首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Aurora/Ipl1 family of protein kinases plays multiple roles in mitosis and cytokinesis. Here, we describe ZM447439, a novel selective Aurora kinase inhibitor. Cells treated with ZM447439 progress through interphase, enter mitosis normally, and assemble bipolar spindles. However, chromosome alignment, segregation, and cytokinesis all fail. Despite the presence of maloriented chromosomes, ZM447439-treated cells exit mitosis with normal kinetics, indicating that the spindle checkpoint is compromised. Indeed, ZM447439 prevents mitotic arrest after exposure to paclitaxel. RNA interference experiments suggest that these phenotypes are due to inhibition of Aurora B, not Aurora A or some other kinase. In the absence of Aurora B function, kinetochore localization of the spindle checkpoint components BubR1, Mad2, and Cenp-E is diminished. Furthermore, inhibition of Aurora B kinase activity prevents the rebinding of BubR1 to metaphase kinetochores after a reduction in centromeric tension. Aurora B kinase activity is also required for phosphorylation of BubR1 on entry into mitosis. Finally, we show that BubR1 is not only required for spindle checkpoint function, but is also required for chromosome alignment. Together, these results suggest that by targeting checkpoint proteins to kinetochores, Aurora B couples chromosome alignment with anaphase onset.  相似文献   

2.
The Aurora family kinases contribute to accurate progression through several mitotic events. ZM447439 ("ZM"), the first Aurora family kinase inhibitor to be developed and characterized, was previously found to interfere with the mitotic spindle integrity checkpoint and chromosome segregation. Here, we have used extracts of Xenopus eggs, which normally proceed through the early embryonic cell cycles in the absence of functional checkpoints, to distinguish between ZM's effects on the basic cell cycle machinery and its effects on checkpoints. ZM clearly had no effect on either the kinetics or amplitude in the oscillations of activity of several key cell cycle regulators. It did, however, have striking effects on chromosome morphology. In the presence of ZM, chromosome condensation began on schedule but then failed to progress properly; instead, the chromosomes underwent premature decondensation during mid-mitosis. ZM strongly interfered with mitotic spindle assembly by inhibiting the formation of microtubules that are nucleated/stabilized by chromatin. By contrast, ZM had little effect on the assembly of microtubules by centrosomes at the spindle poles. Finally, under conditions where the spindle integrity checkpoint was experimentally induced, ZM blocked the establishment, but not the maintenance, of the checkpoint, at a point upstream of the checkpoint protein Mad2. These results show that Aurora kinase activity is required to ensure the maintenance of condensed chromosomes, the generation of chromosome-induced spindle microtubules, and activation of the spindle integrity checkpoint.  相似文献   

3.
Merotelic kinetochore orientation is a misattachment in which a single kinetochore binds microtubules from both spindle poles rather than just one and can produce anaphase lagging chromosomes, a major source of aneuploidy. Merotelic kinetochore orientation occurs frequently in early mitosis, does not block chromosome alignment at the metaphase plate, and is not detected by the spindle checkpoint. However, microtubules to the incorrect pole are usually significantly reduced or eliminated before anaphase. We discovered that the frequency of lagging chromosomes in anaphase is very sensitive to partial inhibition of Aurora kinase activity by ZM447439 at a dose, 3 microM, that has little effect on histone phosphorylation, metaphase chromosome alignment, and cytokinesis in PtK1 cells. Partial Aurora kinase inhibition increased the frequency of merotelic kinetochores in late metaphase, and the fraction of microtubules to the incorrect pole. Measurements of fluorescence dissipation after photoactivation showed that kinetochore-microtubule turnover in prometaphase is substantially suppressed by partial Aurora kinase inhibition. Our results support a preanaphase correction mechanism for merotelic attachments in which correct plus-end attachments are pulled away from high concentrations of Aurora B at the inner centromere, and incorrect merotelic attachments are destabilized by being pulled toward the inner centromere.  相似文献   

4.
Cell division in mammalian cells is regulated by Aurora kinases. The activity of Aurora A is indispensable for correct function of centrosomes and proper spindle formation, while Aurora B for chromosome biorientation and separation. Aurora B is also responsible for the phosphorylation of histone H3 serine 10 (H3S10Ph) from G2 to metaphase. Data concerning the Aurora B activity and H3S10Ph in embryonic cells are limited to primordial and maturing oocytes and advanced pronuclei in zygotes. In the present study we have analyzed H3S10Ph in 1- and 2-cell mouse embryos. We show that H3S10 remains phosphorylated at anaphase and telophase of the second meiotic division, as well as during the anaphase and telophase of the first and second embryonic mitoses. At late G1 H3S10 is dephosphorylated and subsequently phosphorylated de novo at late S phase of the first and second cell cycle. These results show that the H3S10 phosphorylation/dephosphorylation cycle in embryonic cells is different than in somatic cells. The behaviour of thymocyte G0 nuclei introduced into ovulated oocytes and early 1-cell parthenogenotes confirms that kinases responsible for de novo H3S10 phosphorylation, most probably Aurora B, are active until G1 of the first cell cycle of mouse embryo. The inhibition of Aurora kinases by ZM447439 caused abnormalities both in the first and second mitoses. However, the disturbances in each division differed, suggesting important differences in the control of these mitoses. In ZM447439-treated mitotic zygotes Mad2 protein remained continuously present on kinetochores, what confirmed that spindle checkpoint remained active.  相似文献   

5.
Mitotic Aurora kinases are essential for accurate chromosome segregation during cell division. Forced over-expression of Aurora kinase results in centrosome amplification and multipolar spindles, causing aneuploidy, a hallmark of cancer. ZM447439 (ZM), an Aurora selective ATP-competitive inhibitor, interferes with the spindle integrity checkpoint and chromosome segregation. Here, we showed that inhibition of Aurora kinase by ZM reduced histone H3 phosphorylation at Ser10 in Hep2 carcinoma cells. Multipolar spindles were induced in these ZM-treated G2/M-arrested cells with accumulation of 4N/8N DNA, similar to cells with genetically suppressed Aur-B. Cells subsequently underwent apoptosis, as assessed by cleavage of critical apoptotic associated protein PARP. Hep2 cells formed a tumor-like cell mass in 3-dimensional matrix culture; inhibition of Aurora kinase by ZM either destructed the preformed cell mass or prevented its formation, by inducing apoptotic cell death as stained for cleaved caspase-3. Lastly, ZM inhibition of Aurora kinase was potently in association with decrease of Akt phosphorylation at Ser473 and its substrates GSK3&;alpha;/beta; phosphorylation at Ser21 and Ser9. Together, we demonstrated that Aurora kinase served as a potential molecular target of ZM for more selective therapeutic cancer treatment.  相似文献   

6.
Aurora kinases play critical roles in chromosome segregation and cell division. They are implicated in the centrosome cycle, spindle assembly, chromosome condensation, microtubule-kinetochore attachment, the spindle checkpoint and cytokinesis. Aurora kinases are regulated through phosphorylation, the binding of specific partners and ubiquitin-dependent proteolysis. Several Aurora substrates have been identified and their roles are being elucidated. The deregulation of Aurora kinases impairs spindle assembly, checkpoint function and cell division, causing missegregation of individual chromosomes or polyploidization accompanied by centrosome amplification. Aurora kinases are frequently overexpressed in cancers and the identification of Aurora A as a cancer-susceptibility gene provides a strong link between mitotic errors and carcinogenesis.  相似文献   

7.
Aurora kinases are essential for mitosis and are candidate targets of novel chemotherapeutic agents. The inhibitors ZM447439, MK-0457 (VX-680) as well as Hesperadin have been used to dissect the roles of Aurora kinases in the cell cycle and have been tested clinically for the treatment of cancer. Here we have carried out a detailed kinetic analysis of two isogenic cell lines differing in p53 function and have compared the effects of ZM447439 and VE-465 (related to MK-0457). We find that p53 is needed for efficient cell cycle arrest when Aurora kinases are inhibited by either ZM447439 or VE-465. However, the p53-induced cell cycle block is neither immediate nor absolute. ZM447439 induced the localized accumulation of γH2A.X indicating that p53 induction by this drug occurs in response to DNA damage. Our analysis of the long-term effects of ZM447439 indicates that cells can evade killing by the drug, but not via a classical drug-resistance mechanism. Several mechanisms to explain how cells may evade killing by Aurora kinase inhibitors are described.  相似文献   

8.
How kinetochores correct improper microtubule attachments and regulate the spindle checkpoint signal is unclear. In budding yeast, kinetochores harboring mutations in the mitotic kinase Ipl1 fail to bind chromosomes in a bipolar fashion. In C. elegans and Drosophila, inhibition of the Ipl1 homolog, Aurora B kinase, induces aberrant anaphase and cytokinesis. To study Aurora B kinase in vertebrates, we microinjected mitotic XTC cells with inhibitory antibody and found several related effects. After injection of the antibody, some chromosomes failed to congress to the metaphase plate, consistent with a conserved role for Aurora B in bipolar attachment of chromosomes. Injected cells exited mitosis with no evidence of anaphase or cytokinesis. Injection of anti-Xaurora B antibody also altered the microtubule network in mitotic cells with an extension of the astral microtubules and a reduction of kinetochore microtubules. Finally, inhibition of Aurora B in cultured cells and in cycling Xenopus egg extracts caused escape from the spindle checkpoint arrest induced by microtubule drugs. Our findings implicate Aurora B as a critical coordinator relating changes in microtubule dynamics in mitosis, chromosome movement in prometaphase and anaphase, signaling of the spindle checkpoint, and cytokinesis.  相似文献   

9.
VX-680, also known as MK-0457, is a member of a diverse group of small molecules that inhibit the Aurora kinases, and has shown significant potential as an anti-cancer agent. In keeping with many protein kinase inhibitors, this compound is not a monospecific agent, and its cellular specificity remains largely unknown. In cells, VX-680 blocks mitotic Histone H3 phosphorylation and induces polyploidy and apoptosis, consistent with inhibition of the mitotic protein kinase Aurora B. In this study, we have investigated the effects of VX-680 in proliferating human cancer cells, and demonstrate that it blocks the phosphorylation and activation of both Aurora A and B. Additionally, VX-680 suppresses the phosphorylation of specific substrates of each enzyme, including the Aurora A target TACC3 on Ser558. Exposure to VX-680 induces a monopolar spindle phenotype, delays mitotic progression and rapidly overrides the spindle assembly checkpoint in the presence of spindle poisons. VX-680 also exhibits potent cytotoxicity when compared to the well documented Aurora B inhibitor ZM447439. Taken together, these data identify Aurora A and Aurora B as dual intracellular targets of VX-680.  相似文献   

10.
Nuclear distribution protein C (NudC) is a mitotic regulator that plays a role in cytokinesis. However, how NudC is regulated during cytokinesis remains unclear. Here, we show that NudC is phosphorylated by Aurora B, a kinase critical for cell abscission. NudC is co-localized with Aurora B at the midbody and co-immunoprecipitated with Aurora B in mitosis. Inhibition of Aurora B by ZM447439 reduced NudC phosphorylation, suggesting that NudC is an Aurora B substrate in vivo. We identified T40 on NudC as an Aurora B phosphorylation site. NudC depletion resulted in cytokinesis failure with a dramatic elongation of the intercellular bridge between daughter cells, sustained Aurora B activity at the midbody, and reduced cell abscission. These cytokinetic defects can be rescued by the ectopic expression of wild-type NudC. Reconstitution with T40A phospho-defective NudC was found to rescue the cytokinesis defect. In contrast, reconstitution with the T40D phospho-mimetic NudC was inefficient in supporting the completion of cytokinesis. These results suggest that that dynamic phosphorylation of NudC by Aurora B regulates cytokinesis.  相似文献   

11.
A large body of work indicates that chromosomes play a key role in the assembly of both a centrosomal and centrosome-containing spindles. In animal systems, the absence of chromosomes either prevents spindle formation or allows the assembly of a metaphase-like spindle that fails to evolve into an ana-telophase spindle. Here, we show that Drosophila secondary spermatocytes can assemble morphologically normal spindles in the absence of chromosomes. The Drosophila mutants fusolo and solofuso are severely defective in chromosome segregation and produce secondary spermatocytes that are devoid of chromosomes. The centrosomes of these anucleated cells form robust asters that give rise to bipolar spindles that undergo the same ana-telophase morphological transformations that characterize normal spindles. The cells containing chromosome-free spindles are also able to assemble regular cytokinetic structures and cleave normally. In addition, chromosome-free spindles normally accumulate the Aurora B kinase at their midzones. This suggests that the association of Aurora B with chromosomes is not a prerequisite for its accumulation at the central spindle, or for its function during cytokinesis.  相似文献   

12.
Accurate chromosome segregation relies on the mitotic spindle checkpoint. This checkpoint acts to restrict ubiquitin ligase activity of the Anaphase-promoting complex (APC/C) in mitosis until all chromosomes are bipolarly attached to the mitotic spindle. We performed a functional RNAi-based screen to identify De-ubiquitinating enzymes (Dubs) involved in mitotic progression. We identified Usp39 as a new factor required to maintain the spindle checkpoint and support successful cytokinesis. Strikingly, although Usp39 clearly contains an ubiquitin-protease domain, we show that Usp39 is entirely deprived of Dub activity. However, consistent with a previously described role for Usp39 in mRNA processing, we observed specific reduction in Aurora B-mRNA levels after depletion of Usp39. Although we find that exogenously expressed Aurora B cDNA is not sufficient to rescue the checkpoint defect of Usp39-depleted cells, Aurora B expression is restored. Our observations suggest Usp39 to be involved in splicing of Aurora B and other mRNAs that are essential for proper spindle checkpoint function.  相似文献   

13.
Aurora B family kinases play an essential role in chromosome segregation and cytokinesis. Recent work suggests that the kinase activity is required for bipolar chromosome orientation, kinetochore assembly, spindle checkpoint and microtubule dynamics. Aurora B also has additional functions in chromosome condensation and cohesion.  相似文献   

14.
The mitotic checkpoint ensures proper chromosome segregation by monitoring two critical events during mitosis. One is kinetochore attachment to the mitotic spindle, and the second is the alignment of chromosomes at the metaphase plate, resulting in tension across sister kinetochores (reviewed in [1, 2]). Mitotic-checkpoint proteins are known to accumulate at unaligned chromosomes that have not achieved proper kinetochore-microtubule attachments or established an adequate level of tension across sister kinetochores. Here, we report that hZW10 and hROD, two components of the evolutionarily conserved RZZ complex, accumulate at kinetochores in response to the loss of tension. By using live-cell imaging and FRAP, we showed that the accumulation of hZW10 at tensionless kinetochores stems from a 4-fold reduction of kinetochore turnover rate. We also found that cells lacking hZW10 escape loss-of-tension-induced mitotic-checkpoint arrest more rapidly than those arrested in response to the lack of kinetochore-microtubule attachments. Furthermore, we show that pharmacological inhibition of Aurora B kinase activity with ZM447439 in the absence of tension, but not in the absence of kinetochore-microtubule attachments, results in the loss of hZW10, hROD, and hBub1 from kinetochores. We therefore conclude that Aurora B kinase activity is required for the accumulation of tension-sensitive mitotic-checkpoint components, such as hZW10 and hROD, in order to maintain mitotic-checkpoint arrest.  相似文献   

15.
真核生物细胞通过有丝分裂将遗传物质均等地分配到两个子细胞中,从而维持基因组的稳定性。有丝分裂的每一环节都需要精准而细致的调控,这依赖于一系列调节机制,尤其需要多个相关激酶的共同协调。Aurora B是一个关键的有丝分裂调控激酶,伴随有丝分裂的进行,其先后在染色体臂、内着丝粒、中央纺锤体、中体上动态分布。与其高度时空动态性相一致的是,Aurora B在有丝分裂的多个环节,如姐妹染色体粘连、动粒微管连接、纺锤体检验点和胞质分裂过程中都发挥着一系列重要功能。本文将概述近年来Aurora B激酶功能与调控方面的研究进展。  相似文献   

16.
Two series of 20 novel 4-aminoquinazoline—urea derivatives have been designed and synthesized. The entire target compounds were investigated for their in vitro antiproliferative activity against six human cancer cell lines (K562, U937, A549, NCI-H661, HT29 and LoVo) using the MTT-based assay. Most compounds showed significant antiproliferative activities against four solid tumor cell lines, but no or poor activities against two leukemia cell lines. Furthermore, the target compounds were screened for Aurora A/B kinases inhibitory activity. Among them, 7c, 7d, 8c, and 8d are more potent against Aurora A kinase than ZM447439. Docking study of compounds 7d and ZM447439 revealed that they bound strongly to the ATP-binding sites of Aurora A and B. Thus, they may be promising lead compounds for the development of novel anti-tumor drug potentially via inhibiting Aurora kinases.  相似文献   

17.
Mitotic kinases of the Polo and Aurora families are key regulators of chromosome segregation and cytokinesis. Here, we have investigated the role of MKlp1 and MKlp2, two vertebrate mitotic kinesins essential for cytokinesis, in the spatial regulation of the Aurora B kinase. Previously, we have demonstrated that MKlp2 recruits Polo-like kinase 1 (Plk1) to the central spindle in anaphase. We now find that in MKlp2 but not MKlp1-depleted cells the Aurora B-INCENP complex remains at the centromeres and fails to relocate to the central spindle. MKlp2 exerts dual control over Aurora B localization, because it is a binding partner for Aurora B, and furthermore for the phosphatase Cdc14A. Cdc14A can dephosphorylate INCENP and may contribute to its relocation to the central spindle in anaphase. We propose that MKlp2 is involved in the localization of Plk1, Aurora B, and Cdc14A to the central spindle during anaphase, and that the integration of signaling by these proteins is necessary for proper cytokinesis.  相似文献   

18.
The spindle assembly checkpoint functions during mitosis to ensure that chromosomes are properly aligned in mitotic cells prior to the onset of anaphase, thereby ensuring an equal segregation of genetic material to each daughter cell. Defects in the function of this checkpoint lead to aneuploidy, and eventually to cell death or senescence. The Aurora-related kinases, and in particular Aurora B, have been shown to play a role in regulating the spindle assembly checkpoint. In this study, we demonstrate that Aurora A activity is required for maintainance of the spindle assembly checkpoint mediated-mitotic delay induced by microtubule perturbing agents. Inhibition of Aurora A using MLN8054, a selective small-molecule inhibitor of Aurora A, in paclitaxel- or nocodazole-treated cells induces cells to become multinucleated. Using time-lapse microscopy, we demonstrate that the multinucleation phenotype arises via mitotic slippage, which is significantly accelerated upon Aurora A inhibition. Under these conditions, the spindle assembly checkpoint protein BubR1 remains localized to kinetochores prior to mitotic slippage. Moreover, we demonstrate that Aurora B remains active in these mitotic cells, indicating that the mitotic slippage induced by MLN8054 is most likely due to the inhibition of Aurora A. This finding was corroborated by demonstrating that Aurora A depletion using RNA interference in paclitaxel-treated cells also induces multinucleation. Taken together, these results suggest that Aurora A is necessary for the maintenance of the mitotic delay induced in response to microtubule-perturbing agents.  相似文献   

19.
Cell cycle events must be faithfully executed and properly integrated to ensure genetic stability. The Mps1 family of protein kinases has recently emerged as a critical regulator of genetic stability, because they regulate several processes central to mitotic fidelity. The spindle checkpoint monitors alignment of mitotic chromosomes, and centrosomes control cell cycle entry, mitotic spindle assembly, and cytokinesis. Several studies have shown that vertebrate orthologues of budding yeast Mps1p regulate the spindle checkpoint. More recently it has been demonstrated that human Mps1 is also required for centrosome duplication, normal mitotic progression, and cytokinesis.  相似文献   

20.
Cell cycle events must be faithfully executed and properly integrated to ensure genetic stability. The Mps1 family of protein kinases has recently emerged as a critical regulator of genetic stability, because they regulate several processes central to mitotic fidelity. The spindle checkpoint monitors alignment of mitotic chromosomes, and centrosomes control cell cycle entry, mitotic spindle assembly, and cytokinesis. Several studies have shown that vertebrate orthologues of budding yeast Mps1p regulate the spindle checkpoint. More recently it has been demonstrated that human Mps1 is also required for centrosome duplication, normal mitotic progression, and cytokinesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号