首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Arabidopsis Toc33 (atToc33) is a GTPase and a member of the Toc (translocon at the outer-envelope membrane of chloroplasts) complex that associates with precursor proteins during protein import into chloroplasts. By inference from the crystal structure of psToc34, a homologue in pea, the arginine at residue 130 (Arg(130)) has been implicated in the formation of the atToc33 dimer and in intermolecular GTPase activation within the dimer. Here we report the crystal structure at 3.2-A resolution of an atToc33 mutant, atToc33(R130A), in which Arg(130) was mutated to alanine. Both in solution and in crystals, atToc33(R130A) was present in its monomeric form. In contrast, both wild-type atToc33 and another pea Toc GTPase homologue, pea Toc159 (psToc159), were able to form dimers in solution. Dimeric atToc33 and psToc159 had significantly higher GTPase activity than monomeric atToc33, psToc159, and atToc33(R130A). Molecular modeling using the structures of psToc34 and atToc33(R130A) suggests that, in an architectural dimer of atToc33, Arg(130) from one monomer interacts with the beta-phosphate of GDP and several other amino acids of the other monomer. These results indicate that Arg(130) is critical for dimer formation, which is itself important for GTPase activity. Activation of GTPase activity by dimer formation is likely to be a critical regulatory step in protein import into chloroplasts.  相似文献   

2.
A unique aspect of protein transport into plastids is the coordinate involvement of two GTPases in the translocon of the outer chloroplast membrane (Toc). There are two subfamilies in Arabidopsis, the small GTPases (Toc33 and Toc34) and the large acidic GTPases (Toc90, Toc120, Toc132, and Toc159). In chloroplasts, Toc34 and Toc159 are implicated in precursor binding, yet mechanistic details are poorly understood. How the GTPase cycle is modulated by precursor binding is complex and in need of careful dissection. To this end, we have developed novel in vitro assays to quantitate nucleotide binding and hydrolysis of the Toc GTPases. Here we present the first systematic kinetic characterization of four Toc GTPases (cytosolic domains of atToc33, atToc34, psToc34, and the GTPase domain of atToc159) to permit their direct comparison. We report the KM, Vmax, and Ea values for GTP hydrolysis and the Kd value for nucleotide binding for each protein. We demonstrate that GTP hydrolysis by psToc34 is stimulated by chloroplast transit peptides; however, this activity is not stimulated by homodimerization and is abolished by the R133A mutation. Furthermore, we show peptide stimulation of hydrolytic rates are not because of accelerated nucleotide exchange, indicating that transit peptides function as GTPase-activating proteins and not guanine nucleotide exchange factors in modulating the activity of psToc34. Finally, by using the psToc34 structure, we have developed molecular models for atToc33, atToc34, and atToc159G. By combining these models with the measured enzymatic properties of the Toc GTPases, we provide new insights of how the chloroplast protein import cycle may be regulated.  相似文献   

3.
The multimeric translocon at the outer envelope membrane of chloroplasts (Toc) initiates the recognition and import of nuclear-encoded preproteins into chloroplasts. Two Toc GTPases, Toc159 and Toc33/34, mediate preprotein recognition and regulate preprotein translocation. Although these two proteins account for the requirement of GTP hydrolysis for import, the functional significance of GTP binding and hydrolysis by either GTPase has not been defined. A recent study indicates that Toc159 is equally distributed between a soluble cytoplasmic form and a membrane-inserted form, raising the possibility that it might cycle between the cytoplasm and chloroplast as a soluble preprotein receptor. In the present study, we examined the mechanism of targeting and insertion of the Arabidopsis thaliana orthologue of Toc159, atToc159, to chloroplasts. Targeting of atToc159 to the outer envelope membrane is strictly dependent only on guanine nucleotides. Although GTP is not required for initial binding, the productive insertion and assembly of atToc159 into the Toc complex requires its intrinsic GTPase activity. Targeting is mediated by direct binding between the GTPase domain of atToc159 and the homologous GTPase domain of atToc33, the Arabidopsis Toc33/34 orthologue. Our findings demonstrate a role for the coordinate action of the Toc GTPases in assembly of the functional Toc complex at the chloroplast outer envelope membrane.  相似文献   

4.
Transport of precursor proteins across chloroplast membranes involves the GTPases Toc33/34 and Toc159 at the outer chloroplast envelope. The small GTPase Toc33/34 can homodimerize, but the regulation of this interaction has remained elusive. We show that dimerization is independent of nucleotide loading state, based on crystal structures of dimeric Pisum sativum Toc34 and monomeric Arabidopsis thaliana Toc33. An arginine residue is--in the dimer--positioned to resemble a GAP arginine finger. However, GTPase activation by dimerization is sparse and active site features do not explain catalysis, suggesting that the homodimer requires an additional factor as coGAP. Access to the catalytic center and an unusual switch I movement in the dimeric structure support this finding. Potential binding sites for interactions within the Toc translocon or with precursor proteins can be derived from the structures.  相似文献   

5.
Chen K  Chen X  Schnell DJ 《Plant physiology》2000,122(3):813-822
Two integral outer envelope GTPases, Toc34 and Toc86, are proposed to regulate the recognition and translocation of nuclear-encoded preproteins during the early stages of protein import into chloroplasts. Defining the precise roles of Toc86 and Toc34 has been complicated by the inability to distinguish their GTPase activities. Furthermore, the assignment of Toc86 function is rendered equivocal by recent reports suggesting that the standard protocol for the isolation of chloroplasts results in significant proteolysis of Toc86 (B. Bolter, T. May, J. Soll [1998] FEBS Lett 441: 59-62; G. Schatz [1998] Nature 395: 439-440). We demonstrate that Toc86 corresponds to a native protein of 159 kD in pea (Pisum sativum), designated Toc159. We take advantage of the proteolytic sensitivity of Toc159 to selectively remove its 100-kD cytoplasmic GTPase domain and thereby distinguish its activities from other import components. Proteolysis eliminates detectable binding of preproteins at the chloroplast surface, which is consistent with the proposed role of Toc159 as a receptor component. Remarkably, preprotein translocation across the outer membrane can occur in the absence of the Toc159 cytoplasmic domain, suggesting that binding can be bypassed. Translocation remains sensitive to GTP analogs in the absence of the Toc159 GTP-binding domain, providing evidence that Toc34 plays a key role in the regulation of translocation by GTP.  相似文献   

6.
The atToc33 protein is one of several pre‐protein import receptors in the outer envelope of Arabidopsis chloroplasts. It is a GTPase with motifs characteristic of such proteins, and its loss in the plastid protein import 1 (ppi1) mutant interferes with the import of photosynthesis‐related pre‐proteins, causing a chlorotic phenotype in mutant plants. To assess the significance of GTPase cycling by atToc33, we generated several atToc33 point mutants with predicted effects on GTP binding (K49R, S50N and S50N/S51N), GTP hydrolysis (G45R, G45V, Q68A and N101A), both binding and hydrolysis (G45R/K49N/S50R), and dimerization or the functional interaction between dimeric partners (R125A, R130A and R130K). First, a selection of these mutants was assessed in vitro, or in yeast, to confirm that the mutations have the desired effects: in relation to nucleotide binding and dimerization, the mutants behaved as expected. Then, activities of selected mutants were tested in vivo, by assessing for complementation of ppi1 in transgenic plants. Remarkably, all tested mutants mediated high levels of complementation: complemented plants were similar to the wild type in growth rate, chlorophyll accumulation, photosynthetic performance, and chloroplast ultrastructure. Protein import into mutant chloroplasts was also complemented to >50% of the wild‐type level. Overall, the data indicate that neither nucleotide binding nor dimerization at atToc33 is essential for chloroplast import (in plants that continue to express the other TOC receptors in native form), although both processes do increase import efficiency. Absence of atToc33 GTPase activity might somehow be compensated for by that of the Toc159 receptors. However, overexpression of atToc33 (or its close relative, atToc34) in Toc159‐deficient plants did not mediate complementation, indicating that the receptors do not share functional redundancy in the conventional sense.  相似文献   

7.
The Toc complex at the outer envelope of chloroplasts initiates the import of nuclear-encoded preproteins from the cytosol into the organelle. The core of the Toc complex is composed of two receptor GTPases, Toc159 and Toc34, as well as Toc75, a beta-barrel membrane channel. Toc159 is equally distributed between a soluble cytoplasmic form and a membrane-inserted form, suggesting that assembly of the Toc complex is dynamic. In the present study, we used the Arabidopsis thaliana orthologs of Toc159 and Toc34, atToc159 and atToc33, respectively, to investigate the requirements for assembly of the trimeric Toc complex. In addition to its intrinsic GTPase activity, we demonstrate that integration of atToc159 into the Toc complex requires atToc33 GTPase activity. Additionally, we show that the interaction of the two GTPase domains stimulates association of the membrane anchor of atToc159 with the translocon. Finally, we employ reconstituted proteoliposomes to demonstrate that proper insertion of the receptor requires both Toc75 and Toc34. Collectively these data suggest that Toc34 and Toc75 act sequentially to mediate docking and insertion of Toc159 resulting in assembly of the functional translocon.  相似文献   

8.
The translocon at the outer envelope membrane of chloroplasts (Toc) mediates the recognition and initial import into the organelle of thousands of nucleus-encoded proteins. These proteins are translated in the cytosol as precursor proteins with cleavable amino-terminal targeting sequences called transit peptides. The majority of the known Toc components that mediate chloroplast protein import were originally identified in pea, and more recently have been studied most extensively in Arabidopsis. With the completion of the tomato genome sequencing project, it is now possible to identify putative homologues of the chloroplast import components in tomato. In the work reported here, the Toc GTPase cDNAs from tomato were identified, cloned and analyzed. The analysis revealed that there are four Toc159 homologues (slToc159-1, -2, -3 and -4) and two Toc34 homologues (slToc34-1 and -2) in tomato, and it was shown that tomato Toc159 and Toc34 homologues share high sequence similarity with the comparable import apparatus components from Arabidopsis and pea. Thus, tomato is a valid model for further study of this system. The expression level of Toc complex components was also investigated in different tissues during tomato development. The two tomato Toc34 homologues are expressed at higher levels in non-photosynthetic tissues, whereas, the expression of two tomato Toc159 homologues, slToc159-1 and slToc159-4, were higher in photosynthetic tissues, and the expression patterns of slToc159-2 was not significantly different in photosynthetic and non-photosynthetic tissues, and slToc159-3 expression was limited to a few select tissues.  相似文献   

9.
The post-translational import of nucleus-encoded preproteins into chloroplasts occurs through multimeric translocons in the outer (Toc) and inner (Tic) membranes. The high fidelity of the protein import process is maintained by specific recognition of the transit peptide of preproteins by the coordinate activities of two homologous GTPase Toc receptors, Toc34 and Toc159. Structural and biochemical studies suggest that dimerization of the Toc receptors functions as a component of the mechanism to control access of preproteins to the membrane translocation channel of the translocon. We show that specific mutations that disrupted receptor dimerization in vitro reduced the rate of protein import in transgenic Arabidopsis compared with the wild type receptor. The mutations did not affect the GTPase activities of the receptors. Interestingly, these mutations did not decrease the initial preprotein binding at the receptors, but they reduced the efficiency of the transition from preprotein binding to membrane translocation. These data indicate that dimerization of receptors has a direct role in protein import and support a hypothesis in which receptor-receptor interactions participate in the initiation of membrane translocation of chloroplast preproteins as part of the molecular mechanism of GTP-regulated protein import.  相似文献   

10.
Chloroplast biogenesis requires the large-scale import of cytosolically synthesized precursor proteins. A trimeric translocon (Toc complex) containing two homologous GTP-binding proteins (atToc33 and atToc159) and a channel protein (atToc75) facilitates protein translocation across the outer envelope membrane. The mechanisms governing function and assembly of the Toc complex are not yet understood. This study demonstrates that atToc159 and its pea orthologue exist in an abundant, previously unrecognized soluble form, and partition between cytosol-containing soluble fractions and the chloroplast outer membrane. We show that soluble atToc159 binds directly to the cytosolic domain of atToc33 in a homotypic interaction, contributing to the integration of atToc159 into the chloroplast outer membrane. The data suggest that the function of the Toc complex involves switching of atToc159 between a soluble and an integral membrane form.  相似文献   

11.
Chloroplasts are organelles essential for the photoautotrophic growth of plants. Their biogenesis from undifferentiated proplastids is triggered by light and requires the import of hundreds of different precursor proteins from the cytoplasm. Cleavable N-terminal transit sequences target the precursors to the chloroplast where translocon complexes at the outer (Toc complex) and inner (Tic complex) envelope membranes enable their import. In pea, the Toc complex is trimeric consisting of two surface-exposed GTP-binding proteins (Toc159 and Toc34) involved in precursor recognition and Toc75 forming an aequeous protein-conducting channel. Completion of the Arabidopsis genome has revealed an unexpected complexity of predicted components of the Toc complex in this plant model organism: four genes encode homologs of Toc159, two encode homologs of Toc34, but only one encodes a likely functional homolog of Toc75. The availability of the genomic sequence data and powerful molecular genetic techniques in Arabidopsis set the stage to unravel the mechanisms of chloroplast protein import in unprecedented depth.  相似文献   

12.
Precursor protein translocation across the outer chloroplast membrane depends on the action of the Toc complex, containing GTPases as recognizing receptor components. The G domains of the GTPases are known to dimerize. In the dimeric conformation an arginine contacts the phosphate moieties of bound nucleotide in trans. Kinetic studies suggested that the arginine in itself does not act as an arginine finger of a reciprocal GTPase-activating protein (GAP). Here we investigate the specific function of the residue in two GTPase homologues. Arginine to alanine replacement variants have significantly reduced affinities for dimerization compared with wild-type GTPases. The amino acid exchange does not impact on the overall fold and nucleotide binding, as seen in the monomeric x-ray crystallographic structure of the Arabidopsis Toc33 arginine-alanine replacement variant at 2.0A. We probed the catalytic center with the transition state analogue GDP/AlF(x) using NMR and analytical ultracentrifugation. AlF(x) binding depends on the arginine, suggesting the residue can play a role in catalysis despite the non-GAP nature of the homodimer. Two non-exclusive functional models are discussed: 1) the coGAP hypothesis, in which an additional factor activates the GTPase in homodimeric form; and 2) the switch hypothesis, in which a protein, presumably the large Toc159 GTPase, exchanges with one of the homodimeric subunits, leading to activation.  相似文献   

13.
Toc34, a 34-kDa integral membrane protein, is a member of the Toc (translocon at the outer-envelope membrane of chloroplasts) complex, which associates with precursor proteins during protein transport across the chloroplast outer membrane. Here we report the 2.0 A resolution crystal structure of the cytosolic part of pea Toc34 in complex with GDP and Mg2+. In the crystal, Toc34 molecules exist as dimers with features resembling those found in a small GTPase in complex with a GTPase activating protein (GAP). However, gel filtration experiments revealed that dimeric and monomeric forms of Toc34 coexisted in phosphate saline buffer solution at pH 7.2. Mutation of Arg 128, an essential residue for dimerization, to an Ala residue led to the formation of an exclusively monomeric species whose GTPase activity is significantly reduced compared to that of wild type Toc34. These results, together with a number of structural features unique to Toc34, suggest that each monomer acts as a GAP on the other interacting monomer.  相似文献   

14.
The translocon at the outer membrane of the chloroplast assists the import of a large class of preproteins with amino-terminal transit sequences. The preprotein receptors Toc159 and Toc33 in Arabidopsis (Arabidopsis thaliana) are specific for the accumulation of abundant photosynthetic proteins. The receptors are homologous GTPases known to be regulated by phosphorylation within their GTP-binding domains. In addition to the central GTP-binding domain, Toc159 has an acidic N-terminal domain (A-domain) and a C-terminal membrane-anchoring domain (M-domain). The A-domain of Toc159 is dispensable for its in vivo activity in Arabidopsis and prone to degradation in pea (Pisum sativum). Therefore, it has been suggested to have a regulatory function. Here, we show that in Arabidopsis, the A-domain is not simply degraded but that it accumulates as a soluble, phosphorylated protein separated from Toc159. However, the physiological relevance of this process is unclear. The data show that the A-domain of Toc159 as well as those of its homologs Toc132 and Toc120 are targets of a casein kinase 2-like activity.The Toc and Tic complexes cooperate to import nuclear-encoded chloroplast preproteins from the cytosol (Jarvis, 2008; Kessler and Schnell, 2009). Initially, incoming preproteins encounter the receptors Toc159 and Toc34 at the chloroplast surface. Both are GTP-binding proteins and share sequence homology in their G-domains. While Toc34 is anchored in the outer membrane by a short hydrophobic C-terminal tail, the triple-domain Toc159 is inserted via a largely hydrophilic 52-kD M-domain. In addition to the G- and M-domains, Toc159 has a large acidic A-domain covering the N-terminal half of the protein. Arabidopsis (Arabidopsis thaliana) encodes two isoforms of Toc34 (Toc33 and Toc34) and four of Toc159 (Toc159, Toc132, Toc120, and Toc90; Jackson-Constan and Keegstra, 2001). The Toc159 isoforms have a similar domain structure, but they differ from each other in length and sequence of their A-domain (Hiltbrunner et al., 2001a). However, Toc90 does not have an acidic domain at all and only consists of the G- and M-domains (Hiltbrunner et al., 2004). It has been demonstrated that the A-domain of AtToc159 and AtToc132 have properties of intrinsically disordered proteins (Hernández Torres et al., 2007; Richardson et al., 2009), suggesting an involvement of the A-domain in transient and multiple protein-protein interactions possibly with the transit peptides of preproteins. Toc34 and Toc159 together with the Toc75 channel constitute the Toc-core complex (Schleiff et al., 2003) and are required for the accumulation of highly abundant photosynthesis-associated proteins in the chloroplast. The Arabidopsis deletion mutants of Toc33 (ppi1; Jarvis et al., 1998) and Toc159 (ppi2; Bauer et al., 2000) have indicative phenotypes of their role in chloroplast biogenesis, respectively pale green and albino. Complementation experiments of the ppi2 mutant have established that the G- and M-domains have essential functions whereas the A-domain is dispensable (Lee et al., 2003; Agne et al., 2009). In preceding studies, possibly influenced by the model organism and experimental tools, Toc159 occurred in different forms. Initially, Toc159 was identified in pea (Pisum sativum) as an 86-kD protein lacking the entire A-domain (Hirsch et al., 1994; Bolter et al., 1998). In addition to its membrane-associated form, Arabidopsis Toc159 has been found as a soluble protein (Hiltbrunner et al., 2001b). However, the function and the fate of the A-domain as well as that of soluble Toc159 remain unknown and a matter of debate.Not only GTP binding and hydrolysis by the Toc GTPases but also phosphorylation is known as a regulatory mechanism of chloroplast protein import at the Toc complex level (Oreb et al., 2008b). First, some precursor proteins, such as the small subunit of Rubisco, may be phosphorylated in their transit sequence by a cytosolic kinase (Martin et al., 2006). Phosphorylation promotes binding to a 14-3-3 protein and cytosolic Hsp70 in the guidance complex that delivers the phosphorylated preprotein to the Toc complex (May and Soll, 2000). Second, both Toc159 and Toc34 are known to be phosphorylated and independently so by distinct kinases, OEK70 and OEK98, respectively (Fulgosi and Soll, 2002). These two kinase activities have been located to the outer envelope membrane, but their molecular identification is still pending. Phosphorylation of the Toc GTPases may occur in the GTP-binding domains (Oreb et al., 2008a). For Toc34, data on the site (Ser-113 in pea and Ser-181 in Arabidopsis) and effects of phosphorylation are available (Jelic et al., 2002, 2003). It imposes a negative regulation on the Toc complex by inhibiting GTP and preprotein binding to Toc34, reducing its ability to bind Toc159 and to assemble into the Toc complex (Oreb et al., 2008a). The in vivo mutational analysis in Arabidopsis indicated that phosphorylation at Toc34 represents a nonessential mechanism (Aronsson et al., 2006; Oreb et al., 2007). Despite the 86-kD proteolytic fragment of Toc159 being a major phosphoprotein in the pea outer chloroplast membrane (Fulgosi and Soll, 2002), little is known of the molecular and regulatory mechanisms of Toc159 phosphorylation. In this study, we report that the A-domain of Toc159 can be purified as a stable fragment. Moreover, it is hyperphosphorylated, hinting at an important and highly regulated functional role. Our data suggest that Toc159 is the target of casein kinase 2 (CK2)-like and membrane-associated kinase activities.  相似文献   

15.
16.
Aronsson H  Combe J  Jarvis P 《FEBS letters》2003,544(1-3):79-85
Arabidopsis Toc33 (atToc33) is a GTP-binding protein of the chloroplast outer envelope membrane. We studied its nucleotide-binding properties in vitro, and found that it binds GTP, GDP and XTP, with similar efficiencies, but not ATP. We further demonstrated that atToc33 has intrinsic GTPase activity. Mutations within the putative G4 motif of the atToc33 nucleotide-binding domain (D217N, D219N and E220Q) had no effect on nucleotide specificity or GTPase activity. Similarly, a mutation in the newly assigned G5 motif (E208Q) did not affect nucleotide specificity or GTPase activity. Furthermore, the D217N and D219N mutations did not affect atToc33 functionality in vivo. The data demonstrate that atToc33 belongs to a novel class of GTPases with unusual nucleotide-binding properties.  相似文献   

17.
Two families of GTPases, the Toc34 and Toc159 GTPase families, take on the task of preprotein recognition at the translocon at the outer membrane of chloroplasts (TOC translocon). The major Toc159 family members have highly acidic N-terminal domains (A-domains) that are non-essential and so far have escaped functional characterization. But recently, interest in the role of the A-domain has strongly increased. The new data of three independent studies provide evidence that the Toc159 A-domain (I) participates in preprotein selectivity, (II) has typical features of intrinsically unfolded proteins and (III) is highly phosphorylated and possibly released from the rest of the protein by a proteolytic event. This hints at a complex regulation of A-domain function that is important for the maintenance of the preprotein selectivity at the TOC translocons.Key words: chloroplast, import, Toc159, acidic domain, kinase, protease  相似文献   

18.
Plastids represent a diverse group of organelles that perform essential metabolic and signaling functions within all plant cells. The differentiation of specific plastid types relies on the import of selective sets of proteins from among the approximately 2500 nucleus-encoded plastid proteins. The Toc159 family of GTPases mediates the initial targeting of proteins to plastids. In Arabidopsis thaliana, the Toc159 family consists of four genes: atTOC159, atTOC132, atTOC120, and atTOC90. In vivo analysis of atToc159 function indicates that it is required specifically for the import of proteins necessary for chloroplast biogenesis. In this report, we demonstrate that atToc120 and atToc132 represent a structurally and functionally unique subclass of protein import receptors. Unlike atToc159, mutants lacking both atToc120 and atToc132 are inviable. Furthermore, atToc120 and atToc132 exhibit preprotein binding properties that are distinct from atToc159. These data indicate that the different members of the Toc159 family represent distinct pathways for protein targeting to plastids and are consistent with the hypothesis that separate pathways have evolved to ensure balanced import of essential proteins during plastid development.  相似文献   

19.
The GTPases Toc159 and Toc34 of the translocon of the outer envelope of chloroplasts (TOC) are involved in recognition and transfer of precursor proteins at the cytosolic face of the organelle. Both proteins engage multiple interactions within the translocon during the translocation process, including dimeric states of their G-domains. The units of the Toc34 homodimer are involved in the recognition of the transit peptide representing the translocation signal of precursor proteins. This substrate recognition is part of the regulation of the GTPase cycle of Toc34. The Toc159 monomer and the Toc34 homodimer recognize the transit peptide of the small subunit of Rubisco at the N- and at the C-terminal region, respectively. Analysis of the transit peptide interaction by crosslinking shows that the heterodimer between both G-domains binds pSSU most efficiently. While substrate recognition by Toc34 homodimer was shown to regulate nucleotide exchange, we provide evidence that the high activation energy of the GTPase Toc159 is lowered by substrate recognition. The nucleotide affinity of Toc34G homodimer and Toc159G monomer are distinct, Toc34G homodimer recognizes GDP and Toc159G GTP with highest affinity. Moreover, the analysis of the nucleotide association rates of the monomeric and dimeric receptor units suggests that the heterodimer has an arrangement distinct from the homodimer of Toc34. Based on the biochemical parameters determined we propose a model for the order of events at the cytosolic side of TOC. The molecular processes described by this hypothesis range from transit peptide recognition to perception of the substrate by the translocation channel.  相似文献   

20.
Post-translational import of nucleus-encoded chloroplast pre-proteins is critical for chloroplast biogenesis, and the Toc159 family of proteins serve as receptors for the process. Toc159 shares with other members of the family (e.g. Toc132), homologous GTPase (G−) and Membrane (M−) domains, but a highly dissimilar N-terminal acidic (A−) domain. Although there is good evidence that atToc159 and atToc132 from Arabidopsis mediate the initial sorting step, preferentially recognizing photosynthetic and non-photosynthetic preproteins, respectively, relatively few chloroplast preproteins have been assigned as substrates for particular members of the Toc159 family, which has limited the proof for the hypothesis. The current study expands the number of known preprotein substrates for members of the Arabidopsis Toc159 receptor family using a split-ubiquitin membrane-based yeast two-hybrid system using the atToc159 G-domain (Toc159G), atToc132 G-domain (Toc132G) and atToc132 A- plus G-domains (Toc132AG) as baits. cDNA library screening with all three baits followed by pairwise interaction assays involving the 81 chloroplast preproteins identified show that although G-domains of the Toc159 family are sufficient for preprotein recognition, they alone do not confer specificity for preprotein subclasses. The presence of the A-domain fused to atToc132G (Toc132AG) not only positively influences its specificity for non-photosynthetic preproteins, but also negatively regulates the ability of this receptor to interact with a subset of photosynthetic preproteins. Our study not only substantiates the fact that atToc132 can serve as a receptor by directly binding to chloroplast preproteins but also proposes the existence of subsets of preproteins with different but overlapping affinities for more than one member of the Toc159 receptor family.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号