首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Porphobilinogen deaminase (PBGD) is a key enzyme of the heme biosynthetic pathway. Defects in the PBGD gene lead to an autosomal dominant disease, acute intermittent porphyria (AIP). Almost all AIP patients with rare exceptions are heterozygous for the defective gene. To date, at least 160 different mutations causing AIP are identified. Extensive investigations along this line are conducted in many countries of the world. In Russia these studies had not been hitherto performed. Here we report the results of molecular genetic examination of four Russian patients with AIP diagnosed from clinical symptoms. By direct sequencing of the PBGD gene or the corresponding cDNA, we have detected four mutations, three of which were not previously encountered in the world population. These are TAAG deletion in intron 7 between positions +2 and (IVS7 2-5 delTAAG); T deletion in the initiation codon ATG of exon 3, and the G for C replacement at position -1 of intron 5 (IVS5 as -1 G:C), which disrupts splicing. In addition, in one female patient, a known deletion CT in codon 68 was revealed. In two patients, expression of PBGD gene alleles was significantly disproportional, so that normal mRNA prevailed in one case and mRNA of nonerythroid type in the other. Deletion in intron 7 was easily detectable due to the formation of a heteroduplex fragment with abnormal electrophoretic mobility directly in PCR. This simple heteroduplex analysis allowed us to exclude AIP carriage in son and daughter of a female patient with the genetic defect.  相似文献   

2.
Porphobilinogen deaminase (PBGD) is a key enzyme of the heme biosynthetic pathway. Defects in the PBGD gene lead to an autosomal dominant disease, acute intermittent porphyria (AIP). Almost all AIP patients with rare exceptions are heterozygous for the defective gene. To date, at least 160 different mutations causing AIP are identified. Extensive investigations along this line are conducted in many countries of the world. In Russia these studies had not been hitherto performed. Here we report the results of molecular genetic examination of four Russian patients with AIP diagnosed from clinical symptoms. By direct sequencing of the PBGD gene or the corresponding cDNA, we have detected four mutations, three of which were not previously encountered in the world population. These are TAAG deletion in intron 7 between positions +2 and +5 (IVS7 2–5 delTAAG); T deletion in the initiation codon ATG of exon 3, and the G for C replacement at position –1 of intron 5 (IVS5 as –1 G–C), which disrupts splicing. In addition, in one female patient, a known deletion CT in codon 68 was revealed. In two patients, expression of PBGD gene alleles was significantly disproportional, so that normal mRNA prevailed in one case and mutant mRNA of nonerythroid type in the other. Deletion in intron 7 was easily detectable due to the formation of a heteroduplex fragment with abnormal electrophoretic mobility directly in PCR. This simple heteroduplex analysis allowed us to exclude AIP carriage in son and daughter of a female patient with the genetic defect.  相似文献   

3.
4.
Acute intermittent porphyria (AIP) is attributable to defects in the porphobilinogen deaminase (PBGD) gene. Two new mutations have been found in the PBGD gene in Swedish families. The first is a G to A splice mutation in the last position of intron 9. A screening method using allele-specific amplification has been designed for the rapid detection of this mutation. The second mutation is a C to T substitution in exon 10, changing Arg201 to Trp. This mutation can be detected by restriction enzyme cleavage.  相似文献   

5.
6.
Acute intermittent porphyria (AIP) is a low-penetrant autosomal dominant disorder caused by mutations in the porphobilinogen deaminase gene (PBGD). Nearly 60% of all Swiss AIP patients carry a nonsense mutation W283X (G(7916)-->A). In France, the prevalence of W283X is <5%. To determine whether W283X was a founder mutation or originated from multiple de novo events, we studied 25 apparently unrelated W283X families and index patients, 21 of Swiss and 4 of French origins. In the absence of sufficient genealogical data to verify the ancestral background of these W283X families/patients, we identified haplotypes of seven intragenic single nucleotide polymorphisms (SNPs) in the PBGD gene as well as eight microsatellites flanking the PBGD gene covering 9.88 cM in chromosome 11. Molecular cloning and sequencing experiments were required in order to completely resolve the intragenic haplotypes in this study cohort which mainly consisted of single index patients and families with limited members. Thirteen of the 25 W283X families/patients carry a SNP haplotype [C-A-A-A-G-C-W283X-G] and 12 (including four French families) carry a [T-G-G-G-G-C-W283X-G] haplotype. A less conserved microsatellite haplotype was identified among the 25 W283X alleles which allowed us to estimate the age of the mutation. Since W283X is not explained by a methylcytosine mutation, we favor the hypothesis of a single mutational event which took place on the [T-G-G-G-G-C-G] background at approximately 40 generations or 1000 years ago. Around 550 years ago, a recombination event occurred between intron 3 and 10 of the PBGD gene which resulted in the [C-A-A-A-G-C-W283X-G] haplotype only found in a restricted region.  相似文献   

7.
Acute intermittent porphyria (AIP) is an autosomal dominant disorder caused by decreased activity of porphobilinogen deaminase (PBGD), the third enzyme in the heme biosynthetic pathway. We report the first molecular analysis of PBGD gene mutations in AIP patients of Swiss origin. The PBGD gene of 18 Swiss AIP patients was analyzed by denaturing gradient gel electrophoresis screening of the genomic DNA and direct sequencing. Thirteen of the 18 patients (72%) carried a nonsense mutation G(849)-->A, W283X. In addition, 4 different mutations including 2 novel mutations (Q217L and Q292X), were identified in the 5 remaining AIP patients originating from both German- and Italian-speaking regions of Switzerland.  相似文献   

8.
9.
Acute intermittent porphyria (AIP) is an autosomal dominant disorder of heme biosynthesis caused by molecular defects in the porphobilinogen deaminase (PBGD) gene. This paper reviews published mutations, their types, and polymorphisms within the PBGD gene. To date, 301 different mutations and 21 polymorphisms have been identified in the PBGD gene in AIP patients and individuals from various countries and ethnic groups. During the search for mutations identified among Slavic AIP patients we found 65 such mutations and concluded that there is not a distinct predominance of certain mutations in Slavs.  相似文献   

10.
Acute intermittent porphyria (AIP) is an autosomal dominant hereditary disease, caused by partial deficiency of porphobilinogen deaminase (PBGD), one of the key enzymes of heme biosynthesis. This study describes molecular genetics of AIP in Russia. Mutation analysis of PBGD gene in 70 unrelated patients revealed 47 various genetic defects, 28 of which had not been described previously. Mutations 53delT and Arg173Trp (recorded 8 times, in total 23%) proved to be the most common in Russia. Microdeletion 53delT has monophyletic origin and was found only in Russia. Molecular genetic examination of 132 relatives of AIP patients from 40 families revealed 52 latent carriers of the disease. Low (about 10%) AIP penetrance indicates that a mutation in the PBGD gene is an important but not sufficient prerequisite for clinical manifestation of the disease. Modulation of penetrance in erythropoietic protoporphyria by coinheritance of a mutant allele and a functionally defective wild type allele of ferrochetalase gene has been shown previously. We hypothesized that similar mechanism works in AIP. Sequencing of the full length PBGD genes from unrelated AIP patients as well as SNP analysis, and the analysis of abnormal PBGD mRNA splicing showed that in case of AIP, this hypothesis is not true and some other factors are responsible for the penetrance of this disease.  相似文献   

11.
Acute intermittent porphyria (AIP) is an autosomal dominant disease characterized by a deficiency of porphobilinogen deaminase (PBGD). Up to now 14 different mutations have been described. In an effort to investigate the molecular epidemiology of AIP we have undertaken a systematic study of different exons of the PBGD gene from a large number of unrelated patients. Here, exon 8 from 82 unrelated Dutch and French AIP patients was examined using single strand confirmation polymorphism analysis (SSCP) after polymerase chain reaction (PCR) amplification. A single base mutation, C to T, at position 346 of the sequence coding for PBGD was observed in 15 Dutch families but in only 1 French family. A simple PCR assay is described to facilitate the diagnosis of this common mutation at the DNA level.  相似文献   

12.
Acute intermittent porphyria (AIP) is an autosomal dominant disease characterized by mutations of the gene coding for porphobilinogen deaminase (PBGD). Until now, sixteen different mutations have been described. In an effort to investigate further the molecular epidemiology of AIP, we have undertaken a systematic study of different exons of the PBGD gene from a large number of unrelated patients. Here, we have examined seven of the fifteen exons of the gene from 43 unrelated Dutch and French AIP patients using denaturing gradient gel electrophoresis after polymerase chain reaction amplification. Eleven new mutations were found, accounting for the enzymatic defect in about half of the patients. This study further documents the molecular heterogeneity of the mutations responsible for AIP and describes an efficient strategy to detect the mutations in patients with previously unknown abnormalities.  相似文献   

13.
BACKGROUND: Acute intermittent porphyria (AIP) is an inherited disorder in the heme biosynthetic pathway caused by a partial deficiency of porphobilinogen (PBG) deaminase. Clinically, AIP is characterized as acute neurovisceral attacks that are often precipitated by exogenous factors such as drugs, hormones, and alcohol. An early detection of mutation carriers is essential for prevention of acute attacks by avoiding precipitating factors. This study was aimed at analyzing genetic defects causing AIP among Swiss families to further investigate aspects concerning the clinical expression of the disease. MATERIALS AND METHODS: The PBGD gene of index patients from 21 Swiss AIP families was systematically analyzed by denaturing gradient gel electrophoresis of polymerase chain reaction (PCR) amplified DNA fragments and direct sequencing. RESULTS: Five new mutations insA503, del L170, T190I, P241S, and R321H, as well as three known mutations (R26H, R173Q and W283X) were detected. Twelve of the 21 index patients (57%) carried the prevalent mutation W283X previously found among the Swiss AIP population. Family-specific mutations were then screened among relatives of the index patients. Among the 107 studied individuals, 58 carried a PBGD gene mutation--30 were overt AIP patients and 28 were asymptomatic carriers. The apparent rate of overt disease in the study cohort was 52%, which is significantly higher than the previously reported penetrance of 10-20%. To further examine the clinical expression of AIP, the cumulative life-time risk was calculated among 58 mutation-positive individuals after stratifying for age. The result shows a linear increase of the percentage of the symptomatic patients with age, reaching up to 75% among carriers aged over 60. Moreover, statistical analysis of the gender distribution among patients and asymptomatic carriers indicated that the disease was more frequently expressed among females than males (Fisher's exact test two sided, p= (0.001). CONCLUSIONS: This comprehensive search for genetic defects in the PBGD gene confirmed the existence of a prevalent mutation W283X among Swiss AIP patients, as well as a number of family-private mutations. Genetic analysis laid a groundwork for further studies such as the effects of gender and age on the clinical expression of AIP.  相似文献   

14.
A total of 12 mutations associated with acute intermittent porphyria (AIP) have been detected in the porphobilinogen deaminase gene in Swedish AIP families. Three of them are newly discovered and unique to the Swedish population: a splice mutation in intron 6 (int6+1), a missense mutation in exon 11 (Gly216Asp) and a TG deletion in exon 14. Received: 23 December 1996 / Accepted: 17 February 1997  相似文献   

15.
BACKGROUND: Acute intermittent porphyria (AIP) is an autosomal dominant disorder that results from the partial deficiency of porphobilinogen deaminase (PBGD) in the heme biosynthetic pathway. Patients with AIP can experience acute attacks consisting of abdominal pain and various neuropsychiatric symptoms. Although molecular biological studies on the porphobilinogen deaminase (PBGD) gene have revealed several mutations responsible for AIP, the properties of mutant PBGD in eukaryotic expression systems have not been studied previously. MATERIALS AND METHODS: Seven mutations were analyzed using transient expression of the mutated polypeptides in COS-1 cells. The properties of mutated polypeptides were studied by enzyme activity measurement, Western blot analysis, pulse-chase experiments, and immunofluorescence staining. RESULTS: Of the mutants studied, R26C, R167W, R173W, R173Q, and R225X resulted in a decreased enzyme activity (0-5%), but R225G and 1073delA (elongated protein) displayed a significant residual activity of 16% and 50%, respectively. In Western blot analysis, the polyclonal PBGD antibody detected all mutant polypeptides except R225X, which was predicted to result in a truncated protein. In the pulse-chase experiment, the mutant polypeptides were as stable as the wild-type enzyme. In the immunofluorescence staining both wild-type and mutant polypeptides were diffusely dispersed in the cytoplasm and, thus, no accumulation of mutated proteins in the cellular compartments could be observed. CONCLUSIONS: The results confirm the causality of mutations for the half normal enzyme activity measured in the patients' erythrocytes. In contrast to the decreased enzyme activity, the majority of the mutations produced a detectable polypeptide, and the stability and the intracellular processing of the mutated polypeptides were both comparable to that of the wild-type PBGD and independent of the cross-reacting immunological material (CRIM) class.  相似文献   

16.
We have recently demonstrated that in an autosomal dominant porphyria, erythropoietic protoporphyria (EPP), the coinheritance of a ferrochelatase (FECH) gene defect and of a wild-type low-expressed FECH allele is generally involved in the clinical expression of EPP. This mechanism may provide a model for phenotype modulation by minor variations in the expression of the wild-type allele in the other three autosomal dominant porphyrias that exhibit incomplete penetrance: acute intermittent porphyria (AIP), variegata porphyria (VP) and hereditary coproporphyria (HC), which are caused by partial deficiencies of hydroxy-methyl bilane synthase (HMBS), protoporphyrinogen oxidase (PPOX) and coproporphyrinogen oxidase (CPO), respectively. Given the dominant mode of inheritance of EPP, VP, AIP and HC, we first confirmed that the 200 overtly porphyric subjects (55 EPP, 58 AIP, 56 VP; 31 HC) presented a single mutation restricted to one allele (20 novel mutations and 162 known mutations). We then analysed the available single-nucleotide polymorphisms (SNPs) present at high frequencies in the general population and spreading throughout the FECH, HMBS, PPOX and the CPO genes in four case-control association studies. Finally, we explored the functional consequences of polymorphisms on the abundance of wild-type RNA, and used relative allelic mRNA determinations to find out whether low-expressed HMBS, PPOX and the CPO alleles occur in the general population. We confirm that the wild-type low-expressed allele phenomenon is usually operative in the mechanism of variable penetrance in EPP, but conclude that this is not the case in AIP and VP. For HC, the CPO mRNA determinations strongly suggest that normal CPO alleles with low-expression are present, but whether this low-expression of the wild-type allele could modulate the penetrance of a CPO gene defect in HC families remains to be ascertained.  相似文献   

17.
BACKGROUND: Acute intermittent porphyria (AIP), an autosomal dominant inborn error, results from the half-normal activity of the heme biosynthetic enzyme hydroxymethylbilane synthase (EC 4.3.1.8; HMB-synthase). This disease is characterized by acute, life-threatening neurologic attacks that are precipitated by various drugs, hormones, and other factors. The enzymatic and/or biochemical diagnosis of AIP heterozygotes is problematic; therefore, efforts have focused on the identification of HMB-synthase mutations so that heterozygotes can be identified and educated to avoid the precipitating factors. In Spain, the occurrence of AIP has been reported, but the nature of the HMB-synthase mutations causing AIP in Spanish families has not been investigated. Molecular analysis was therefore undertaken in nine unrelated Spanish AIP patients. MATERIALS AND METHODS: Genomic DNA was isolated from affected probands and family members of nine unrelated Spanish families with AIP. The HMB-synthase gene was amplified by long-range PCR and the nucleotide sequence of each exon was determined by cycle sequencing. RESULTS: Three new mutations, a missense, M212V; a single base insertion, g4715insT; and a deletion/insertion, g7902ACT-->G, as well as five previously reported mutations (G111R, R116W, R149X R167W, and R173W) were detected in the Spanish probands. Expression of the novel missense mutation M212V in E. coli revealed that the mutation was causative, having <2% residual activity. CONCLUSIONS: These studies identified the first mutations in the HMB-synthase gene causing AIP in Spanish patients. Three of the mutations were novel, while five previously reported lesions were found in six Spanish families. These findings enable accurate identification and counseling of presymptomatic carriers in these nine unrelated Spanish AIP families and further demonstrate the genetic heterogeneity of mutations causing AIP.  相似文献   

18.
Summary Acute intermittent porphyria (AIP) is due to a defect in porphobilinogen deaminase (PBGD, E.C. 4.1.3.8) inherited as an autosomal dominant trait. Presymptomatic carrier detection is important in order to avoid exposure to factors inducing severe clinical symptoms. Carriers and noncarriers of the AIP gene can be distinguished by linkage analysis using three intragenic RFLPs in AIP families. In the present study, the polymerase chain reaction (PCR) was used to amplify 3.3-kb genomic sequences covering three polymorphic sites. Haplotypes were identified after cleavage of amplified products with three restriction enzymes, showing that the technique can be successfully used for linkage analysis in AIP families.  相似文献   

19.
Porphobilinogen deaminase (PBGD), the third enzyme in the biosynthesis of heme, is deficient in acute intermittent porphyria (AIP). AIP is a genetic disease characterized by neurovisceral and psychiatric disturbances. Despite a palliative treatment, it may still be lethal. An initial step towards gene therapy was recently taken by showing that PBGD could be expressed to correct the enzyme deficiency in AIP fibroblasts. The aim of the present study was to investigate whether the biochemical defect can be corrected by using non-viral gene delivery. The biochemical defect in human and mouse PBGD deficient fibroblasts was demonstrated by analyzing synthesis of the heme precursor, protoporphyrin (PP), after addition of 5-aminolevulinic acid (ALA). Human AIP fibroblasts synthesized 21% and mouse PBGD deficient fibroblasts only 11% of the PP amount synthesized in respective control cells. Gene delivery increased the PBGD activity 88–200 fold in human AIP fibroblasts and synthesis of PP was increased from 21–152% of normal after ALA incubation. Similar results were obtained in mouse PBGD deficient cells, although the PP levels were several-fold lower as compared to human cells. HPLC analysis confirmed that PP was the main porphyrin intermediate that was formed. Addition of porphobilinogen (PBG) resulted in 3–7 fold lower synthesis of PP as compared to ALA addition. These results show that non-viral gene delivery of plasmids encoding PBGD results in a high expression of functional PBGD shown by induced synthesis of PP in PBGD deficient cells after supplementation of ALA and PBG.  相似文献   

20.
Acute intermittent porphyria (AIP) is the major autosomal dominant form of acute hepatic porphyrias. The disease is due to mutations in the gene encoding for porphobilinogen (PBG) deaminase and is characterized by life-threatening neurovisceral attacks, often precipitated by drugs, fasting, cyclical hormonal changes, or infectious diseases. This report describes a prospective study on the molecular epidemiology of PBG deaminase gene defects in AIP. It uses a sensitive, reliable, and easy-to-handle method for routine AIP molecular diagnosis and family study based on an exon-by-exon denaturing gradient gel electrophoresis (DGGE) strategy followed by direct sequencing. Fifteen genomic DNA fragments, including all the coding sequence and covering 3.35 kb of the PBG deaminase gene, were investigated in 405 subjects from 121 unrelated French Caucasian AIP families who had not been screened previously at the DNA level. PBG deaminase gene mutations were identified in 109 families, but only 78 were of different type, and each of them had a prevalence rate < 5%. Among these mutations, 33 had not been published previously. Sixty percent of these 78 mutations were located in only three exons (exons 10, 12, and 14), 44% were missense, 18% were splice defect, 19% were frameshift, and 16% were nonsense. In addition, two de novo mutational events were characterized. The evaluation of the efficiency of the standard PBG deaminase enzymatic screening method for gene-carrier detection indicated 95% of concordancy with the molecular-based diagnosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号