigate relative rates of mutation within the model red algal genus Porphyra. In contrast to plants, we find that the levels of silent-site divergence between the Porphyra purpurea and Porphyra umbilicalis mtDNAs are three times that of their ptDNAs and five times that of their nucDNAs. Moreover, relative mutation rates do not correlate with genome architecture: despite an estimated three-fold difference in their mutation rate, the mitochondrial and plastid genome coding densities are equivalent - an observation that extends to organisms with secondary red algal plastids. These findings are supported by within-species silent-site polymorphism data from P. purpurea.  相似文献   

19.
Viable counts of heterotrophic bacteria attached to the green algae, Monostroma nitidum Wittrock and Enteromorpha linza (Linné) J. Agardh, ranged from 104 to 106/cm2, and those attached to the red alga Porphyra suborbiculata Kjellman from 103 to 104/cm2. These bacterial populations were larger than those attached to the brown alga Eisenia bicyclis (Kjellman) setchell ranging from 101 to 104/cm2. The bacterial populations in the environmental sea water. Nabem Inlet and Otsuchi Bay (Japan), were 103/ml. Orange and yellow pigmented bacteria were predominant on the green and red algae, but not in the bacterial populations of the brown alga and the sea water. Most of the pigmented bacteria were identified as belonging to the Flavobacterium-Cytophaga group. A beneficial relationship was suggested between the green algae and the pigmented bacteria. Proportions of Vibrionaceae were small on the green algae.  相似文献   

20.
Four species of brown algae, Sphacelaria arctica, S. plumosa, Desmarestia aculeata , and midribs of a Fucus species have been found in Holocene and interstadial deposits in Greenland. The green alga Chlorochytrium dermatocolax and the red alga Audoui-nella cfr. microscopica are reported for the first time in such deposits. All species are present in the extant flora of marine, benthic algae from Greenland. They are very well preserved and can be identified to species level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号