首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 937 毫秒
1.
Summary Rhizopus oryzae was immobilized in polyurethane foam cubes. The effects of the cube size on cell immobilization, cell growth and L(+)-lactic acid production were studied. By the natural attachment method, R. oryzae could be easily immobilized in the polyurethane foam cubes larger than 2.5 × 5 × 5 mm3. The use of small cubes for R. oryzae immobilization was very effective to increase the productivity of L(+)-lactic acid by the immobilized cells. Although it was difficult for smaller cubes to be completely full of the mycelia, increasing the inoculum size in immobilizations was effective to increase the immobilization ratio (a ratio of the number of the cubes containing cells to the total number of cubes).  相似文献   

2.
The production of L(+)-lactic acid (LA) by Rhizopus oryzae immobilized in polyvinyl alcohol (PVA) was investigated. To decrease diffusional resistance, we modified the PVA gel through the addition of sodium alginate and phosphate esterification. The production of L(+)-LA improved notably in the immobilized Rhizopus oryzae. Maximum L(+)-LA production (106.27 g/L), with a yield of 73.1 % and rate of 2.95 g/L·h, was obtained at a temperature of 38 °C, 6 % PVA, and 0.8 % sodium alginate. The immobilized R. oryzae was stable in 14 serial-batch cultures using non-growth medium. The immobilized beads also displayed good tolerance to low temperature and long-term storage at 4 °C with the preservation of biochemical properties.  相似文献   

3.
Summary Rhizopus oryzae NRRL 395 was found capable of fermenting ground corn directly to L(+)-lactic acid in the presence of calcium carbonate. The average yield of L(+)-lactic acid was more than 44% on the basis of the amount of total carbohydrate as glucose consumed.  相似文献   

4.
Rhizopus oryzae was immobilized in polyurethane foam cubes by a natural attachment method. The effect of inorganic salts on the stability of the immobilized mycelium in repetitive batch productions of L(+)-lactic acid was studied. The amount of the inorganic salts necessary to maintain the activity of the immobilized R. oryzae in the repetitive batch fermentations strongly depended upon the initial glucose concentrations. For example, the amount of the inorganic salts should be doubled if the initial glucose concentration was twice increased. The minimum amounts of the inorganic salts were therefore determined for effective lactic acid productions in the repetitive batch fermentations with the immobilized R. oryzae.  相似文献   

5.
Continuous L(+)-lactic acid production was carried out in an airlift bioreactor with immobilized R. oryzae in polyurethane foam cubes. In a pseudo-steady state, the productivity of lactic acid increased with increasing dilution rate or feeding glucose concentration. A double-layer reaction-diffusion model for the pseudo-steady state process was developed to describe the bioreaction system. Using independently determined model parameters, the model prediction agreed well with the experimental results. Therefore, the model can be employed to understand the fermentation behavior, and for the process design and optimization.  相似文献   

6.
Production of l(+)-lactic acid by Rhizopus oryzae NRRL 395 was studied in solid medium on sugar-cane bagasse impregnated with a nutrient solution containing glucose and CaCO3. A comparative study was undertaken in submerged and solid-state cultures. The optimal concentrations in glucose were 120 g/l in liquid culture and 180 g/l in solid-state fermentation corresponding to production of l(+)-lactic acid of 93.8 and 137.0 g/l, respectively. The productivity was 1.38 g/l per hour in liquid medium and 1.43 g/l per hour in solid medium. However, the fermentation yield was about 77% whatever the medium. These figures are significant for l(+)-lactic acid production.  相似文献   

7.
Rhizopus oryzae is a filamentous fungus belonging to the Zygomycetes. It is among others known for its ability to produce the sustainable platform chemicals l-(+)-lactic acid, fumaric acid, and ethanol. During glycolysis, all fermentable carbon sources are metabolized to pyruvate and subsequently distributed over the pathways leading to the formation of these products. These platform chemicals are produced in high yields on a wide range of carbon sources. The yields are in excess of 85 % of the theoretical yield for l-(+)-lactic acid and ethanol and over 65 % for fumaric acid. The study and optimization of the metabolic pathways involved in the production of these compounds requires well-developed metabolic engineering tools and knowledge of the genetic makeup of this organism. This review focuses on the current metabolic engineering techniques available for R. oryzae and their application on the metabolic pathways of the main fermentation products.  相似文献   

8.
The fermentation of hemicellulosic hydrolysate from Pinus taeda chips, using the fungal culture Rhizopus oryzae, was carried out to produce l-(+)-lactic acid and to optimize and enhance the biological conversion of reducing sugar into l-(+)-lactic acid using the experimental design to evaluate the culture conditions. The first factorial design based on surface response with five factors (agitation level, substrate concentration, CaCO3 concentration, C/N and C/P ratios) at low levels and one medium point was performed to optimize culture conditions. The second study tested two factors (substrate concentration and C/N ratio) at three levels. The statistical analysis of the data obtained from the factorial study showed that a C/N ratio of 35 and substrate concentration of 90 g/litre were the best conditions to produce l-(+)-lactic acid with R. oryzae on P. taeda hydrolysate, but in this case the statistical projection was not correct and the real optimized conditions were C/N ratio of 55 and substrate concentration of 75 g/litre of reducing sugar.  相似文献   

9.
The aim of this study is to investigate production of l-lactic acid from sucrose and corncob hydrolysate by the newly isolated R. oryzae GY18. R. oryzae GY18 was capable of utilizing sucrose as a sole source, producing 97.5 g l−1 l-lactic acid from 120 g l−1 sucrose. In addition, the strain was also efficiently able to utilize glucose and/or xylose to produce high yields of l-lactic acid. It was capable of producing up to 115 and 54.2 g l−1 lactic acid with yields of up to 0.81 g g−1 glucose and 0.90 g g−1 xylose, respectively. Corncob hydrolysates obtained by dilute acid hydrolysis and enzymatic hydrolysis of the cellulose-enriched residue were used for lactic acid production by R. oryzae GY18. A yield of 355 g lactic acid per kg corncobs was obtained after 72 h incubation. Therefore, sucrose and corncobs could serve as potential sources of raw materials for efficient production of lactic acid by R. oryzae GY18.  相似文献   

10.
Rhizopus oryzae was immobilized on a cotton matrix in a static bed bioreactor. Compared with free cells in a stirred tank bioreactor, immobilized R. oryzae in this bioreactor gave higher lactic acid production but lower ethanol production. The highest lactic acid production rate (2.09 g/L h) with the final concentration of 37.83 g/L from 70 g/L glucose was achieved when operating the bioreactor at 700 rpm and 0.5 vvm air. To better understand the relationship between shear effects (agitation and aeration) and R. oryzae morphology and metabolism, oxygen transfer rate, fermentation kinetics, and lactate dehydrogenase activity were determined. In immobilized cell culture, higher oxygen transfer rate and lactic acid production were achieved but lower lactate dehydrogenase activity was found as compared with those in free cell culture operated at the same conditions. These results clearly imply that mass transport was the rate controlling step in lactic acid fermentation by R. oryzae.  相似文献   

11.
L-(+)-Lactate oxidase (EC 1.1.3.2) was immobilized onto the porous side of a cellulose acetate membrane with asymmetric structure which has selective permeability to hydrogen peroxide. The lactate electrode was constructed by combination of a hydrogen peroxide electrode with the immobilized enzyme membrane. Properties of the enzyme membrane and characteristics of the lactate electrode were clarified for the determination of L-(+)-lactic acid. The lactate electrode responded linearly to L-(+)-lactic acid over the final concentration 0-0.25 mmol/L within 30 s. When the enzyme electrode was applied to the determination of L-(+)-lactic acid in control serum, within-day precision (CV), analytical recovery, and correlation coefficient between the electrode method and the colorimetric method were 1.4% with a mean value of 4.54 mmol/L, 98.0%, and 0.986, respectively. The lactate electrode was sufficiently stable to perform 1040 assays over 13 days operation for the determination of L-(+)-lactic acid. The dried immobilized enzyme membrane retained 84% of its initial activity after storage at 4 degrees C for 12 months. Moreover, the enzyme electrode was applied to the monitoring of culture medium for human melanoma cells. L-(+)-Lactate production and D-glucose consumption were closely related to cell numbers.  相似文献   

12.
Semicontinuous fermentation using pellets of Rhizopus oryzae has been recognized as a promising technology for l-lactic acid production. In this work, semicontinuous fermentation of R. oryzae AS 3.819 for l-lactic acid production has been developed with high l-lactic acid yield and volumetric productivity. The effects of factors such as inoculations, CaCO3 addition time, and temperature on l-lactic acid yield and R. oryzae morphology were researched in detail. The results showed that optimal fermentation conditions for the first cycle were: inoculation with 4% spore suspension, CaCO3 added to the culture medium at the beginning of culture, and culture temperature of 32–34°C. In orthogonal experiments, high l-lactic acid yield was achieved when the feeding medium was (g/l): glucose, 100; (NH4)2SO4, 2; KH2PO4, 0.1; ZnSO4·7H2O, 0.33; MgSO4·7H2O, 0.15; CaCO3, 50. Twenty cycles of semicontinuous fermentation were carried out in flask culture. l-lactic acid yield was 78.75% for the first cycle and 80–90% for the repeated cycles; the activities of lactate dehydrogenases (LDH) were 7.2–9.2 U/mg; fermentation was completed in 24 h for each repeated cycle. In a 7-l magnetically stirred fermentor, semicontinuous fermentation lasted for 25 cycles using pellets of R. oryzae AS 3.819 under the optimal conditions determined from flask cultures. The final l-lactic acid concentration (LLAC) reached 103.7 g/l, and the volumetric productivity was 2.16 g/(l·h) for the first cycle; in the following 19 repeated cycles, the final LLAC reached 81–95 g/l, and the volumetric productivities were 3.40–3.85 g/(l·h).  相似文献   

13.
Spores of the filamentous fungus Rhizopus oryzae were entrapped in macroporous poly(vinyl alcohol) cryogel (PVA-cryogel). To prepare immobilised biocatalyst capable of producing L(+)-lactic acid (LA), the fungus cells were cultivated inside the carrier beads. The growth parameters and metabolic activity of the suspended (free) and immobilised cells producing LA in a batch process were comparatively investigated. The immobilised cells possessed increased resistance to high concentrations of accumulated product and gave much higher yields of LA in the iterative working cycle than the free cells did. Detailed kinetic analysis of the changes in the intracellular adenosine triphosphate concentration, specific rate of growth, substrate consumption and LA production showed that the fungus cells entrapped in PVA-cryogel are more attractive for biotechnological applications compared to the free cells.  相似文献   

14.
In this paper, in order to obtain some industrial strains with high yield of l-(+)-lactic acid, the wild type strain Lactobacillus casei CICC6028 was mutated by nitrogen ions implantation. By study, it was found that the high positive mutation rate was obtained when the output power was 10 keV and the dose of N+ implantation was 50 × 2.6 × 1013 ions/cm2. In addition, the initial screening methods were also studied, and it was found that the transparent halos method was unavailable, for some high yield strains of l-(+)-lactic acid were missed. Then a mutant strain which was named as N-2 was isolated, its optimum fermentation temperature was 40°C and the l-(+)-lactic acid yield was 136 g/l compared to the original strain whose optimum fermentation temperature was 34°C and l-(+)-lactic acid production was 98 g/l. Finally, High Performance Liquid Chromatography method was used to analyze the purity of l-(+)-lactic acid that was produced by the mutant N-2, and the result showed the main production of N-2 was l-(+)-lactic acid.  相似文献   

15.
In this study, the immobilization technique involving photo-crosslinkable resin gels was used for lactic acid production. Saccharomyces cerevisiae OC-2T T165R, a metabolically engineered yeast that produces optically pure l(+)-lactic acid, was immobilized in hydrophilic photo-crosslinked resin gels as a biocatalyst. Three resin gels, TEP 1, TEP 2 and TEP 3, were examined and all of them showed high performance as to lactic acid production. Resin gel TEP 1, which exhibited the highest productivity among the resin gels was used for 15 consecutive batch fermentations without decreases in productivity and mechanical deformation, indicating that it was a suitable carrier for long-term lactic acid fermentation. Moreover, the use of the immobilization technique can improve the productivity of the metabolically engineered yeast in the fermentation with or without extraction, showing promise for using the immobilized engineered yeast for lactic acid production.  相似文献   

16.
The effect of cell storage at ?18°C for 18–24 months on reproductive capacity was investigated for various microorganisms (gram-positive and gram-negative bacteria, yeasts, and filamentous fungi) immobilized in poly(vinyl alcohol) cryogel. To examine the viability of immobilized cells after defrosting, the bioluminescent method of intracellular ATP determination was used. A high level of metabolic activity of immobilized cells after various periods of storage was recorded for Streptomyces anulatus, Rhizopus oryzae, and Escherichia coli, which are producers of the antibiotic aurantin, L(+)-lactic acid, and the recombinant enzyme organophosphate hydrolase, respectively. It was shown that the initial concentration of immobilized cells in cryogel granules plays an important role in the survival of Str. anulatus and Pseudomonas putida after 1.5 years of storage. It was found that, after slow defrosting in the storage medium at 5°C for 18 h of immobilized cells of the yeast Saccharomyces cerevisiae that had been stored for nine months, the number of reproductive cells increased due to the formation of ascospores.  相似文献   

17.
The role of functionalized alginate gels as immobilized matrices in production of l (+) lactic acid by Lactobacillus delbrueckii was studied. L. delbrueckii cells immobilized in functionalized alginate beads showed enhanced bead stability and selectivity towards production of optically pure l (+) lactic acid in higher yields (1.74Yp/s) compared to natural alginate. Palmitoylated alginate beads revealed 99% enantiomeric selectivity (ee) in production of l (+) lactic acid. Metabolite analysis during fermentation indicated low by-product (acetic acid, propionic acid and ethanol) formation on repeated batch fermentation with functionalized immobilized microbial cells. The scanning electron microscopic studies showed dense entrapped microbial cell biomass in modified immobilized beads compared to native alginate. Thus the methodology has great importance in large-scale production of optically pure lactic acid.  相似文献   

18.
Summary An orthogonal 23-factorial experimental design was used to optimize L(+)-lactic acid production byLactobacillus casei. With a 22 % (v/v) inoculum the optimum concentration of yeast extract for maximum lactic acid concentration and yield was about 2 % (w/v) and that of the initial glucose 9 to 11 %.  相似文献   

19.
Summary The kinetics of fermenting barley, cassava, corn, oats, and rice directly to L(+) lactic acid byRhizopus oryzae NRRL 395 were determined. The rates of carbohydrate consumption and L(+) lactic acid production were found to be influenced by the type of substrate, the substrate concentration, the fermentation temperature, and the presence of a neutralizing agent.  相似文献   

20.
This report describes the production of highly optically pure D-lactic acid by the continuous fermentation of Sporolactobacillus laevolacticus and S. inulinus, using a membrane-integrated fermentation (MFR) system. The optical purity of D-lactic acid produced by the continuous fermentation system was greater than that produced by batch fermentation; the maximum value for the optical purity of D-lactic acid reached 99.8% enantiomeric excess by continuous fermentation when S. leavolacticus was used. The volumetric productivity of the optically pure D-lactic acid was about 12 g/L/h, this being approximately 11-fold higher than that obtained by batch fermentation. An enzymatic analysis indicated that both S. laevolacticus and S. inulinus could convert L-lactic acid to D-lactic acid by isomerization after the late-log phase. These results provide evidence for an effective bio-process to produce D-lactic acid of greater optical purity than has conventionally been achieved to date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号