首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Proteorhodopsin (PR) a recent addition to retinal type 1 protein family, is a bacterial homologue of archaeal bacteriorhodopsin. It was found to high abundance in γ-proteobacteria in the photic zone of the oceans and has been shown to act as a photoactive proton pump. It is therefore involved in the utilisation of light energy for energy production within the cell. Based on data from biodiversity screens, hundreds of variants were discovered worldwide, which are spectrally tuned to the available light at different locations in the sea. Here, we present a characterisation of 2D crystals of the green variant of proteorhodopsin by electron microscopy and solid state NMR. 2D crystal formation with hexagonal protein packing was observed under a very wide range of conditions indicating that PR might be also closely packed under native conditions. A low-resolution 2D projection map reveals a ring-shaped oligomeric assembly of PR. The protein state was analysed by 15N MAS NMR on lysine, tryptophan and methionine labelled samples. The chemical shift of the protonated Schiff base was almost identical to non-crystalline preparations. All residues could be cross-polarised in non-frozen samples. Lee-Goldberg cross-polarisation has been used to probe protein backbone mobility.  相似文献   

2.
Native-state hydrogen exchange (HX) studies, used in conjunction with NMR spectroscopy, have been carried out on Escherichia coli thioredoxin (Trx) for characterizing two folding subdomains of the protein. The backbone amide protons of only the slowest-exchanging 24 amino acid residues, of a total of 108 amino acid residues, could be followed at pH 7. The free energy of the opening event that results in an amide hydrogen exchanging with solvent (DeltaG(op)) was determined at each of the 24 amide hydrogen sites. The values of DeltaG(op) for the amide hydrogens belonging to residues in the helices alpha(1), alpha(2), and alpha(4) are consistent with them exchanging with the solvent only when the fully unfolded state is sampled transiently under native conditions. The denaturant-dependences of the values of DeltaG(op) provide very little evidence that the protein samples partially unfolded forms, lower in energy than the unfolded state. The amide hydrogens belonging to the residues in the beta strands, which form the core of the protein, appear to have higher values of DeltaG(op) than amide hydrogens belonging to residues in the helices, suggesting that they might be more stable to exchange. This apparently higher stability to HX of the beta strands might be either because they exchange out their amide hydrogens in a high energy intermediate preceding the globally unfolded state, or, more likely, because they form residual structure in the globally unfolded state. In either case, the central beta strands-beta(3,) beta(2), and beta(4)-would appear to form a cooperatively folding subunit of the protein. The native-state HX methodology has made it possible to characterize the free energy landscape that Trx can sample under equilibrium native conditions.  相似文献   

3.
The structural stability of bacteriorhodopsin (bR) solubilized by octyl-beta-glucoside was studied by measuring the denaturation kinetics under visible light irradiation and in the dark. The denaturation of bR solubilized by 50 mM octyl-beta-glucoside was very slow at room temperature when it was left in the dark. However, its spontaneous denaturation was accelerated when the solubilized bR was irradiated by visible light. The denaturation kinetics under visible light irradiation and in the dark could be well described by a single decay constant. The activation energy for the denaturation of bR was estimated from the temperature dependence of decay time constants. The activation energy under visible light irradiation was 12.5 kcal/mol, which was much smaller than the corresponding value in the dark, 26.2 kcal/mol. These results strongly suggest that some of the photointermediate states are less stable than the ground state of bR. The critical temperature and the activation energy for denaturation of bR in the solubilized state were much lower than those in the 2D crystalline state. Comparing the denaturation behavior in the 2D crystalline state and that in the octyl-beta-glucoside-solubilized state, our findings suggest that protein-protein interaction contributes to the stability of this protein.  相似文献   

4.
Despite the widespread distribution of proteorhodopsin (PR)-containing bacteria in the oceans, the use of light-derived energy to promote bacterial growth has only been shown in a few bacterial isolates, and there is a paucity of data describing the metabolic effects of light on environmental photoheterotrophic taxa. Here, we assessed the effects of light on the taxonomic composition, cell integrity and growth responses of microbial communities in monthly incubations between spring and autumn under different environmental conditions. The photoheterotrophs expressing PR in situ were dominated by Pelagibacterales and SAR116 in July and November, while members of Euryarchaeota, Gammaproteobacteria and Bacteroidetes dominated the PR expression in spring. Cell-membrane integrity decreased under dark conditions throughout most of the assessment, with maximal effects in summer, under low-nutrient conditions. A positive effect of light on growth was observed in one incubation (out of nine), coinciding with a declining phytoplankton bloom. Light-enhanced growth was found in Gammaproteobacteria (Alteromonadales) and Bacteroidetes (Polaribacter and Tenacibaculum). Unexpectedly, some Pelagibacterales also exhibited higher growth rates under light conditions. We propose that the energy harvested by PRs helps to maintain cell viability in dominant coastal photoheterotrophic oligotrophs while promoting the growth of some widespread taxa benefiting from the decline of phytoplankton blooms.  相似文献   

5.
6.
Recent work has shown that the light-induced PS II core protein degradation, as monitored by immunostain reduction on Western blots, was stimulated even at low light during phosphorylation of thylakoid proteins in the presence of NaF, and that the thylakoid kinase inhibitor FSBA blocked completely the light- and ATP-stimulated degradation [Georgakopoulos and Argyroudi-Akoyunoglou (1997) Photosynth Res 53: 185–195]. To assess whether D1, D2 or both proteins are degraded, antibodies raised against D1/D2, or the D-E loop of D1 were used. Greatest immunostain reduction was observed with antibodies raised against D1/D2, immunostaining a 34 kDa protein on blots of 15% polyacrylamide-6 M urea gels, suggesting that the phosphorylation-induced degradation may be mainly directed against D2. To see how protein phosphorylation might be implicated in PS II core protein degradation we further tested the effect of free radical scavengers, on thylakoid protein phosphorylation. Active oxygen scavengers like n-propyl gallate, histidine, and imidazole, shown earlier to inhibit high light-induced D1 degradation, also suppressed the phosphorylation of thylakoid proteins; on the other hand, NaN3 and D-mannitol, known to stimulate light- induced D1 degradation did not suppress protein phosphorylation, whereas superoxide dismutase and catalase, known also to inhibit high light-induced D1 degradation, did not affect thylakoid protein phosphorylation. In addition, the ATP-induced degradation was also observed in the dark under conditions of kinase activation, and in the light under anaerobic conditions, that block light-induced degradation, whereas it was reduced in the absence of NaF, the phosphatase inhibitor. The results point to the involvement of a proteolytic system in PS II core protein degradation, which is active in its phosphorylated state.  相似文献   

7.
Thylakoid protein phosphorylation and the thiol redox state   总被引:8,自引:0,他引:8  
Illumination of thylakoid membranes leads to the phosphorylation of a number of photosystem II-related proteins, including the reaction center proteins D1 and D2 as well as the light-harvesting complex (LHCII). Regulation of light-activated thylakoid protein phosphorylation has mainly been ascribed to the redox state of the electron carrier plastoquinone. In this work, we show that this phosphorylation in vitro is also strongly influenced by the thiol disulfide redox state. Phosphorylation of the light-harvesting complex of photosystem II was found to be favored by thiol-oxidizing conditions and strongly downregulated at moderately thiol-reducing conditions. In contrast, phosphorylation of the photosystem II reaction center proteins D1 and D2 as well as that of other photosystem II subunits was found to be stimulated up to 2-fold by moderately thiol-reducing conditions and kept at a high level also at highly reducing conditions. These responses of the level of thylakoid protein phosphorylation to changes in the thiol disulfide redox state are reminiscent of those observed in vivo in response to changes in the light intensity and point to the possibility of a second loop of redox regulation of thylakoid protein phosphorylation via the ferredoxin-thioredoxin system.  相似文献   

8.
Insulin provides an important model for the application of genetic engineering to rational protein design and has been well characterized in the crystal state. However, self-association of insulin in solution has precluded complementary 2D NMR study under physiological conditions. We demonstrate here that such limitations may be circumvented by the use of a monomeric analogue that contains three amino acid substitutions on the protein surface (HisB10----Asp, ProB28----Lys, and LysB29----Pro); this analogue (designated DKP-insulin) retains native receptor-binding potency. Comparative 1H NMR studies of native human insulin and a series of three related analogues--(i) the singly substituted analogue [HisB10----Asp], (ii) the doubly substituted analogue [ProB28----Lys; LysB29----Pro], and (iii) DKP-insulin--demonstrate progressive reduction in concentration-dependent line-broadening in accord with the results of analytical ultracentrifugation. Extensive nonlocal interactions are observed in the NOESY spectrum of DKP-insulin, indicating that this analogue adopts a compact and stably folded structure as a monomer in overall accord with crystal models. Site-specific 2H and 13C isotopic labels are introduced by semisynthesis as probes for the structure and dynamics of the receptor-binding surface. These studies confirm and extend under physiological conditions the results of a previous 2D NMR analysis of native insulin in 20% acetic acid [Hua, Q. X., & Weiss, M. A. (1991) Biochemistry 30, 5505-5515]. Implications for the role of protein flexibility in receptor recognition are discussed with application to the design of novel insulin analogues.  相似文献   

9.
10.
Hydrogen is a promising future energy source. Although the ability of green algae to produce hydrogen has long been recognized (since 1939) and several biotechnological applications have been attempted, the greatest obstacle, being the O2-sensitivity of the hydrogenase enzyme, has not yet been overcome. In the present contribution, 75 years after the first report on algal hydrogen production, taking advantage of a natural mechanism of oxygen balance, we demonstrate high hydrogen yields by lichens. Lichens have been selected as the ideal organisms in nature for hydrogen production, since they consist of a mycobiont and a photobiont in symbiosis. It has been hypothesized that the mycobiont’s and photobiont’s consumption of oxygen (increase of COX and AOX proteins of mitochondrial respiratory pathways and PTOX protein of chrolorespiration) establishes the required anoxic conditions for the activation of the phycobiont’s hydrogenase in a closed system. Our results clearly supported the above hypothesis, showing that lichens have the ability to activate appropriate bioenergetic pathways depending on the specific incubation conditions. Under light conditions, they successfully use the PSII-dependent and the PSII-independent pathways (decrease of D1 protein and parallel increase of PSaA protein) to transfer electrons to hydrogenase, while under dark conditions, lichens use the PFOR enzyme and the dark fermentative pathway to supply electrons to hydrogenase. These advantages of lichen symbiosis in combination with their ability to survive in extreme environments (while in a dry state) constitute them as unique and valuable hydrogen producing natural factories and pave the way for future biotechnological applications.  相似文献   

11.
It has been demonstrated that human melanocortin-4 receptor (hMC4R) plays an important role in the control of energy homeostasis, and heterozygous mutations in the hMC4R gene are the most frequent genetic cause of severe human obesity. In order to obtain additional insight into the structure and function, we cloned, expressed, and purified the second transmembrane domain of the wild-type hMC4R (wt-TM2) and D90N mutant hMC4R (m-TM2). To facilitate structural studies of these hMC4R by solid-state NMR, efficient methods for the production of milligram quantities of isotopically labeled protein are necessary. However, large-scale production of most transmembrane proteins has been limited by experimental adversities due to insufficient yields and low solubility of protein. Nevertheless, through the optimization of the expression and purification approach, we could obtain uniformly or selectively labeled fusion proteins in yields as high as 200-250 mg per liter M9 minimal medium. These proteins were overexpressed in inclusion bodies as a fusion protein with ketosteroid isomerase (KSI) in Escherichia coli, and the fusion protein was purified using immobilized metal affinity chromatography under denaturing conditions. wt-/m-TM2 peptides were released from the fusion by cyanogen bromide cleavage at the Met residue and separated from the carrier KSI by size exclusion chromatography. Initial structural data obtained by solution NMR measurements of wt-/m-TM2 is also presented. The successful application to the production of the second transmembrane domain of human MC4R indicates that the method can be applied to other transmembrane proteins as well and also enable its structural and functional studies using solid-state NMR spectroscopy.  相似文献   

12.
Folding regulates autoprocessing of HIV-1 protease precursor   总被引:1,自引:0,他引:1  
Autoprocessing of HIV-1 protease (PR) precursors is a crucial step in the generation of the mature protease. Very little is known regarding the molecular mechanism and regulation of this important process in the viral life cycle. In this context we report here the first and complete residue level investigations on the structural and folding characteristics of the 17-kDa precursor TFR-PR-C(nn) (161 residues) of HIV-1 protease. The precursor shows autoprocessing activity indicating that the solution has a certain population of the folded active dimer. Removal of the 5-residue extension, C(nn) at the C-terminal of PR enhanced the activity to some extent. However, NMR structural characterization of the precursor containing a mutation, D25N in the PR at pH 5.2 and 32 degrees C under different conditions of partial and complete denaturation by urea, indicate that the precursor has a high tendency to be unfolded. The major population in the ensemble displays some weak folding propensities in both the TFR and the PR regions, and many of these in the PR region are the non-native type. As both D25N mutant and wild-type PR are known to fold efficiently to the same native dimeric form, we infer that TFR cleavage enables removal of the non-native type of preferences in the PR domain to cause constructive folding of the protein. These results indicate that intrinsic structural and folding preferences in the precursor would have important regulatory roles in the autoprocessing reaction and generation of the mature enzyme.  相似文献   

13.
The hydrogen exchange kinetics of 68 individual amide protons in the native state of hen lysozyme have been measured at pH 7.5 and 30 degrees C by 2D NMR methods. These constitute the most protected subset of amides, with exchange half lives some 10(5)-10(7) times longer than anticipated from studies of small model peptides. The observed distribution of rates under these conditions can be rationalized to a large extent in terms of the hydrogen bonding of individual amides and their burial from bulk solvent. Exchange rates have also been measured in a reversibly denatured state of lysozyme; this was made possible under very mild conditions, pH 2.0 35 degrees C, by lowering the stability of the native state through selective cleavage of the Cys-6-Cys-127 disulfide cross-link (CM6-127 lysozyme). In this state the exchange rates for the majority of amides approach, within a factor of 5, the values anticipated from small model peptides. For a few amides, however, there is evidence for significant retardation (up to nearly 20-fold) relative to the predicted rates. The pattern of protection observed under these conditions does not reflect the behavior of the protein under strongly native conditions, suggesting that regions of native-like structure do not persist significantly in the denatured state of CM6-127 lysozyme. The pattern of exchange rates from the native protein at high temperature, pH 3.8 69 degrees C, resembles that of the acid-denatured state, suggesting that under these conditions the exchange kinetics are dominated by transient global unfolding. The rates of folding and unfolding under these conditions were determined independently by magnetization transfer NMR methods, enabling the intrinsic exchange rates from the denatured state to be deduced on the basis of this model, under conditions where the predominant equilibrium species is the native state. Again, in the case of most amides these rates showed only limited deviation from those predicted by a simple random coil model. This reinforces the view that these denatured states of lysozyme have little persistent residual order and contrasts with the behavior found for compact partially folded states of proteins, including an intermediate detected transiently during the refolding of hen lysozyme.  相似文献   

14.
To determine whether the net loss of D1 protein is the main cause of photoinhibition of photosynthesis in wheat leaves under field conditions in the absence of any environmental stress other than strong sunlight, the D1 protein content, photosynthetic evolution of oxygen and chlorophyll a fluorescence parameters were measured in field grown wheat leaves. After exposure to midday strong light for about 3 h, apparent photosynthetic quantum efficiency (Φ), Fv/Fm and Fo in wheat leaves declined, and these parameters recovered almost completely 1 h after transfer to the weak light of 30~40 ttmol photons · m-2 · s-1. No evident change in the D1 protein content was observed in the leaves after exposure to midday strong light for 3 h. After 3 hours exposure to strong light, the slow-relaxed fluorescence quenching in the leaves treated with streptomycin (SM) increased much more than that in the control leaves, but there was no effect SM on the recovery of Fv/Fm and F0; dithiothretol (DTT) treatment enhanced photoinhibition of photosynthesis and reduced the D1 protein content in the leaves after exposure to midday strong light. These results indicated that under field conditions with no environmental stress other than strong sunlight, photoinhibition of photosynthesis in wheat leaves was not due to the net loss of D1 protein, and it could be attributed mainly by the increased nonradiative energy dissipation.  相似文献   

15.
16.
Nitrogen fixation as well as structural and functional properties of the photosynthetic apparatus were studied with phototrophically grown chemostat cultures of Rhodobacter capsulatus strain 37b4. Illumination was varied between 3,000 and 30,000 lx at a constant dilution rate of D=0.075 h-1. Steady state parameters of growth revealed two forms of limitation, i.e. energy limitation in the range of 3,000 to about 10,000 lx and nitrogen limitation at higher illuminations. Over the entire range of illumination, the specific bacteriochlorophyll content and the amount of total bacteriochlorophyll per photochemical reaction center remained essentially constant. Photophosphorylation activity remained constant up to 20,000 lx but was slightly increased at 30,000 lx. Hydrogen evolution and acetylene reduction activities of cellular nitrogenase were assayed under saturating light conditions with samples taken from cultures growing under steady state conditions. In spite of the apparent constancy of the composition and activity of the photosynthetic apparatus under energy limitation, maximal specific acetylene reduction and hydrogen evolution activities increased by factors of 3 and 8, respectively, when illumination of the culture was raised from 3,000 to about 15,000 lx. Above 15,000 lx, both activities of nitrogenase approached constancy.We, therefore, conclude that neither under energy limitation nor under nitrogen limitation the function of nitrogenase depended on the photosynthetic activities. Moreover, it is suggested that light did not influence nitrogenase activity under conditions of nitrogen limitation, while under conditions of energy limitation light seemed to influence nitrogenase activities indirectly via glutamate consumption of the cells.  相似文献   

17.
The alpha-phycoerythrocyanin subunits of the different phycoerythrocyanin complexes of the phycobilisomes from the cyanobacterium Mastigocladus laminosus perform a remarkable photochemistry. Similar to phytochromes - the photoreceptors of higher plants - the spectral properties of the molecule reversibly change according to the irradiation wavelength. To enable extensive analyses, the protein has been produced at high yield by improving purification protocols. As a result, several comparative studies on the Z- and E-configurations of the intact alpha-subunit, and also on photoactive peptides originating from nonspecific degradations of the chromoprotein, were possible. The analyses comprise absorbance, fluorescence and CD spectroscopy, crystallization, preliminary X-ray measurements, mass spectrometry, N-terminal amino acid sequencing and 1D NMR spectroscopy. Intact alpha-phycoerythrocyanin aggregates significantly, due to hydrophobic interactions between the two N-terminal helices. Removal of these helices reduces the aggregation but also destabilizes the protein fold. The complete subunit could be crystallized in its E-configuration, but the X-ray measurement conditions must be improved. Nevertheless, NMR spectroscopy on a soluble photoactive peptide presents the first insight into the complex chromophore protein interactions that are dependent on the light induced state. The chromophore environment in the Z-configuration is rigid whereas other regions of the protein are more flexible. In contrast, the E-configuration has a mobile chromophore, especially the pyrrole ring D, while other regions of the protein rigidified compared to the Z-configuration.  相似文献   

18.
Differential redox regulation of thylakoid phosphoproteins was studied in winter rye plants in vivo. The redox state of chloroplasts was modulated by growing plants under different light/temperature conditions and by transient shifts to different light/temperature regimes. Phosphorylation of PSII reaction centre proteins D1 and D2, the chlorophyll a binding protein CP43, the major chlorophyll a/b binding proteins Lhcb1 and Lhcb2 (LHCII) and the minor light‐harvesting antenna protein CP29 seem to belong to four distinct regulatory groups. Phosphorylation of D1 and D2 was directly dependent on the reduction state of the plastoquinone pool. CP43 protein phosphorylation generally followed the same pattern, but often remained phosphorylated even in darkness. Phosphorylation of CP29 occurred upon strong reduction of the plastoquinone pool, and was further enhanced by low temperatures. In vitro studies further demonstrated that CP29 phosphorylation is independent of the redox state of both the cytochrome b6/f complex and the thiol compounds. Complete phosphorylation of Lhcb1 and 2 proteins, on the contrary, required only modest reduction of the plastoquinone pool, and was subject to inhibition upon increase in the thiol redox state of the stroma. Furthermore, the reversible phosphorylation of Lhcb1 and 2 proteins appeared to be an extremely dynamic process, being rapidly modulated by short‐term fluctuations in chloroplast redox conditions.  相似文献   

19.
The proapoptotic influenza A virus PB1-F2 protein contributes to viral pathogenicity and is present in most human and avian influenza isolates. The structures of full-length PB1-F2 of the influenza strains Pandemic flu 2009 H1N1, 1918 Spanish flu H1N1, Bird flu H5N1 and H1N1 PR8, have been characterized by NMR and CD spectroscopy. The study was conducted using chemically synthesized full-length PB1-F2 protein and fragments thereof. The amino acid residues 30–70 of PR8 PB1-F2 were found to be responsible for amyloid formation of the protein, which could be assigned to formation of β-sheet structures, although α-helices were the only structural features detected under conditions that mimic a membranous environment. At membranous conditions, in which the proteins are found in their most structured state, significant differences become apparent between the PB1-F2 variants investigated. In contrast to Pandemic flu 2009 H1N1 and PR8 PB1-F2, which exhibit a continuous extensive C-terminal α-helix, both Spanish flu H1N1 and Bird flu H5N1 PB1-F2 contain a loop region with residues 66–71 that divides the C-terminus into two shorter helices. The observed structural differences are located to the C-terminal ends of the proteins to which most of the known functions of these proteins have been assigned. A C-terminal helix–loop–helix motif might be a structural signature for PB1-F2 of the highly pathogenic influenza viruses as observed for 1918 Spanish flu H1N1 and Bird flu H5N1 PB1-F2. This signature could indicate the pathological nature of viruses emerging in the future and thus aid in the recognition of these viruses.  相似文献   

20.
Proteorhodopsin (PR) photoheterotrophy in the marine flavobacterium Dokdonia sp. PRO95 has previously been investigated, showing no growth stimulation in the light at intermediate carbon concentrations. Here we report the genome sequence of strain PRO95 and compare it to two other PR encoding Dokdonia genomes: that of strain 4H-3-7-5 which shows the most similar genome, and that of strain MED134 which grows better in the light under oligotrophic conditions. Our genome analysis revealed that the PRO95 genome as well as the 4H-3-7-5 genome encode a protein related to xanthorhodopsins. The genomic environment and phylogenetic distribution of this gene suggest that it may have frequently been recruited by lateral gene transfer. Expression analyses by RT-PCR and direct mRNA-sequencing showed that both rhodopsins and the complete β-carotene pathway necessary for retinal production are transcribed in PRO95. Proton translocation measurements showed enhanced proton pump activity in response to light, supporting that one or both rhodopsins are functional. Genomic information and carbon source respiration data were used to develop a defined cultivation medium for PRO95, but reproducible growth always required small amounts of yeast extract. Although PRO95 contains and expresses two rhodopsin genes, light did not stimulate its growth as determined by cell numbers in a nutrient poor seawater medium that mimics its natural environment, confirming previous experiments at intermediate carbon concentrations. Starvation or stress conditions might be needed to observe the physiological effect of light induced energy acquisition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号