首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Essential nucleotide contacts between the polyomavirus large T antigen and its multiple specific binding regions within the regulatory sequences of the polyomavirus genome were determined in vitro by methylation interference. Methylation of any of the guanine residues of the 5'-G(A/G)GGC-3' pentanucleotide repeats in large-T-antigen-binding regions A, B, C, and 3 (A. Cowie and R. Kamen, J. Virol. 52:750-760, 1984) interfered with T antigen binding. Within regions A, B, and C these pentanucleotides are spaced 5 or 6 base pairs apart. Therefore, the clusters of contacted nucleotides within each of these binding regions are localized along one face of the DNA helix. Methylation of guanines within the sequences between the pentanucleotide repeats did not interfere with binding. The ORI binding region contains four additional pentanucleotide sequences within a region of dyad symmetry. Methylation of only particular guanines of these pentanucleotides interfered with T antigen binding. The spatial arrangement of the pentanucleotides in the ORI is such that the clusters of contacted guanines are situated around the DNA helix, thereby forming a very different arrangement from that found in the other binding regions. A model is discussed in which cooperative interactions between T antigen protomers, recognizing individual pentanucleotides, determines the strength and the function of different T antigen-DNA interactions.  相似文献   

2.
K A Jones  R M Myers    R Tjian 《The EMBO journal》1984,3(13):3247-3255
We have tested the effects of various mutations within SV40 T antigen DNA recognition sites I and II on specific T antigen binding using the DNase footprint technique. In addition, the replication of plasmid DNA templates carrying these T antigen binding site mutations was monitored by Southern analysis of transfected DNA in COS cells. Deletion mapping of site I sequences defined a central core of approximately 18 bp that is both necessary and sufficient for T antigen recognition; this region contains the site I contact nucleotides that were previously mapped using methylation-interference and methylation-protection experiments. A similar deletion analysis delineated sequences that impart specificity of binding to site II. We find that T antigen is capable of specific recognition of site II in the absence of site I sequences, indicating that binding to site II in vitro is not dependent on binding of T antigen at site I. Site II binding was not diminished by small deletion or substitution mutations that perturb the 27-bp palindrome central to binding site II, whereas extensive substitution of site II sequences completely eliminated specific site II binding. Analysis of the replication in COS7 cells of plasmids that contain these mutant origins revealed that sequences both at the late side of binding site I and within the site II palindrome are crucial for viral DNA replication, but are not involved in binding T antigen.  相似文献   

3.
Simian virus 40 (SV40) large tumor antigen (T antigen) possesses several biochemical activities localized in different domains of the protein. These activities include sequence-specific binding to two major sites, I and II, in the SV40 control region, ATPase, and nucleotide-binding activity. In the present communication, we present evidence that specific binding of immunopurified T antigen to SV40 DNA is markedly inhibited by low concentrations of ATP, dATP, GTP, and dGTP. The inhibition is reversible after removal of the nucleotide, suggesting that simple nucleotide binding rather than a covalent modification of T antigen in the presence of ATP is responsible for the inhibition. The results suggest that T antigen may assume two conformations, one active and one inactive in binding to the SV40 origin of replication. In the presence of purine nucleoside triphosphates, the inactive conformation is favored.  相似文献   

4.
5.
6.
7.
M Bignami  P Karran  D P Lane 《Biochemistry》1991,30(11):2857-2863
The effects of O6-methylguanine on the reactions involved in initiation of DNA replication were investigated by measuring the interactions of SV40 T antigen with oligonucleotides substituted with the methylated base. O6-Methylguanine residues were positioned in either binding site I or binding site II of the SV40 origin of replication. Binding of purified T antigen, measured by both nitrocellulose filter binding and delayed oligonucleotide migration, was unaffected by the presence of seven methylated bases in binding site II. Single substitutions within binding site I were sufficient to inhibit T-antigen binding, and the extent of inhibition was dependent on the position of O6-methylguanine in the DNA sequence. Unwinding by T antigen was analyzed by measuring displacement of a single-stranded oligonucleotide from similarly substituted, partially duplex substrates. The presence of three O6-methylguanine residues in binding site I facilitated the helicase activity of T antigen. In contrast, single O6-methylguanine bases inhibited unwinding. A correlation was observed between the position of the methylated base and the inhibition of both binding and unwinding by T antigen.  相似文献   

8.
A K Arthur  A Hss    E Fanning 《Journal of virology》1988,62(6):1999-2006
The genomic coding sequence of the large T antigen of simian virus 40 (SV40) was cloned into an Escherichia coli expression vector by joining new restriction sites, BglII and BamHI, introduced at the intron boundaries of the gene. Full-length large T antigen, as well as deletion and amino acid substitution mutants, were inducibly expressed from the lac promoter of pUC9, albeit with different efficiencies and protein stabilities. Specific interaction with SV40 origin DNA was detected for full-length T antigen and certain mutants. Deletion mutants lacking T-antigen residues 1 to 130 and 260 to 708 retained specific origin-binding activity, demonstrating that the region between residues 131 and 259 must carry the essential binding domain for DNA-binding sites I and II. A sequence between residues 302 and 320 homologous to a metal-binding "finger" motif is therefore not required for origin-specific binding. However, substitution of serine for either of two cysteine residues in this motif caused a dramatic decrease in origin DNA-binding activity. This region, as well as other regions of the full-length protein, may thus be involved in stabilizing the DNA-binding domain and altering its preference for binding to site I or site II DNA.  相似文献   

9.
By using a DNA fragment immunoassay, the binding of simian virus 40 (SV40) and polyomavirus (Py) large tumor (T) antigens to regulatory regions at both viral origins of replication was examined. Although both Py T antigen and SV40 T antigen bind to multiple discrete regions on their proper origins and the reciprocal origin, several striking differences were observed. Py T antigen bound efficiently to three regions on Py DNA centered around an MboII site at nucleotide 45 (region A), a BglI site at nucleotide 92 (region B), and another MboII site at nucleotide 132 (region C). Region A is adjacent to the viral replication origin, and region C coincides with the major early mRNA cap site. Weak binding by Py T antigen to the origin palindrome centered at nucleotide 3 also was observed. SV40 T antigen binds strongly to Py regions A and B but only weakly to region C. This weak binding on region C was surprising because this region contains four tandem repeats of GPuGGC, the canonical pentanucleotide sequence thought to be involved in specific binding by T antigens. On SV40 DNA, SV40 T antigen displayed its characteristic hierarchy of affinities, binding most efficiently to site 1 and less efficiently to site 2. Binding to site 3 was undetectable under these conditions. In contrast, Py T antigen, despite an overall relative reduction of affinity for SV40 DNA, binds equally to fragments containing each of the three SV40 binding sites. Py T antigen, but not SV40 T antigen, also bound specifically to a region of human Alu DNA which bears a remarkable homology to SV40 site 1. However, both tumor antigens fail to precipitate DNA from the same region which has two direct repeats of GAGGC. These results indicate that despite similarities in protein structure and DNA sequence, requirements of the two T antigens for pentanucleotide configuration and neighboring sequence environment are different.  相似文献   

10.
11.
Topoisomerase I (topo I) is needed for efficient initiation of simian virus 40 (SV40) DNA replication and for the formation of completed DNA molecules. Two distinct binding sites for topo I have been previously mapped to the N-terminal (residues 83 to 160) and C-terminal (residues 602 to 708) regions of T antigen. By mutational analysis, we identified a cluster of six residues on the surface of the helicase domain at the C-terminal binding site that are necessary for efficient binding to topo I in enzyme-linked immunosorbent assay and far-Western blot assays. Mutant T antigens with single substitutions of these residues were unable to participate normally in SV40 DNA replication. Some mutants were completely defective in supporting DNA replication, and replication was not enhanced in the presence of added topo I. The same mutants were the ones that were severely compromised in binding topo I. Other mutants demonstrated intermediate levels of activity in the DNA replication assay and were correspondingly only partially defective in binding topo I. Mutations of nearby residues outside this cluster had no effect on DNA replication or on the ability to bind topo I. These results strongly indicate that the association of topo I with these six residues in T antigen is essential for DNA replication. These residues are located on the back edges of the T-antigen double hexamer. We propose that topo I binds to one site on each hexamer to permit the initiation of SV40 DNA replication.  相似文献   

12.
13.
Simian Virus 40 (SV40) large T antigen is a DNA binding protein with high affinity for segments of the viral genome. To find out whether T antigen also binds to sequences of genomic cellular DNA we mixed T antigen and SAU 3 A restricted mouse DNA under stringent DNA binding conditions. Resulting protein-DNA complexes were immunoprecipitated using T antigen specific monoclonal or polyclonal antibodies. The DNA fragments in the immunoprecipitates were cloned in plasmid vectors. Four plasmid clones were selected for a detailed investigation of the inserted mouse DNA fragments. Nucleotide sequencing and DNase I footprint experiments showed that T antigen binds to sites in these fragments consisting of two tandemly oriented G(A)AGGC pentamers separated by AT rich spacers of different lengths. The cellular binding sites are very similar in their architecture to the SV40-DNA binding site I. The isolated cellular DNA fragments with T antigen binding sites occur only once or a few times in the mouse genome. Our data help to further define the structure of T antigen's DNA binding sites. The genetic functions of the isolated cellular DNA elements are not known.  相似文献   

14.
Binding studies of SV40 T-antigen to SV40 binding site II.   总被引:3,自引:0,他引:3       下载免费PDF全文
SV40 T-Antigen binding site II was synthesized, cloned and analyzed for its ability to bind purified SV40 T-antigen. We report the binding constant of T-antigen for isolated site II. Using a filter binding assay the calculated binding constant was 6-8 fold less efficient than site I previously reported. Binding constants were calculated using two methods. The first was a direct calculation using a protein titration curve (KD). The second was by the ratio of measured association and dissociation rates. Both methods gave similar constants. Protection studies with SV40 T-antigen on the T-antigen binding sites in the wild-type array demonstrated that the binding constants of site I and site II are similar to those calculated for the individual sites. These results demonstrate that SV40 T-antigen does not bind cooperatively to sites one and two as earlier believed and are in agreement with recent observations emanating from several laboratories.  相似文献   

15.
16.
Simian virus 40 origin DNA-binding domain on large T antigen.   总被引:37,自引:29,他引:8       下载免费PDF全文
Fifty variant forms of simian virus 40 (SV40) large T antigen bearing point, multiple point, deletion, or termination mutations within a region of the protein thought to be involved in DNA binding were tested for their ability to bind to SV40 origin DNA. A number of the mutant large T species including some with point mutations were unable to bind, whereas many were wild type in this activity. The clustering of the mutations that are defective in origin DNA binding both reported here and by others suggests a DNA-binding domain on large T maps between residues 139 and approximately 220, with a particularly sensitive sequence between amino acids 147 and 166. The results indicate that the domain is involved in binding to both site I and site II on SV40 DNA, but it remains unclear whether it is responsible for binding to cellular DNA. Since all the mutants retain the ability to transform Rat-1 cells, we conclude that the ability of large T to bind to SV40 origin DNA is not a prerequisite for its transforming activity.  相似文献   

17.
M Montenarh  D Müller 《FEBS letters》1987,221(2):199-204
SV40 large T antigen is phosphorylated at up to ten different amino acids clustered in an N-terminal and a C-terminal part of the polypeptide chain. The N-terminal phosphorylated residues include Ser 123 and Thr 124. We have analyzed the oligomerization, the complex formation with the cellular oncoprotein p53 and the DNA-binding properties of T antigen from two different SV40 transformed cell lines which have either an amino acid exchange at Ser 123 to Phe (W7) or Thr 124 to Ile (D29). In comparison to wild-type T antigen both mutant T antigens have a slightly reduced binding affinity for both binding sites, I and II, of SV40 DNA. Phosphorylation at both residues of T antigen is not essential for formation of the complex with p53. Only the phosphorylation at Thr 124 seems to be critical for the formation of high molecular mass oligomers. Our data support the hypothesis that the oligomerization of T antigen seems to be implicated in viral DNA replication.  相似文献   

18.
The phosphorylation pattern of simian virus 40 (SV40) large tumor (T) antigen purified from insect cells infected with a recombinant baculovirus was compared with that reported previously for T antigen from SV40-infected monkey cells. The specific activity of metabolic phosphate labeling of baculovirus T antigen was reduced, and the phosphopeptide map of the baculovirus protein, while qualitatively similar to that of lytic T, revealed several quantitative differences. The most striking difference was the prominence in the baculovirus map of peptides containing phosphothreonine 124. These peptides are known to arise from other phosphopeptides upon dephosphorylation of neighboring serines, suggesting that baculovirus T may be underphosphorylated at these serines and perhaps other sites. Functional assays used to further investigate the phosphorylation state of the baculovirus protein included SV40 DNA binding after enzymatic dephosphorylation with alkaline phosphatase and after phosphorylation by a murine homolog of cdc2 protein kinase. The results imply that baculovirus T antigen is underphosphorylated, in particular at those serine residues whose phosphorylation is responsible for down regulation of DNA-binding activity at site II in the core origin of DNA replication. In contrast, no evidence for a functionally significant underphosphorylation at threonine 124 could be found.  相似文献   

19.
In an attempt to distinguish simian virus 40 (SV40) large T antigen (T) binding to ATP from hydrolysis, specific mutations were made in the ATP-binding site of T according to our model for the site (M. K. Bradley, T. F. Smith, R. H. Lathrop, D. M. Livingston, and T. A. Webster, Proc. Natl. Acad. Sci. USA 84:4026-4030, 1987). Two acidic residues predicted to make contact with the magnesium phosphate were changed to alanines. The mutated T gene was completely defective for viral DNA synthesis and for virion production, and it was dominant defective for viral DNA replication. The defective T gene encoded a stable product (2905T) that oncogenically transformed mouse cell lines. 2905T, immunoprecipitated from transformed-cell extracts, bound SV40 origin DNA specifically and, surprisingly, it was active as an ATPase. A recombinant baculovirus was constructed for the production and purification of the mutant protein for detailed biochemical analyses. 2905T had only 10% of the ATPase and helicase of wild-type T. The Km of 2905T for ATP in ATPase assays was the same as the Km of wild-type T. ATP activated the ATPase activity of wild-type T, but not of 2905T. As tested by gel bandshift assay, 2905T bound to SV40 origin DNA and to individual sites I and II with affinities similar to that of the wild type. However, ATP did not modulate the DNA-binding activity of mutant T to site II. Therefore, this mutation in the ATP-binding site in T resulted in defects in the interaction between the protein and ATP that appeared to be responsible for the determination of the active state of T for DNA binding versus ATPase.  相似文献   

20.
Five distinct cytotoxic T-lymphocyte (CTL) recognition sites were identified in the simian virus 40 (SV40) T antigen by using H-2b cells that express the truncated T antigen or antigens carrying internal deletions of various sizes. Four of the CTL recognition determinants, designated sites I, II, III, and V, are H-2Db restricted, while site IV is H-2Kb restricted. The boundaries of CTL recognition sites I, II, and III, clustered in the amino-terminal half of the T antigen, were further defined by use of overlapping synthetic peptides containing amino acid sequences previously determined to be required for recognition by T-antigen site-specific CTL clones by using SV40 deletion mutants. CTL clone Y-1, which recognizes epitope I and whose reactivity is affected by deletion of residues 193 to 211 of the T antigen, responded positively to B6/PY cells preincubated with a synthetic peptide corresponding to T-antigen amino acids 205 to 219. CTL clones Y-2 and Y-3 lysed B6/PY cells preincubated with large-T peptide LT220-233. To distinguish further between epitopes II and III, Y-2 and Y-3 CTL clones were reacted with SV40-transformed cells bearing mutations in the major histocompatibility complex class I antigen. Y-2 CTL clones lysed SV40-transformed H-2Dbm13 cells (bm13SV) which carry several amino acid substitutions in the putative antigen-binding site in the alpha 2 domain of the H-2Db antigen but not bm14SV cells, which contain a single amino acid substitution in the alpha 1 domain. Y-3 CTL clones lysed both mutant transformants. Y-1 and Y-5 CTL clones failed to lyse bm13SV and bm14SV cells; however, these cells could present synthetic peptide LT205-219 to CTL clone Y-1 and peptide SV26(489-503) to CTL clone Y-5, suggesting that the endogenously processed T antigen yields fragments of sizes or sequences different from those of synthetic peptides LT205-219 and SV26(489-503).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号