首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Prior studies exploring the effects of lanthanides (Ln) on red blood cells (RBC) have primarily focused on ion transport, cell fusion, and membrane protein structure. Our previous report [Biorheology 44 (2007), 361-373] dealt only with lanthanum (La) and cell rigidity; the present study extends these observations to other lanthanides (Nd, Sm, Eu, Dy, Er) and to RBC response to mechanical shear. Deformation-shear stress behavior of normal human RBC was measured at Ln concentrations up to 200 μM. In another series of experiments, RBC were exposed to mechanical stress (190 Pa, 300 s) at 50 μM Ln and deformation-stress data obtained prior to and after this stress. Data were fitted to a Lineweaver-Burke model to obtain the shear stress at one-half maximum deformation (SS1/2). Our results include: (1) lanthanides cause decreased cell deformability with the magnitude of the decrease dependent on concentration and shear stress; (2) this decrease of deformability is affected by Ln ionic radius such that La>Nd>Sm>Eu>Dy>Er and is reversible for cells in Ln-free media; (3) mechanical stress decreases deformability (i.e., increases SS1/2) such that compared to control, La and Sm reduce and Dy and Er enhance the mechanical stress effect; (4) the decrease of deformability consequent to mechanical stress scales inversely with Ln ionic radius. These results indicate a reciprocal relation between cell rigidity and sensitivity to mechanical stress that is mediated by Ln ionic radius. Additional studies are clearly warranted, particularly those that explore membrane-glycocalyx and intracellular mechanisms.  相似文献   

2.
3.
Recently, KANE et al. (Centre de Transfusion Sanguine, Strasbourg) designed an original preservative medium, called ESOC, allowing a prolonged storage of thawed RBC. We studied on 15 days the evolution of thawed RBC deformability, while RBC where kept preserved, on the one hand in this ESOC solution, on the other hand in physiologic water, without any preservative medium. We tried to correlate this rheological evolution with cellular ATP, cellular 2,3-DPG and membrane proteins evolution. Deformability was measured by filterability with an Hemorheometre. The results are given as a rigidity index, IR. In ESOC, IR and cellular ATP stay in normal values during the 15 days. In physiologic water, deformability decreases strongly and IR is out of normal values after the fifth day. Cellular ATP decreases out of normal values as soon as the third day. 2,3-DPG decreases in both media. Membrane proteins electrophoresis does not show any difference neither in ESOC nor in physiological water, all fifteen days long. We only observed parallelism between deformability and cellular ATP and IR was higher than normal values. We found no correlation between deformability and 2,3-DPG. We also can conclude, with this study, that ESOC allows a good preservation of thawed RBC and by this way complies with the needs for delayed transfusion in current practice.  相似文献   

4.
Lanthanides such as La(3+) and Gd(3+) are well known to have large effects on the function of membrane proteins such as mechanosensitive ionic channels and voltage-gated sodium channels, and also on the structure of phospholipid membranes. In this report, we have investigated effects of La(3+) and Gd(3+) on the shape of giant unilamellar vesicle (GUV) of dioleoylphosphatidylcholine (DOPC-GUV) and GUV of DOPC/cholesterol by the phase-contrast microscopy. The addition of 10-100 microM La(3+) (or Gd(3+)) through a 10-microm diameter micropipette near the DOPC-GUV (or DOPC/cholesterol-GUV) triggered several kinds of shape changes. We have found that a very low concentration (10 microM) of La(3+) (or Gd(3+)) induced a shape change of GUV such as the discocyte via stomatocyte to inside budded shape transformation, the two-spheres connected by a neck to prolate transformation, and the pearl on a string to cylinder (or tube) transformation. To understand the effect of these lanthanides on the shape of the GUV, we have also investigated phase transitions of 30 microM dipalmitoylphosphatidylcholine-multilamellar vesicle (DPPC-MLV) by the ultra-sensitive differential scanning calorimetry (DSC). The chain-melting phase transition temperature and the L(beta') to P(beta') phase transition temperature of DPPC-MLV increased with an increase in La(3+) concentration. This result indicates that the lateral compression pressure of the membrane increases with an increase in La(3+) concentration. Thereby, the interaction of La(3+) (or Gd(3+)) on the external monolayer membrane of the GUV induces a decrease in its area (A(ex)), whereas the area of the internal monolayer membrane (A(in)) keeps constant. Therefore, the shape changes of the GUV induced by these lanthanides can be explained reasonably by the decrease in the area difference between two monolayers (DeltaA=A(ex)-A(in)).  相似文献   

5.
Jan CR  Tseng CJ 《Life sciences》2000,66(18):1753-1762
The effect of nordihydroguaiaretic acid (NDGA), a lipoxygenase inhibitor, on Ca2+ signaling in Madin Darby canine kidney (MDCK) cells has been investigated. NDGA (10-100 microM) increased [Ca2+]i concentration-dependently. The [Ca2+]i increase comprised an initial slow rise and a plateau over a time period of 5 min. Ca2+ removal partly inhibited the Ca2+ signals induced by 25-100 microM NDGA and abolished that induced by 10 microM NDGA. In Ca(2+)-free medium, pretreatment with 0.1 mM NDGA for 12 min abolished the [Ca2+]i increase induced by the mitochondrial uncoupler carbonylcyanide m-chlorophenylhydrazone (CCCP; 2 microM) and the endoplasmic reticulum (ER) Ca2+ pump inhibitor thapsigargin (1 microM). However, 0.1 mM NDGA still increased [Ca2+]i after Ca2+ stores had been depleted by pretreating with 2 microM CCCP, 1 microM thapsigargin and 0.1 mM cyclopiazonic acid. NDGA (50 microM) activated Mn2+ quench of fura-2 fluorescence at 360 nm excitation wavelength, which was almost abolished by 50 microM La3+. This implies NDGA induced Ca2+ influx mainly via a La(3+)-sensitive pathway. Consistently, 50 microM La3+ pretreatment inhibited 0.1 mM NDGA-induced [Ca2+]i increase. Adding 3 mM Ca2+ increased [Ca2+]i in cells pretreated with 0.1 mM NDGA in Ca(2+)-free medium, suggesting NDGA activated capacitative Ca2+ entry. Pretreatment with 0.1 mM NDGA for 200 s prior to Ca2+ did not alter 1 microM thapsigargin-induced capacitative Ca2+ entry. Pretreatment with 40 microM aristolochic acid to inhibit phospholipase A2 reduced 0.1 mM NDGA-induced Ca2+ release by 65%, but inhibiting phospholipase C with 2 microM U73122 had little effect. This suggests NDGA-induced Ca2+ release was independent of inositol 1,4,5-trisphosphate (IP3), but was modulated by phospholipase A2.  相似文献   

6.
The aim of this study was to estimate effects of some chemotherapy drugs on the elasticity and deformability of the membrane of a red blood cell (RBC). It was found that incubation of red blood cells (RBCs) with cisplatin or epoetin alpha led to considerable (by 10–17%; p < 0.05) increase in the RBC deformability and that cisplatin could activate tyrosine protein kinases (TPKs). Preincubation of RBCs with a specific inhibitor of EGF-R and Src kinase, lavendustin A, almost completely prevented the cisplatin effect. Tyrosine phosphatase inhibitor, sodium orthovanadate, increased the RBC deformability (p < 0.05). This effect was also abandoned by lavendustin A. To test a hypothesis on the involvement of protein kinases of mature RBCs in control of their membrane elasticity, the cells were incubated with phorbol 12-myristate 13-acetate (PMA) activating protein kinase Cα (PKCα). PMA increased the RBC deformability only moderately (by 8%, p < 0.05) and the effect was canceled by nonselective and selective PKC inhibitors staurosporin and 4-(1-methylindol-3-yl)maleimide hydrochloride. Erythropoietin is known to inhibit the nonselective cation channels of the RBC membrane; however, preincubation of the cells with verapamil did not cancel the increase in their deformability. Hence, this increase in deformability could be a result of the action of tyrosine protein kinases, the more so that this effect was almost completely canceled by lavendustion A. The results suggest that the presence of functionally active protein kinases and phosphatases in the membranes of mature RBC makes them a target for the addressed effects of signal molecules, including some chemotherapy drugs, causing consecutive alterations in the RBC membrane elasticity, microrheological properties, and transport potential.  相似文献   

7.
A common indicator of rheological dysfunction is a measurable decrease in the deformability of red blood cells (RBCs). Decreased RBC deformability is associated with cellular stress or pathology and can impede the transit of these cells through the microvasculature, where RBCs play a central role in the oxygenation of tissues. Therefore, RBC deformability has been recognized as a sensitive biomarker for rheological disease. In the current study, we present a strategy to measure RBC cortical tension as an indicator of RBC deformability based on the critical pressure required for RBC transit through microscale funnel constrictions. By modeling RBCs as a Newtonian liquid drop, we were able to discriminate cells fixed with glutaraldehyde concentrations that vary as little as 0.001%. When RBCs were sampled from healthy donors on different days, the RBC cortical tension was found to be highly reproducible. Inter-individual variability was similarly reproducible, showing only slightly greater variability, which might reflect biological differences between normal individuals. Both the sensitivity and reproducibility of cortical tension, as an indicator of RBC deformability, make it well-suited for biological and clinical analysis of RBC microrheology.  相似文献   

8.
高胆固醇血症血液流变性的研究   总被引:5,自引:0,他引:5  
对实验性高胆固醇血症家兔血液流变性、红细胞流变性、红细胞膜脂分析以及与血清胆固醇浓度之间关系的研究指出随血清胆固醇浓度升高,全血表观粘度和血浆粘度升高,红细胞(?)积和(?)降低.进一步分析表明,随血清胆固醇浓度升高,红细胞膜中胆固醇Ch含量增加,引起膜胆固醇和磷脂(P1)的克分子比(Ch,P1)升高,膜的荧光偏振度(P)增大,表示红细胞流动性降低,而对照组各项指标在实验过程中保持稳定.  相似文献   

9.
Cell-cell affinity of senescent human erythrocytes   总被引:3,自引:0,他引:3       下载免费PDF全文
During their 120-day life span, human red blood cells (RBC) undergo several physicochemical changes, including an increased tendency to aggregate in plasma or polymer solutions. This study was designed to examine potential associations between age-related differences in RBC mobility, aggregation, and membrane glycocalyx properties for cells suspended in buffer and in 3 g/dl solutions of 70.3 kDa dextran. A recent model for depletion-mediated RBC aggregation was employed to calculate the changes of glycocalyx properties that were consistent with experimental electrophoretic mobility (EPM) and aggregation data. Young and old cells were obtained by density separation, after which aggregation and EPM were determined versus ionic strength; old cells exhibited a two- to threefold greater aggregation in dextran. EPM of old cells was identical to young cells in polymer-free media yet was 4% greater in dextran. The greater EPM for old RBC indicates a larger polymer depletion layer, which could be explained either by a 10-15% decrease of their glycocalyx thickness or a similar percentage decrease of polymer penetration into their glycocalyx. The larger depletion layer leads to markedly elevated cell-cell affinities for old cells, with the computed affinity increases consistent with enhanced old RBC aggregation. These results provide a rational explanation for the aggregation and EPM behavior of old RBC, and raise the possibility of depletion-mediated interactions contributing to senescent cell removal from the circulation.  相似文献   

10.
The aim of the present study was to further understand how changes in membrane organization can lead to higher rates of lipid oxidation. We previously demonstrated that Al(3+), Sc(3+), Ga(3+), Be(2+), Y(3+), and La(3+) promote lipid packing and lateral phase separation. Using the probe Laurdan, we evaluated in liposomes if the higher rigidity of the membrane caused by Al(3+) can alter membrane phase state and/or hydration, and the relation of this effect to Al(3+)-stimulated lipid oxidation. In liposomes of dimyristoyl phosphatidylcholine and dimyristoyl phosphatidylserine, Al(3+) (10-100 microM) induced phase coexistence and displacement of T(m). In contrast, in liposomes of brain phosphatidylcholine and brain phosphatidylserine, Al(3+) (10-200 microM) did not affect membrane phase state but increased Laurdan generalized polarization (GP = -0. 04 and 0.09 in the absence and presence of 200 microM Al(3+), respectively). Sc(3+), Ga(3+), Be(2+), Y(3+), and La(3+) also increased GP values, with an effect equivalent to a decrease in membrane temperature between 10 and 20 degrees C. GP values in the presence of the cations were significantly correlated (r(2) = 0.98, P < 0.001) with their capacity to stimulate Fe(2+)-initiated lipid oxidation. Metal-promoted membrane dehydration did not correlate with ability to enhance lipid oxidation, indicating that dehydration of the phospholipid polar headgroup is not a mechanism involved in cation-mediated enhancement of Fe(2+)-initiated lipid oxidation. Results indicate that changes in membrane phospholipid phase state favoring the displacement to gel state can facilitate the propagation of lipid oxidation.  相似文献   

11.
Ca(2+) influx triggered by depletion of sarcoplasmic reticulum (SR) Ca(2+) stores [mediated via store-operated Ca(2+) channels (SOCC)] was characterized in enzymatically dissociated porcine airway smooth muscle (ASM) cells. When SR Ca(2+) was depleted by either 5 microM cyclopiazonic acid or 5 mM caffeine in the absence of extracellular Ca(2+), subsequent introduction of extracellular Ca(2+) further elevated [Ca(2+)](i). SOCC was insensitive to 1 microM nifedipine- or KCl-induced changes in membrane potential. However, preexposure of cells to 100 nM-1 mM La(3+) or Ni(2+) inhibited SOCC. Exposure to ACh increased Ca(2+) influx both in the presence and absence of a depleted SR. Inhibition of inositol 1,4,5-trisphosphate (IP)-induced SR Ca(2+) release by 20 microM xestospongin D inhibited SOCC, whereas ACh-induced IP(3) production by 5 microM U-73122 had no effect. Inhibition of Ca(2+) release through ryanodine receptors (RyR) by 100 microM ryanodine also prevented Ca(2+) influx via SOCC. Qualitatively similar characteristics of SOCC-mediated Ca(2+) influx were observed with cyclopiazonic acid- vs. caffeine-induced SR Ca(2+) depletion. These data demonstrate that a Ni(2+)/La(3+)-sensitive Ca(2+) influx via SOCC in porcine ASM cells involves SR Ca(2+) release through both IP(3) and RyR channels. Additional regulation of Ca(2+) influx by agonist may be related to a receptor-operated, noncapacitative mechanism.  相似文献   

12.
Differences of red blood cell (RBC) aggregation among various mammalian species has been previously reported for whole blood, for RBC in autologous plasma, and for washed RBC re-suspended in polymer solutions. The latter observation implies the role of cellular factors, yet comparative studies of such factors are relatively limited. The present study thus investigated RBC aggregation and RBC electrophoretic mobility (EPM) for guinea pigs, rabbits, rats, humans and horses; RBC were re-suspended in isotonic 500 kDa dextran solutions for the EPM and aggregation measurements, with aggregation studies also done in autologous plasma. Salient results included: (1) species-specific RBC aggregation in both plasma and dextran (horse > human > rat > rabbit approximately = guinea pig) with a significant correlation between aggregation in the two media; (2) similar EPM values in PBS for rat, human and horse, a lower value for guinea pig, and a markedly reduced EPM for rabbit RBC; (3) EPM values in dextran with a rank order identical to that for cells in PBS; (4) relative EPM results indicating formation of a polymer-poor, low viscosity depletion layer at the RBC surface (greatest depletion for horse RBC). EPM-aggregation correlations were evident and generally consistent with the Depletion Model for aggregation, yet did not fully explain differences between species; additional studies at various ionic strengths and with various dextran fractions thus seem warranted.  相似文献   

13.
《Biorheology》1997,34(3):235-247
Low-shear viscometry is one of the methods commonly used to estimate the degree of red blood cell (RBC) aggregation in various bloods and RBC suspensions. However, it has been previously shown that alterations in RBC morphology and mechanical behavior can affect the low-shear apparent viscosity of RBC suspensions; RBC aggregation is also sensitive to these cellular factors. This study used heat treatment (48°C, 5 min), glutaraldehyde (0.005–0.02%) and hydrogen peroxide (1 mM) to modify cell geometry and deformability. Red blood cell aggregation was assessed via a Myrenne Aggregometer (“M” and “Ml” indexes), RBC suspension viscosity was measured using a Contraves LS-30 viscometer, and RBC shape response to fluid shear stresses (i.e., deformability) was determined by ektacytometry (LORCA system). Our results indicate that low-shear apparent viscosity and related indexes may not always reflect changes of RBC aggregation if cellular properties are altered: for situations where RBC aggregation has been only moderately affected, cellular mechanical factors may be the major determinant of low-shear viscosity. These findings thus imply that in situations which may be associated alterations of RBC geometry and/or deformability, low-shear viscometry should not be the sole measurement technique used to assess RBC aggregation.  相似文献   

14.
An absolute requirement for divalent cations is reported for H(14)CO(3) (-) influx in Chara corallina. Effective substitution of eluted Ca(2+) by Mg(2+) and Sr(2+) was observed, but Mn(2+) was completely ineffective in restoring H(14)CO(3) (-) transport activity. Similarly, La(3+) could not substitute for Ca(2+) in this system. Low concentrations of ethylenediaminetetraacetate (0.01 to 0.06 mm) significantly enhanced the rate at which H(14)CO(3) (-) transport capacity was lost.Examination of the response of OH(-) efflux, during Ca(2+)-free treatment, indicated that the cellular control over OH(-) efflux remained unaffected until membrane integrity became severely affected. This conclusion was supported by the response of OH(-) efflux to 10 mm K(+). Therefore, assimilation of H(14)CO(3) (-) is not rate-limited by an effect of Ca(2+) elution on the OH(-) transport system. Kinetic experiments indicated that Ca(2+) removal from the membrane resulted in noncompetitive inhibition of H(14)CO(3) (-) assimilation; the apparent Michaelis constant remained unaltered over a wide range of conditions. An hypothesis is presented which suggests that membrane integrity is necessary for HCO(3) (-) transport to occur, but Ca(2+) (Mg(2+), Sr(2+)), per se, must be bound to the transport complex before activity is established.  相似文献   

15.
The effect of diamide on the deformability and La(3+)-induced aggregation and fusion of human erythrocytes was studied. It was shown that diamide decreased the deformability of erythrocytes and practically completely inhibited their fusion. It was found that diamide did not change the aggregation of erythrocytes.  相似文献   

16.
The proteomic analysis has showed that red cell membrane contains several kinases and phosphatases. Therefore the aim of this study was to investigate the role of protein kinases of human red cell membrane in deformability and aggregation changes. Exposure of red blood cells (RBCs) to some chemical compounds led to change in the RBC microrheological properties. When forskolin (10 microM), an adenylyl cyclase (AC) and a protein kinase A (PKA) stimulator was added to RBC suspension, the RBC deformability (RBCD) was increased by 20% (p < 0.05). Somewhat more significant deformability rise appeared after RBC incubation with dB-AMP (by 26%; p < 0.01). Red cell aggregation (RBCA) was significantly decreased under these conditions (p < 0.01). Markedly less changes of deformability was found after RBC incubation with protein kinase stimulator C (PKC)--phorbol 12-myristate 13-acetate (PMA). This drug reduced red cell aggregation only slightly. It was inhibited red cell tyrosine phosphotase activity by N-vanadat and was obtained a significant RBCD rise and RBCA lowering. The similar effect was found when cells were incubated with cisplatin as a tyrosine protein kinase (TPK) activator. It is important to note that a selective TPK inhibitor--lavendustin eliminated the above mention effects. On the whole the total data clearly show that the red cell aggregation and deformation changes were connected with an activation of the different intracellular signaling pathways.  相似文献   

17.
In addition to its known action on vascular smooth muscle, nitric oxide (NO) has been suggested to have cardiovascular effects via regulation of red blood cell (RBC) deformability. The present study was designed to further explore this possibility. Human RBCs in autologous plasma were incubated for 1 h with NO synthase (NOS) inhibitors [N(omega)-nitro-l-arginine methyl ester (l-NAME) and S-methylisothiourea], NO donors [sodium nitroprusside (SNP) and diethylenetriamine (DETA)-NONOate], an NO precursor (l-arginine), soluble guanylate cyclase inhibitors (1H-[1,2,4]oxadiazolo-[4,3-a]quinoxalin-1-one and methylene blue), and a potassium channel blocker [triethylammonium (TEA)]. After incubation, RBC deformability at various shear stresses was determined by ektacytometry. Both NOS inhibitors significantly reduced RBC deformability above a threshold concentration, whereas the NO donors increased deformability at optimal concentrations. NO donors, as well as the NO precursor l-arginine and the potassium blocker TEA, were able to reverse the effects of NOS inhibitors. Guanylate cyclase inhibition reduced RBC deformation, with both SNP and DETA-NONOate able to reverse this effect. These results thus indicate the importance of NO as a determinant of RBC mechanical behavior and suggest its regulatory role for normal RBC deformability.  相似文献   

18.
Monolayers of porcine kidney cells (LLC-PK) were grown in a series of Nu-Serum-supplemented media containing different Mg(2+) concentrations (480, 250, 25, 6.3 or 2.6 microM) to study the effect of Mg(2+) depletion on cellular phospholipid changes and the consequent effect on the membrane permeability to Ca(2+). Cells grown on 6.3 or 2.6 microM Mg(2+) showed a decrease in PE, PS, Sph, PI and an increase of PC. These changes were attributed mainly to the decreased rate of Sph synthesis through the transfer of phosphocholine from PC to ceramide, or due to the increase of PE N-methylation as found in Mg(2+)-deficient cells. The (45)Ca uptake was increased in cells grown on 25.0 microM Mg(2+), while it was decreased in cells grown on 6.3 or 2.6 microM Mg(2+). These changes in Ca(2+) uptake were related to changes of cellular phospholipids and fatty acids which affect adenylate cyclase activity in the membrane, as well as the membrane fluidity.  相似文献   

19.
3-Hydroxy-3-methylglutaryl-coenzyme A reductase (HMG-CoA reductase), the rate-limiting enzyme in the biosynthesis of cholesterol and isoprenoids, is subject to rapid degradation which is regulated by mevalonate (MVA)-derived metabolic products. HMG-CoA reductase is an integral membrane protein of the endoplasmic reticulum, the largest nonmitochondrial pool of cellular Ca2+. To assess the possible role of Ca2+ in the regulated degradation of HMG-CoA reductase, we perturbed cellular Ca2+ concentration and followed the fate of HMG-CoA reductase and of HMGal, a fusion protein consisting of the membrane domain of HMG-CoA reductase and the soluble bacterial enzyme beta-galactosidase. The degradation of HMGal mirrors that of HMG-CoA reductase, demonstrating that the membrane domain of HMG-CoA reductase is sufficient to confer regulated degradation (Skalnik, D.G., Narita, H., Kent, C., and Simoni, R.D. (1988) J. Biol. Chem. 263, 6836-6841; Chun, K.T., Bar-Nun, S., and Simoni, R.D. (1990) J. Biol. Chem. 265, 22004-22010). In this study we show that the MVA-dependent accelerated rates of degradation of HMG-CoA reductase and HMGal in cells maintained in Ca(2+)-free medium are 2-3-fold slower than the rate of degradation in cells grown in high (1.8-2 mM) Ca2+ concentration. This effect is reversed upon addition of Ca2+ to the medium. Furthermore, when cells maintained in high Ca2+ are treated with 1 microM ionomycin, the MVA-dependent accelerated degradation of HMG-CoA reductase and HMGal is also reduced about 2-3-fold. This inhibition is not due to a Ca(2+)-dependent uptake or incorporation of MVA into sterols, since these processes are not affected in the absence of external Ca2+. In addition, cobalt, a known antagonist of Ca(2+)-dependent cellular functions, totally abolishes (IC50 = 520 microM in the presence of 1.8 mM extracellular Ca2+) the MVA-accelerated degradation of HMGal. These results suggest that Ca2+ plays a major role in the regulated degradation of HMG-CoA reductase.  相似文献   

20.
The mechanism of the effects of the lanthanum ion (La(3+)) and the gadolinium ion (Gd(3+)), which are lanthanides, on the function of membrane proteins and the stability of the membrane structure is not well understood. We investigated the effects of La(3+) on the stability of the hexagonal II (H(II)) phase of the phosphatidylethanolamine (PE) membrane at 20 degrees C by small-angle X-ray scattering. As PE membrane we used DPOPE (dipalmitoleoylphosphatidylethanolamine) membrane, which was in the L(alpha) phase in 10 mM PIPES buffer (pH 7.4) at 20 degrees C. An L(alpha) to H(II) phase transition occurred in the DPOPE membrane at 1.4 mM La(3+) in 0 M KCl, and at 0.4 mM La(3+) in 0.5 M KCl and above the critical concentrations the membranes were in the H(II) phase, indicating that La(3+) stabilizes the H(II) phase rather than the L(alpha) phase. The basis vector length, d, of DPOPE and DOPE (dioleoylphosphatidylethanolamine) membranes containing 16 wt% tetradecane in excess water condition did not change with an increase in La(3+) concentration, suggesting that La(3+) did not change the spontaneous curvature of these PE monolayer membranes. The chain-melting transition temperature of the dielaidoylphosphatidylethanolamine membrane increased with an increase in La(3+) concentration, indicating that the lateral compression pressure increased. To elucidate the effects of a small percentage of 'guest' lipids with longer acyl chains than the average length of 'host' lipids on the stability of the H(II) phase, we investigated the effects of the concentration of a guest lipid (DOPE) in a host lipid (DPOPE) membrane on their phase behavior and structure. 12 mol% DOPE induced an L(alpha) to H(II) phase transition in DOPE/DPOPE membrane, without changing the spontaneous curvature of the monolayer membrane. We found that Ca(2+) also induced an L(alpha) to H(II) phase transition in the DPOPE membrane, and compared the effects of Ca(2+) on PE membranes with those of La(3+). Based on these results, we have proposed a new model for the mechanism of the L(alpha) to H(II) phase transition and the stabilization of the H(II) phase by La(3+).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号