首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Electron spin resonance (ESR) and high-performance liquid chromatography (HPLC) techniques were utilized to investigate the effect of deferoxamine on free radical generation in the reaction of Cr(V) with H2O2 and organic hydroperoxides. ESR measurements demonstrated that deferoxamine can efficiently reduce the concentration of the Cr(V) intermediate as formed in the reduction of Cr(VI) by NAD(P)H or a flavoenzyme glutathione reductase/NADH. ESR spin trapping studies showed that deferoxamine also inhibits Cr(V)-mediated .OH radical generation from H2O2, as well as Cr(V)-mediated alkyl and alkoxy radical formation from t-butyl hydroperoxide and cumene hydroperoxide. HPLC measurements showed that .OH radicals generated by the Cr(VI)/flavoenzyme/NAD(P)H enzymatic system react with 2'-deoxyguanine to form 8-hydroxy-2'-deoxyguanine (8-OHdG), a DNA damage marker. Deferoxamine effectly inhibited the formation of 8-OHdG also.  相似文献   

2.
Earlier studies have shown that a long-lived Cr(V) species is produced during the reduction of chromate (Cr(VI] by microsomes/NADPH, mitochondria, and other cellular constituents and that this Cr(V) species plays a significant role in the mechanism of Cr(VI) toxicity. The present work indicates that this species is a Cr(V) complex involving the diol moieties of NADPH as the ligand. Additionally, ESR spin trapping investigations show that the hydroxyl (.OH) radical is also generated in the reduction process. Hydrogen peroxide (H2O2) enhances the .OH generation but suppresses the Cr(V)-NADPH complex formation. Catalase decreases the .OH radical generation and enhances the Cr(V)-NADPH formation. Measurements under anaerobic atmosphere show decreased .OH radical generation, indicating that during the cellular Cr(VI) reduction process molecular oxygen is reduced to H2O2, which reacts with the Cr(V)-NADPH complex to generate the .OH radical via a Fenton-like mechanism.  相似文献   

3.
Previous studies have shown that a constitutively active isoform of Ras is able to produce superoxide radical (O2(-)). The present study investigate the mechanisms by which O2(-) radical mediates signals from Ras protein to the nucleus, leading to cellular responses such as apoptosis in Cr(VI)-stimulated cells. Two human prostate tumor cell lines, Ras(+), which overexpresses Ras, and Ras(-), which has a normal Ras level, were utilized. Compared to Ras(-) cells, Ras(+) cells exhibited higher susceptibility to apoptosis induced by Cr(VI). Catalase, sodium formate, and deferoxamine inhibited Cr(VI)-induced apoptosis. Similar differences were observed in both cellular DNA damage and the activation of p53 protein. The differences in Cr(VI)-induced cell responses in Ras(+) and Ras(-) cells were due to differences in the generation of free radicals between these two cells. ESR spin trapping measurements showed that Ras(+) cells generated more hydroxyl radical ((.)OH), O2(-) radical, and Cr(V) than Ras(-) cells following Cr(VI) stimulation. The generation of the reactive oxygen species (ROS) can be abolished by the addition of superoxide dismutase (SOD) or if the experiment were carried out in an argon atmosphere. Catalase inhibited spin adduct signals but was much less potent than SOD. The mechanism of ROS generation in Cr(VI)-stimulated Ras(+) cells involves the reduction of molecular oxygen to O2(-) radical by a flavoenzyme-containing NADPH oxidase complex as shown by oxygen consumption and diphenylene iodonium (DPI) inhibition. Results shown above support the following conclusions: (a) Ras protein mediates O2(-) radical generation through reduction of molecular oxygen by NADPH oxidase in Cr(VI)-stimulated cells. (b) The O2(-) radical and Cr(VI) produce other reactive species, including H2O2, OH radical, and Cr(V) through O2(-) dismutation and Haber-Weiss type of reactions. (c) Among these reactive species, (.)OH radical is responsible for the further transduction of signals from Ras to the nucleus, leading to various cell responses.  相似文献   

4.
One-electron reduction of chromate by NADPH-dependent glutathione reductase   总被引:2,自引:0,他引:2  
Electron spin resonance (ESR) measurements provide evidence for the formation of Cr(V) intermediates in the enzymatic reduction of Cr(VI) by glutathione reductase (GSSG-R) in the presence of NADPH, indicating an initial single-electron transfer step in the reduction mechanism. Depending on the pH, at least two different Cr(V) species are generated which are relatively long-lived. In addition, we have detected the hydroxyl (.OH) radical formation during the GSSG-R catalyzed reduction of Cr(VI) by spin trapping, employing 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) and alpha-(4-pyridyl-1-oxide)-N-tert-butylnitrone (4-POBN) as spin traps. Superoxide dismutase (SOD) causes only a minor effect on the .OH radical and Cr(V) formation, indicating that the O2- is not significantly involved in the reaction mechanism. Catalase enhances the Cr(V) formation and substantially inhibits the .OH radical formation, indicating the involvement of hydrogen peroxide (H2O2) in the reaction mechanism. Addition of H2O2 suppresses Cr(V) and enhances the .OH radical formation. Measurements involving N-ethylmaleimide show that the Cr(V) species, produced enzymatically by the reduction of Cr(VI) by GSSG-R, react with H2O2 to generate .OH radicals, which might participate in the initiation of Cr(VI) carcinogenicity.  相似文献   

5.
6.
ESR spectroscopic evidence is presented for the formation of vanadium(IV) in the reduction of vanadium(V) by three typical, NADPH-dependent, flavoenzymes: glutathione reductase, lipoyl dehydrogenase, and ferredoxin-NADP+ oxidoreductase. The vanadium(V)-reduction mechanism appears to be an enzymatic one-electron reduction process. Addition of superoxide dismutase (SOD) showed that the generation of vanadium(IV) does not involve the superoxide (O2-) radical significantly. Measurements under anaerobic atmosphere showed, however, that the enzymes-vanadium-NADPH mixture can cause the reduction of molecular oxygen to generate H2O2. The H2O2 and vanadium(IV) thus formed react to generate hydroxyl (.OH) radical. The .OH formation is inhibited strongly by catalase and to a lesser degree by SOD, but it is enhanced by exogenous H2O2, suggesting the occurrence of a Fenton-like reaction. The inhibition of vanadium(IV) formation by N-ethylmaleimide indicates that the SH group on the flavoenzyme's cystine residue plays an important role in the enzyme's vanadium(V) reductase function. These results thus reveal a new property of the above-mentioned, NADPH-dependent flavoenzymes--their function as vanadium(V) reductases, as well as that as generators of .OH radical in the vanadium(V) reduction mechanism.  相似文献   

7.
Although it is assumed from in vitro experiments that the hydroxyl radical (*OH) may be responsible for chromium(VI) toxicity/carcinogenicity, no electron spin resonance (ESR) evidence for the generation of *OH in vivo has been reported. In this study, we have employed an ESR spin-trapping technique with 5,5-dimethylpyrroline-N-oxide (DMPO), a selective *OH trap, to detect *OH in blood. The ESR spectrum of spin adduct observed in the blood of mice given 4.8 mmol Cr(VI)/kg body weight exhibited the 1:2:2:1 intensity pattern of a quartet with a hyperfine coupling constant A(N) = A(H) = 14.81 G and g-value = 2.0067. The concentration of the spin adduct detected in the blood was 7.37 microM. The adduct production was inhibited by the addition of specific *OH scavengers such as sodium benzoate and methional to the blood. The results indicate that the spin adduct is nitroxide produced by the reaction of *OH with DMPO. This is the first report of ESR evidence for the in vivo generation of *OH in mammals by Cr(VI).  相似文献   

8.
Electron spin resonance measurements provide evidence for the formation of long-lived Cr(V) intermediates in the reduction of Cr(VI) by glutathione reductase in the presence of NADPH and for the hydroxyl radical formation during the glutathione reductase catalyzed reduction of Cr(VI). Hydrogen peroxide suppresses Cr(V) and enhances the formation of hydroxyl radicals. Thus Cr(V) intermediates catalyze generation of hydroxyl radicals from hydrogen peroxide through a Fenton-like reaction. Thus the mechanism of Cr(VI) toxicity might involve the interaction between macromolecules and the hydroxyl radicals.  相似文献   

9.
X Sun  X Shi  N S Dalal 《FEBS letters》1992,303(2-3):213-216
In the presence of hydrogen peroxide (H2O2), xanthine oxidase has been found to catalyze sulfur trioxide anion radical (SO3.-) formation from sulfite anion (SO3(2-)). The SO3.- radical was identified by ESR (electron spin resonance) spin trapping, utilizing 5,5-dimethyl-l-pyrroline-l-oxide (DMPO) as the spin trap. Inactivated xanthine oxidase does not catalyze SO3.- radical formation, implying a specific role for this enzyme. The initial rate of SO3.- radical formation increases linearly with xanthine oxidase concentration. Together, these observations indicate that the SO3.- generation occurs enzymatically. These results suggest a new property of xanthine oxidase and perhaps also a significant step in the mechanism of sulfite toxicity in cellular systems.  相似文献   

10.
Free radical reactions are believed to play an important role in the mechanism of Cr(VI)-induced carcinogenesis. Most studies concerning the role of free radical reactions have been limited to soluble Cr(VI). Various studies have shown that solubility is an important factor contributing to the carcinogenic potential of Cr(VI) compounds. Here, we report that reduction of insoluble PbCrO4 by glutathione reductase in the presence of NADPH as a cofactor generated hydroxyl radicals (.OH) and caused DNA damage. The .OH radicals were detected by electron spin resonance (ESR) using 5,5-dimethyl-N-oxide as a spin trap. Addition of catalase, a specific H2O2 scavenger, inhibited the .OH radical generation, indicating the involvement of H2O2 in the mechanism of Cr(VI)-induced .OH generation. Catalase reduced .OH radicals measured by electron spin resonance and reduced DNA strand breaks, indicating .OH radicals are involved in the damage measured. The H2O2 formation was measured by change in fluorescence of scopoletin in the presence of horseradish peroxidase. Molecular oxygen was used in the system as measured by oxygen consumption assay. Chelation of PbCrO4 impaired the generation of .OH radical. The results obtained from this study show that reduction of insoluble PbCrO4 by glutathione reductase/NADPH generates .OH radicals. The mechanism of .OH generation involves reduction of molecular oxygen to H2O2, which generates .OH radicals through a Fenton-like reaction. The .OH radicals generated by PbCrO4 caused DNA strand breakage.  相似文献   

11.
Xanthine oxidase has been hypothesized to be an important source of biological free radical generation. The enzyme generates the superoxide radical, .O2- and has been widely applied as a .O2- generating system; however, the enzyme may also generate other forms of reduced oxygen. We have applied electron paramagnetic resonance (EPR) spectroscopy using the spin trap 5,5'-dimethyl-1-pyrroline-N-oxide (DMPO) to characterize the different radical species generated by xanthine oxidase along with the mechanisms of their generation. Upon reaction of xanthine with xanthine oxidase equilibrated with air, both DMPO-OOH and DMPO-OH radicals are observed. In the presence of ethanol or dimethyl sulfoxide, alpha-hydroxyethyl or methyl radicals are generated, respectively, indicating that significant DMPO-OH generation occurred directly from OH rather than simply from the breakdown of DMPO-OOH. Superoxide dismutase totally scavenged the DMPO-OOH signal but not the DMPO-OH signal suggesting that .O2- was not required for .OH generation. Catalase markedly decreased the DMPO-OH signal, while superoxide dismutase + catalase totally scavenged all radical generation. Thus, xanthine oxidase generates .OH via the reduction of O2 to H2O2, which in turn is reduced to .OH. In anaerobic preparations, the enzyme reduces H2O2 to .OH as evidenced by the appearance of a pure DMPO-OH signal. The presence of the flavin in the enzyme is required for both .O2- and .OH generation confirming that the flavin is the site of O2 reduction. The ratio of .O2- and .OH generation was affected by the relative concentrations of dissolved O2 and H2O2. Thus, xanthine oxidase can generate the highly reactive .OH radical as well as the less reactive .O2- radical. The direct production of .OH by xanthine oxidase in cells and tissues containing this enzyme could explain the presence of oxidative cellular damage which is not prevented by superoxide dismutase.  相似文献   

12.
The present study investigates whether reactive oxygen species (ROS)are involved in p53 activation, and if they are, which species isresponsible for the activation. Our hypothesis is that hydroxyl radical(·OH) functions as a messenger for the activation of this tumorsuppressor protein. Human lung epithelial cells (A549) were used totest this hypothesis. Cr(VI) was employed as the source of ROS due toits ability to generate a whole spectrum of ROS inside the cell. Cr(VI)is able to activate p53 by increasing the protein levels and enhancingboth the DNA binding activity and transactivation ability of theprotein. Increased cellular levels of superoxide radicals(O2·), hydrogen peroxide(H2O2), and ·OH radicals were detected on theaddition of Cr(VI) to the cells. Superoxide dismutase, by enhancing theproduction of H2O2 from O2·radicals, increased p53 activity. Catalase, anH2O2 scavenger, eliminated ·OH radicalgeneration and inhibited p53 activation. Sodium formate and aspirin,·OH radical scavengers, also suppressed p53 activation. Deferoxamine,a metal chelator, inhibited p53 activation by chelating Cr(V) to makeit incapable of generating radicals from H2O2.NADPH, which accelerated the one-electron reduction of Cr(VI) to Cr(V)and increased ·OH radical generation, dramatically enhanced p53activation. Thus ·OH radical generated from Cr(VI) reduction in A549cells is responsible for Cr(VI)-induced p53 activation.

  相似文献   

13.
Electron spin resonance (ESR) measurments provide direct evidence for the involvement of Cr(V) in the reduction of Cr(VI) by NAD(P)H. Addition of hydrogen peroxide (H2O2) to NAD(P)H-Cr(VI) reaction mixtures suppresses the Cr(V) signal and generates hydroxyl (OH) radicals (as detected via spin trapping), suggesting that Cr(V) reacts with H2O2 to generate the OH radicals. Reaction between H2O2 and a Cr(V)-glutathione complex. and between H2O2 and several Cr(V)-cdrboxylato complexes also produces OH radicals. These results suggest that Cr(V) complexes catalyze the generation of OH radicals from H2O2, and that OH radicals might play a significant role in the mechanism of Cr(VI) cytotoxicity.  相似文献   

14.
With a view of elucidating the role of glutathione (GSH) in the biochemical pathways of the chromate-exposure related carcinogenesis, we carried out electron spin resonance (ESR) spectroscopic investigations of the chromate-GSH redox reactions. The ESR measurements, employing spin-traps, provide evidence for the involvement of the glutathione (GS) radical, as well as an isolable Cr(V)-glutathione intermediate. These results indicate a new mechanism for the reduction of chromate by GSH in in vitro cellular environment and help understand the (unexpected) increase in Cr(VI)-induced DNA strand breaks at elevated GSH levels.  相似文献   

15.
The reduction of hexavalent chromium, Cr(VI), can generate reactive Cr intermediates and various types of oxidative stress. The potential role of human microsomal enzymes in free radical generation was examined using reconstituted proteoliposomes (PLs) containing purified cytochrome b(5) and NADPH:P450 reductase. Under aerobic conditions, the PLs reduced Cr(VI) to Cr(V) which was confirmed by ESR using isotopically pure (53)Cr(VI). When 5-diethoxyphosphoryl-5-methyl-1-pyrroline-N-oxide (DEPMPO) was included as a spin trap, a very prominent signal for the hydroxyl radical (HO()) adduct was observed as well as a smaller signal for the superoxide (O(2)(-)) adduct. These adducts were observed even at very low Cr(VI) concentrations (10 muM). NADPH, Cr(VI), O(2), and the PLs were all required for significant HO() generation. Superoxide dismutase eliminated the O(2)(-) adduct and resulted in a 30% increase in the HO() adduct. Catalase largely diminished the HO() adduct signal, indicating its dependence on H(2)O(2). Some sources of catalase were found to have Cr(VI)-reducing contaminants which could confound results, but a source of catalase free of these contaminants was used for these studies. Exogenous H(2)O(2) was not needed, indicating that it was generated by the PLs. Adding exogenous H(2)O(2), however, did increase the amount of DEPMPO/HO() adduct. The inclusion of formate yielded the carbon dioxide radical adduct of DEPMPO, and experiments with dimethyl sulfoxide (DMSO) plus the spin trap alpha-phenyl-N-tert-butylnitrone (PBN) yielded the methoxy and methyl radical adducts of PBN, confirming the generation of HO(). Quantification of the various species over time was consistent with a stoichiometric excess of HO() relative to the net amount of Cr(VI) reduced. This also represents the first demonstration of a role for cytochrome b(5) in the generation of HO(). Overall, the simultaneous generation of Cr(V) and H(2)O(2) by the PLs and the resulting generation of HO() at low Cr(VI) concentrations could have important implications for Cr(VI) toxicity.  相似文献   

16.
Cr(VI) compounds have been declared as a potent occupational carcinogen by IARC (1990) through epidemiological studies among workers in chrome plating, stainless-steel, and pigment industries. Studies relating to the role of intermediate oxidation states such as Cr(V) and Cr(IV) in Cr(VI)-induced carcinogenicity are gaining importance. In this study, issues relating to toxicity elicited by Cr(V) have been addressed and comparisons made with those relating to Cr(VI) employing human peripheral blood lymphocytes. Lymphocytes have been isolated from heparinized blood by Ficoll-Hypaque density gradient centrifugation and exposed to Cr(V) complexes viz. sodium bis(2-ethyl-2-hydroxybutyrato)oxochromate(V), Na[Cr(V)O(ehba)(2)], 1 and sodium bis(2-hydroxy-2-methylbutyrato)oxochromate(V), Na[Cr(V)O(hmba)(2)], 2 and Cr(VI). The phytohemagglutinin (PHA)-induced proliferation of lymphocytes has been found to be inhibited by the two complexes of Cr(V) and chromate Cr(VI) in a time- and concentration-dependent manner. Viability of cells decreases in the presence of Cr(V). Apoptosis appears to be the mode of cell death in the presence of both Cr(V) and Cr(VI). Pretreatment of cells with antioxidants before exposure to chromium(V) complexes reverse apoptosis partially. Possibility for the formation and implication of reactive oxygen species in Cr(V)-induced apoptosis of human lymphocyte cells has been indicated in this investigation. The intermediates of Cr(V) and radical species in the biotoxic pathways elicited by Cr(VI) seems feasible.  相似文献   

17.
18.
The mechanism of xanthine oxidase (XO) inactivation by hydrogen peroxide (H2O2) and its biologic significance are unclear. We found that addition of increasing concentrations of H2O2 progressively decreased xanthine oxidase activity in the presence but not the absence of xanthine in vitro. Inactivation of XO by H2O2 was also enhanced by anaerobic reduction of XO by xanthine. Inactivation of XO by H2O2 was accompanied by production of hydroxyl radical (.OH), measured as formation of formaldehyde from dimethylsulfoxide (DMSO). In contrast, addition of H2O2 to deflavo XO did not produce .OH. Inactivation of XO by H2O2 was decreased by simultaneous addition of the .OH scavenger, DMSO. However, inactivation of XO by H2O2 and formation of .OH were not decreased following addition of the metal chelator. DETAPAC, and/or the O2 scavenger, superoxide dismutase. The results suggest that inactivation of XO by H2O2 occurs by production of .OH following direct reduction of H2O2 by XO at the flavin site.  相似文献   

19.
The role of glutathione (GSH) and chromium (V) in chromium (VI)-induced nephrotoxicity in mice was investigated at 24 h after K2Cr(VI)2O7 ip injection. Nephrotoxicity was assessed by measurements of relative kidney weight and serum urea nitrogen. Cr(VI) nephrotoxicity was accompanied by decreased renal GSH and glutathione reductase (GSSG-R) levels. Pretreatment with buthionine sulfoximine, an inhibitor of GSH biosynthesis, enhanced Cr(VI)-induced nephrotoxicity, and remarkably diminished kidney GSH and GSSG-R levels. In contrast, pretreatment with glutathione methyl ester, a GSH-supplying agent, prevented Cr(VI) from exerting a harmful effect on mouse kidney and restored kidney GSH level. Administration of a Cr(V) compound, K3Cr(V)O8, induced much higher toxicity in mouse kidney than Cr(VI), but it failed to diminish renal GSH level. Another Cr(V) compound, Cr(V)-GSH complex, and Cr(III) nitrate did not cause a nephrotoxic effect in mice. The mechanism of Cr(VI)-induced nephrotoxicity was explained using GSH and Cr(V).  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号