首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
2.
This study aimed to investigate the mechanisms that coordinate lymphangiogenesis. Using mouse models of lymphatic regeneration and inflammatory lymphangiogenesis, we explored the hypothesis that hypoxia inducible factor-α (HIF-1α) is a central regulator of lymphangiogenesis. We show that HIF-1α inhibition by small molecule inhibitors (YC-1 and 2-methyoxyestradiol) results in delayed lymphatic repair, decreased local vascular endothelial growth factor-C (VEGF-C) expression, reduced numbers of VEGF-C(+) cells, and reductions in inflammatory lymphangiogenesis. Using transgenic HIF-1α/luciferase mice to image HIF-1α expression in real time in addition to Western blot analysis and pimonidazole staining for cellular hypoxia, we demonstrate that hypoxia stabilizes HIF-1α during initial stages of wound repair (1-2 wk); whereas inflammation secondary to gradients of lymphatic fluid stasis stabilizes HIF-1α thereafter (3-6 wk). In addition, we show that CD4(+) cell-mediated inflammation is necessary for this response and regulates HIF-1α expression by macrophages, as CD4-deficient or CD4-depleted mice demonstrate 2-fold reductions in HIF-1α expression as compared to wild-types. In summary, we show that HIF-1α is a critical coordinator of lymphangiogenesis by regulating the expression of lymphangiogenic cytokines as part of an early response mechanism to hypoxia, inflammation, and lymphatic fluid stasis.  相似文献   

3.
A striking and unexplained feature of granulomatous inflammation is its anatomical association with the lymphatic system. Accumulating evidence suggests that lymphatic tracks and granulomas may alter the function of each other. The formation of new lymphatics, or lymphangiogenesis, is an adaptive response to tumor formation, infection, and wound healing. Granulomas also may induce lymphangiogenesis which, through a variety of mechanisms, could contribute to disease outcomes in tuberculosis and sarcoidosis. On the other hand, alterations in lymph node function and lymphatic draining may be primary events which attenuate the risk and severity of granulomatous inflammation. This review begins with an introduction of granulomatous inflammation and the lymphatic system. A role of the lymphatic system in tuberculosis and sarcoidosis is then hypothesized. With a focus on lymphangiogenesis in these diseases, and on the potential for this process to promote dissemination, parallels are established with the well‐established role of lymphangiogenesis in tumor biology.  相似文献   

4.
Lymphangiogenesis is the process by which new lymphatic vessels grow in response to pathologic stimuli such as wound healing, inflammation, and tumor metastasis. It is well-recognized that growth factors and cytokines regulate lymphangiogenesis by promoting or inhibiting lymphatic endothelial cell (LEC) proliferation, migration and differentiation. Our group has shown that the expression of T-helper 2 (Th2) cytokines is markedly increased in lymphedema, and that these cytokines inhibit lymphatic function by increasing fibrosis and promoting changes in the extracellular matrix. However, while the evidence supporting a role for T cells and Th2 cytokines as negative regulators of lymphatic function is clear, the direct effects of Th2 cytokines on isolated LECs remains poorly understood. Using in vitro and in vivo studies, we show that physiologic doses of interleukin-4 (IL-4) and interleukin-13 (IL-13) have profound anti-lymphangiogenic effects and potently impair LEC survival, proliferation, migration, and tubule formation. Inhibition of these cytokines with targeted monoclonal antibodies in the cornea suture model specifically increases inflammatory lymphangiogenesis without concomitant changes in angiogenesis. These findings suggest that manipulation of anti-lymphangiogenic pathways may represent a novel and potent means of improving lymphangiogenesis.  相似文献   

5.
Yin N  Zhang N  Lal G  Xu J  Yan M  Ding Y  Bromberg JS 《PloS one》2011,6(11):e28023
Lymphangiogenesis is a common phenomenon observed during inflammation and engraftment of transplants, but its precise role in the immune response and underlying mechanisms of regulation remain poorly defined. Here we showed that in response to injury and autoimmunity, lymphangiogenesis occurred around islets and played a key role in the islet inflammation in mice. Vascular endothelial growth factors receptor 3 (VEGFR3) is specifically involved in lymphangiogenesis, and blockade of VEGFR3 potently inhibited lymphangiogenesis in both islets and the draining LN during multiple low-dose streptozotocin (MLDS) induced autoimmune insulitis, which resulted in less T cell infiltration, preservation of islets and prevention of the onset of diabetes. In addition to their well-known conduit function, lymphatic endothelial cells (LEC) also produced chemokines in response to inflammation. These LEC attracted two distinct CX3CR1(hi) and LYVE-1(+) macrophage subsets to the inflamed islets and CX3CR1(hi) cells were influenced by LEC to differentiate into LYVE-1(+) cells closely associated with lymphatic vessels. These observations indicate a linkage among lymphangiogenesis and myeloid cell inflammation during insulitis. Thus, inhibition of lymphangiogenesis holds potential for treating insulitis and autoimmune diabetes.  相似文献   

6.
Lymphangiogenic cytokines such as vascular endothelial growth factor-C (VEGF-C) are critically required for lymphatic regeneration; however, in some circumstances, lymphatic function is impaired despite normal or elevated levels of these cytokines. The recent identification of anti-lymphangiogenic molecules such as interferon-γ (IFN-γ), transforming growth factor-β1, and endostatin has led us to hypothesize that impaired lymphatic function may represent a dysregulated balance in the expression of pro/anti-lymphangiogenic stimuli. We observed that nude mice have significantly improved lymphatic function compared with wild-type mice in a tail model of lymphedema. We show that gradients of lymphatic fluid stasis regulate the expression of lymphangiogenic cytokines (VEGF-A, VEGF-C, and hepatocyte growth factor) and that paradoxically the expression of these molecules is increased in wild-type mice. More importantly, we show that as a consequence of T-cell-mediated inflammation, these same gradients also regulate expression patterns of anti-lymphangiogenic molecules corresponding temporally and spatially with impaired lymphatic function in wild-type mice. We show that neutralization of IFN-γ significantly increases inflammatory lymph node lymphangiogenesis independently of changes in VEGF-A or VEGF-C expression, suggesting that alterations in the balance of pro- and anti-lymphangiogenic cytokine expression can regulate lymphatic vessel formation. In conclusion, we show that gradients of lymphatic fluid stasis regulate not only the expression of pro-lymphangiogenic cytokines but also potent suppressors of lymphangiogenesis as a consequence of T-cell inflammation and that modulation of the balance between these stimuli can regulate lymphatic function.  相似文献   

7.
The main physiological function of the lymphatic vasculature is to maintain tissue fluid homeostasis. Lymphangiogenesis or de novo lymphatic formation is closely associated with tissue inflammation in adults (i.e. wound healing, allograft rejection, tumor metastasis). Until recently, research on lymphangiogenesis focused mainly on growth factor/growth factor-receptor pathways governing this process. One of the lymphatic vessel features is the incomplete or absence of basement membrane. This close association of endothelial cells with the underlying interstitial matrix suggests that cell–matrix interactions play an important role in lymphangiogenesis and lymphatic functions. However, the exploration of interaction between extracellular matrix (ECM) components and lymphatic endothelial cells is in its infancy. Herein, we describe ECM–cell and cell–cell interactions on lymphatic system function and their modification occurring in pathologies including cancer metastasis.  相似文献   

8.
To date, adult lymphangiogenesis is not well understood. In this study we describe the evolution of lymphatic capillaries in regenerating skin and correlate lymphatic migration and organization with the expression of matrix metalloproteinases (MMPs), immune cells, the growth factors VEGF-A and VEGF-C, and the heparan sulfate proteogylcan perlecan, a key component of basement membrane. We show that while lymphatic endothelial cells (LECs) migrate and organize unidirectionally, in the direction of interstitial fluid flow, they do not sprout into the region but rather migrate as single cells that later join together into vessels. Furthermore, in a modified "shunted flow" version of the model, infiltrated LECs fail to organize into functional vessels, indicating that interstitial fluid flow is necessary for lymphatic organization. Perlecan expression on new lymphatic vessels was only observed after vessel organization was complete and also appeared first in the distal region, consistent with the directionality of lymphatic migration and organization. VEGF-C expression peaked at the initiation of lymphangiogenesis but was reduced to lower levels throughout organization and maturation. In mice lacking MMP-9, lymphatics regenerated normally, suggesting that MMP-9 is not required for lymphangiogenesis, at least in mouse skin. This study thus characterizes the process of adult lymphangiogenesis and differentiates it from sprouting blood angiogenesis, verifies its dependence on interstitial fluid flow for vessel organization, and correlates its temporal evolution with those of relevant environmental factors.  相似文献   

9.
Metastasis is not only one of the hallmarks of cancer but, unfortunately, it also is the most accurate biomarker for poor prognosis. Cancer cells metastasize through two different but eventually merged routes, the vasculature and lymphatic systems. The processes of cancer metastasis through blood vessel have been extensively studied and are well documented in the literature. In contrast, metastasis through the lymphatic system is less studied. Most people believe that cancer cells metastasize through lymphatic vessel are passive because the lymphatic system is thought to be a sewage draining system that collects whatever appears in the tissue fluid. It was recently found that cancer cells disseminated from lymphatic vessels are protected from being destroyed by our body’s defense system. Furthermore, some cancer cells or cancer-associated immune cells secrete lymphangiogenic factors to recruit lymphatic vessel infiltration to the tumor region, a process known as lymphangiogenesis. To ensure the efficiency of lymphangiogenesis, the lymphangiogenic mediators are carried or packed by nanometer-sized particles named extracellular vesicles. Extracellular vesicles are lipid bilayer particles released from eventually every single cell, including bacterium, with diameters ranging from 30 nm (exosome) to several micrometers (apoptotic body). Components carried by extracellular vesicles include but are not limited to DNA, RNA, protein, fatty acid, and other metabolites. Recent studies suggest that cancer cells not only secrete more extracellular vesicles but also upload critical mediators required for lymphatic metastasis onto extracellular vesicles. This review will summarize recent advances in cancer lymphatic metastasis and how cancer cells regulate this process via extracellular vesicle-dependent lymphangiogenesis.  相似文献   

10.
Macrophages have been suggested to stimulate neo-lymphangiogenesis in settings of inflammation via two potential mechanisms: (1) acting as a source of lymphatic endothelial progenitor cells via the ability to transdifferentiate into lymphatic endothelial cells and be incorporated into growing lymphatic vessels; and (2) providing a crucial source of pro-lymphangiogenic growth factors and proteases. We set out to establish whether cells of the myeloid lineage are important for development of the lymphatic vasculature through either of these mechanisms. Here, we provide lineage tracing evidence to demonstrate that lymphatic endothelial cells arise independently of the myeloid lineage during both embryogenesis and tumour-stimulated lymphangiogenesis in the mouse, thus excluding macrophages as a source of lymphatic endothelial progenitor cells in these settings. In addition, we demonstrate that the dermal lymphatic vasculature of PU.1(-/-) and Csf1r(-/-) macrophage-deficient mouse embryos is hyperplastic owing to elevated lymphatic endothelial cell proliferation, suggesting that cells of the myeloid lineage provide signals that act to restrain lymphatic vessel calibre in the skin during development. In contrast to what has been demonstrated in settings of inflammation, macrophages do not comprise the principal source of pro-lymphangiogenic growth factors, including VEGFC and VEGFD, in the embryonic dermal microenvironment, illustrating that the sources of patterning and proliferative signals driving embryonic and disease-stimulated lymphangiogenesis are likely to be distinct.  相似文献   

11.
De novo lymphangiogenesis influences the course of different human diseases as diverse as chronic renal transplant rejection and tumor metastasis. The cellular mechanisms of lymphangiogenesis in human diseases are currently unknown, and could involve division of local preexisting endothelial cells or incorporation of circulating progenitors. We analyzed renal tissues of individuals with gender-mismatched transplants who had transplant rejection and high rates of overall lymphatic endothelial proliferation as well as massive chronic inflammation. Donor-derived cells were detected by in situ hybridization of the Y chromosome. We compared these tissues with biopsies of essentially normal skin and intestine, and two rare carcinomas with low rates of lymphatic endothelial proliferation that were derived from individuals with gender-mismatched bone marrow transplants. Here, we provide evidence for the participation of recipient-derived lymphatic progenitor cells in renal transplants. In contrast, lymphatic vessels of normal tissues and those around post-transplant carcinomas did not incorporate donor-derived progenitors. This indicates a stepwise mechanism of inflammation-associated de novo lymphangiogenesis, implying that potential lymphatic progenitor cells derive from the circulation, transmigrate through the connective tissue stroma, presumably in the form of macrophages, and finally incorporate into the growing lymphatic vessel.  相似文献   

12.
The lymphatic system is important for body fluid balance as well as immunological surveillance. Due to the identification of new molecular markers during the last decade, there has been a recent dramatic increase in our knowledge on the molecular mechanisms involved in lymphatic vessel growth (lymphangiogenesis) and lymphatic function. Here we review data showing that although it is often overlooked, the extracellular matrix plays an important role in the generation of new lymphatic vessels as a response to physiological and pathological stimuli. Extracellular matrix-lymphatic interactions as well as biophysical characteristics of the stroma have consequences for tumor formation, growth and metastasis. During the recent years, anti-lymphangiogenesis has emerged as an additional therapeutic modality to the clinically applied anti-angiogenesis strategy. Oppositely, enhancement of lymphangiogenesis in situations of lymph accumulation is seen as a promising strategy to a set of conditions where few therapeutic avenues are available. Knowledge on the interaction between the extracellular matrix and the lymphatics may enhance our understanding of the underlying mechanisms and may ultimately lead to better therapies for conditions where reduced or increased lymphatic function is the therapeutic target.  相似文献   

13.
The morbidity rate of breast cancer is on the rise, and the age of onset appears to be trending toward a young age. Breast cancer in young women (BCYW) has a number of distinctive features that differ from breast cancer in middle-aged or elderly women (BCMEW). Lymphatic metastasis plays an important role in the spread of BCYW; however, the mechanisms of lymph node metastasis (LNM) in BCYW are not clear. This study aimed to investigate the mechanism of lymphatic metastasis in BCYW and to evaluate the relationships between lymphangiogenesis, the expression of matrix metalloproteinase 9 (MMP-9) and vascular endothelial growth factor C (VEGF-C) expression, clinicopathological characteristics, and prognosis. Using immunohistochemistry, MMP-9, VEGF-C and the level of lymphatic microvessel density (LMVD) were analyzed in 106 cases of breast invasive ductal carcinoma and 20 cases of breast proliferative lesions. Compared with BCMEW, BCYW had higher MMP-9 expression, higher LNM, and more adverse prognoses. In BCYW, high MMP-9 expression was positively correlated with LNM and impaired survival time. However, in BCMEW, MMP-9 expression was not correlated with LNM or survival time. In addition, high VEGF-C expression was positively correlated with a high level of LMVD in both BCYW and BCMEW. Nevertheless, a high level of LMVD was not correlated with LNM or survival time in the two groups. More importantly, univariate and multivariate survival analysis showed that MMP-9 expression and LNM were independent prognostic factors in BCYW. Our present study indicates that lymphangiogenesis induced by VEGF-C is augmented in breast cancer; however, a higher level of lymphangiogenesis has no significant impact on LNM or survival time. We suggest that tumor invasiveness, rather than lymphangiogenesis, plays an important role in LNM among BCYW. Moreover, MMP-9 and LNM were independent prognostic factors for BCYW.  相似文献   

14.

Introduction

Lymphedema is a chronic disorder that occurs commonly after lymph node removal for cancer treatment and is characterized by swelling, fibrosis, inflammation, and adipose deposition. Although previous histological studies have investigated inflammatory changes that occur in lymphedema, the precise cellular make up of the inflammatory infiltrate remains unknown. It is also unclear if this inflammatory response plays a causal role in the pathology of lymphedema. The purpose of this study was therefore to characterize the inflammatory response to lymphatic stasis and determine if these responses are necessary for the pathological changes that occur in lymphedema.

Methods

We used mouse-tail lymphedema and axillary lymph node dissection (ANLD) models in order to study tissue inflammatory changes. Single cell suspensions were created and analyzed using multi-color flow cytometry to identify individual cell types. We utilized antibody depletion techniques to analyze the causal role of CD4+, CD8+, and CD25+ cells in the regulation of inflammation, fibrosis, adipose deposition, and lymphangiogenesis.

Results

Lymphedema in the mouse-tail resulted in a mixed inflammatory cell response with significant increases in T-helper, T-regulatory, neutrophils, macrophages, and dendritic cell populations. Interestingly, we found that ALND resulted in significant increases in T-helper cells suggesting that these adaptive immune responses precede changes in macrophage and dendritic cell infiltration. In support of this we found that depletion of CD4+, but not CD8 or CD25+ cells, significantly decreased tail lymphedema, inflammation, fibrosis, and adipose deposition. In addition, depletion of CD4+ cells significantly increased lymphangiogenesis both in our tail model and also in an inflammatory lymphangiogenesis model.

Conclusions

Lymphedema and lymphatic stasis result in CD4+ cell inflammation and infiltration of mature T-helper cells. Loss of CD4+ but not CD8+ or CD25+ cell inflammation markedly decreases the pathological changes associated with lymphedema. In addition, CD4+ cells regulate lymphangiogenesis during wound repair and inflammatory lymphangiogenesis.  相似文献   

15.
The lymphatic system is not only essential for maintenance of normal fluid balance, but also for proper immunologic function by providing an extensive network of vessels, important for cell trafficking and antigen delivery, as well as an exclusive environment, the lymph node (LN), where antigen-presenting cells (APCs) and lymphocytes can encounter and interact. Among APCs, dendritic cells (DCs) have a remarkable capacity to traffic from peripheral tissues to the draining LN, which is critical for execution of their functions. To reach the LN, DCs must migrate towards and enter lymphatic vessels. Here, the authors review what is known about the factors that drive this process. They touch particularly on the topic of how DC migration is affected by inflammation and discuss this in the context of lymphatic function. Traditionally, inflammatory mediators are regarded to support DC migration to LNs because they induce molecules on DCs known to guide them to lymphatics. The authors recently showed that inflammatory signals present in a strong vaccine adjuvant induce swelling in LNs accompanied by lymphangiogenesis in the draining LN and radius of peripheral tissue. These increased lymphatics, at least for several days, lead to a more robust migration of DCs. However, the density of lymphatic vessels can become overly extended and/or their function impaired as observed during lymphedema and various chronic inflammatory reactions. Diseases characterized by chronic inflammation often present with impaired DC migration and adaptive immunity. Gaining a better understanding of how lymphatic vessel function may impact adaptive immunity by, for example, altering DC migration will benefit clinical research aiming to manipulate immune responses and manage chronic inflammatory diseases.  相似文献   

16.
Molecular control of lymphangiogenesis   总被引:8,自引:0,他引:8  
The lymphatic vasculature plays a critical role in the regulation of body fluid volume and immune function. Extensive research into the molecular mechanisms that control blood vessel growth has led to identification of molecules that also regulate development and growth of the lymphatic vessels. This is generating a great deal of interest in the molecular control of the lymphatics in the context of embryogenesis, lymphatic disorders and tumor metastasis. Studies in animal models carried out over the past three years have shown that the soluble protein growth factors, vascular endothelial growth factor (VEGF)-C and VEGF-D, and their cognate receptor tyrosine kinase, VEGF receptor-3 (VEGFR-3), are critical regulators of lymphangiogenesis. Furthermore, disfunction of VEGFR-3 has recently been shown to cause lymphedema. The capacity to induce lymphangiogenesis by manipulation of the VEGF-C/VEGF-D/VEGFR-3 signaling pathway offers new opportunities to understand the function of the lymphatic system and to develop novel treatments for lymphatic disorders.  相似文献   

17.
The cellular and physiologic mechanisms that regulate the resolution of inflammation remain poorly defined despite their widespread importance in improving inflammatory disease outcomes. We studied the resolution of two cardinal signs of inflammation–pain and swelling–by investigating molecular mechanisms that regulate neural and lymphatic vessel remodeling during the resolution of corneal inflammation. A mouse model of corneal inflammation and wound recovery was developed to study this process in vivo. Administration of nerve growth factor (NGF) increased pain sensation and inhibited neural remodeling and lymphatic vessel regression processes during wound recovery. A complementary in vivo approach, the corneal micropocket assay, revealed that NGF-laden pellets stimulated lymphangiogenesis and increased protein levels of VEGF-C. Adult human dermal lymphatic endothelial cells did not express canonical NGF receptors TrkA and p75NTR or activate downstream MAPK- or Akt-pathway effectors in the presence of NGF, although NGF treatment increased their migratory and tubulogenesis capacities in vitro. Blockade of the VEGF-R2/R3 signaling pathway ablated NGF-mediated lymphangiogenesis in vivo. These findings suggest a hierarchical relationship with NGF functioning upstream of the VEGF family members, particularly VEGF-C, to stimulate lymphangiogenesis. Taken together, these studies show that NGF stimulates lymphangiogenesis and that NGF may act as a pathogenic factor that negatively regulates the normal neural and lymphatic vascular remodeling events that accompany wound recovery.  相似文献   

18.
Impairment of lymphatic structure and function, e.g., inadequate endothelial permeability and intercellular openings, abnormal lymphangiogenesis and overexpression for immunoreactive agents, will result in tumor metastasis, autoimmune response alteration and accumulation of interstitial fluid and proteins. Recently, several novel molecules have been identified that allow a more precise distinction between lymphatic and blood vascular endothelium. The differences in expression of endothelial markers on the lymphatic vessel strongly suggest the possibility that there will be important divergence in the differentiating and regenerating responses in lymphatic behavior to various pathological processes. Undoubtfully, molecular techniques would also lead to the definition of unique markers found on lymphatic endothelial cells (LECs) in lymphatic-associated diseases which are mostly involved in lymphangiogenesis. This review is mainly concentrated on the characteristics of LECs in diabetes, wound healing, lymphedema and tumor, especially in the experimental models that have offered insight into the LEC role in these diseases affecting the lymphatic system. Increased knowledge of the molecular signaling pathways driving lymphatic development and lymphangiogenesis should boost the impact of therapeutics on the diseases. Although the field about the mechanisms that control the formation and lineage-specific differentiation and function of lymphatic vessels has experienced rapid progress in the past few years, an understanding of the basis of the differences and their implications in the pathological conditions will require much more investigation.  相似文献   

19.
One of the major prognostic factors in rectal cancer is lymph node metastasis. The formation of lymph node metastases is dependent on the existence of a premetastatic niche. An important factor preceding metastasis are lymph vessels which are located in the lymph node. Accordingly, the occurrence of intranodal lymphangiogenesis is thought to indicate distant metastasis and worse prognosis. To evaluate the significance of lymph node lymphangiogenesis, we studied formalin fixed, paraffin embedded adenocarcinomas and regional lymph nodes of 203 rectal cancer patients who were treated with neoadjuvant radiochemotherapy and consecutive curative surgery with cancer free surgical margins (R0). Regional lymph node lymph vessels were detected by immunohistochemistry for podoplanin (D2-40). Our results show that the presence of lymphatic vessels in regional lymph nodes significantly affects the disease-free survival in univariate and multivariate analyses. In contrast, there was no correlation between peritumoral or intratumoral lymph vessel density and prognosis. Indeed, our study demonstrates the importance of lymphangiogenesis in regional lymph nodes after neoadjuvant radiochemotherapy and consecutive surgery as an independent prognostic marker. Staining for intranodal lymphangiogenesis and methods of intravital imaging of lymphangiogenesis and lymphatic flow may be a useful strategy to predict long-term outcome in rectal cancer patients. Furthermore, addition of VEGF-blocking agents to standardized neoadjuvant treatment schemes might be indicated in advanced rectal cancer.  相似文献   

20.
Malignant melanomas of the skin primarily metastasize to lymph nodes, and the detection of sentinel lymph node metastases serves as an important prognostic parameter. There is now compelling evidence that melanomas can induce lymphangiogenesis (growth of lymphatic vessels), mainly at the tumor-stroma interface, and that the level of tumor lymphangiogenesis is correlated with the incidence of sentinel lymph node metastases and with disease-free survival. Thus, tumor lymphangiogenesis can serve as a novel prognostic predictor in melanoma. Vascular endothelial growth factor (VEGF)-C, released by melanoma cells and by tumor-associated macrophages, likely represents the major lymphangiogenic factor in melanoma, although other members of the VEGF family might also be involved. The recent discovery that tumors can induce a premetastatic niche, by inducing lymphatic vessel growth in sentinel lymph nodes even before metastasis, and that lymph node lymphangiogenesis enhances metastatic spread, indicates that activated lymphatic vessels represent novel targets for the detection and/or therapy of melanoma metastases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号