首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Mutations of the TSC2 gene lead to the development of hamartomas in tuberous sclerosis complex. Their pathology exhibits features indicative of defects in cell growth, proliferation, differentiation, and migration. We have previously shown that tuberin, the TSC2 protein, resides in multiple subcellular compartments and as such may serve multiple functions. To further characterize the microsomal pool of tuberin, we found that it cofractionated with caveolin-1 in a low-density, Triton X-100-resistant fraction (i.e., lipid rafts) and regulated its localization. In cells lacking tuberin, most of the endogenous caveolin-1 was displaced from the plasma membrane to a Brefeldin-A-sensitive, post-Golgi compartment distinct from the endosome and lysosome. Correspondingly, there was a paucity of caveolae at the plasma membrane of Tsc2-/- cells. Reintroduction of TSC2, but not a disease-causing mutant, reversed the caveolin-1 localization to the membrane. Exogenously expressed caveolin-1-GFP and vesicular stomatitis virus G protein, VSVG-GFP in the Tsc2-/- cells failed to be transported to the plasma membrane and were retained in distinct post-Golgi vesicles. Our data suggest a role of tuberin in regulating post-Golgi transport without apparent effects on protein sorting. The presence of mislocalized proteins in Tsc2-/- cells may contribute to the abnormal signaling and cellular phenotype of tuberous sclerosis.  相似文献   

2.
Tuberous sclerosis (TSC) is an autosomal dominant disorder characterized by a broad phenotypic spectrum that includes seizures, mental retardation, renal dysfunction and dermatological abnormalities. Mutations to either the TSC1 or TSC2 gene are responsible for the disease. The TSC1 gene encodes hamartin, a 130-kDa protein without significant homology to other known mammalian proteins. Analysis of the amino acid sequence of tuberin, the 200-kDa product of the TSC2 gene, identified a region with limited homology to GTPase-activating proteins. Previously, we demonstrated direct binding between tuberin and hamartin. Here we investigate this interaction in more detail. We show that the complex is predominantly cytosolic and may contain additional, as yet uncharacterized components alongside tuberin and hamartin. Furthermore, because oligomerization of the hamartin carboxyl-terminal coiled coil domain was inhibited by the presence of tuberin, we propose that tuberin acts as a chaperone, preventing hamartin self-aggregation.  相似文献   

3.
The products of the tuberous sclerosis complex (TSC) genes, hamartin and tuberin (TSC1 and 2), form a heteromer, which represses the kinase mammalian target of rapamycin. Loss of TSC1 or 2 results in diseases characterized by loss of cell-cycle control, including TSC and lymphangioleiomyomatosis. As tuberin has multiple signaling inputs, including phosphatidylinositide-3-OH kinase, mitogen-activated protein kinase, and adenosine monophosphate kinase, we postulated tuberin would have multiple protein interactions governed by subcellular localization and cellular status and examined this in primary human airway smooth muscle cells. Using immunofluorescence and confocal microscopy, tuberin was detected in cytoplasm, nucleus, nucleoli, and mitochondria. Fractionation of synchronized airway smooth cells showed that tuberin enters the nucleus in late G(1), and passage through the cell cycle is necessary for nuclear entry. Deletion constructs showed localization sequences for the nucleus between amino acids 1351 and 1807, for mitochondria between 901 and 1350, and for cytoplasmic speckles between 1 and 450. Using fluorophore-tagged proteins, we observed fluorescence resonance energy transfer between tuberin and hamartin within these speckles, indicating a direct interaction between the proteins at this site. The observations that tuberin is localized to mitochondria and translocated to the nucleus in G(1) are novel and consistent with interactions with proteins within multiple signaling pathways. Dynamic relocalization of tuberin may control these interactions to integrate these pathways. As tuberin has potential roles in proliferation, migration, and cell phenotype, it therefore warrants further investigation in diseases categorized by abnormalities in airway smooth muscle.  相似文献   

4.
Tuberous sclerosis complex (TSC) is characterized by the formation of hamartomas in multiple organs resulting from mutations in the TSC1 or TSC2 gene. Their protein products, hamartin and tuberin, respectively, form a functional complex that affects cell growth, differentiation, and proliferation. Several lines of evidence, including renal tumors derived from TSC2+/- animals, suggest that the loss or inhibition of tuberin is associated with up-regulation of cyclin D1. As cyclin D1 can be regulated through the canonical Wnt/beta-catenin signaling pathway, we hypothesize that the cell proliferative effects of hamartin and tuberin are partly mediated through beta-catenin. In this study, total beta-catenin protein levels were found to be elevated in the TSC2-related renal tumors. Ectopic expression of hamartin and wild-type tuberin, but not mutant tuberin, reduced beta-catenin steady-state levels and its half-life. The TSC1-TSC2 complex also inhibited Wnt-1 stimulated Tcf/LEF luciferase reporter activity. This inhibition was eliminated by constitutively active beta-catenin but not by Disheveled, suggesting that hamartin and tuberin function at the level of the beta-catenin degradation complex. Indeed, hamartin and tuberin co-immunoprecipitated with glycogen synthase kinase 3 beta and Axin, components of this complex in a Wnt-1-dependent manner. Our data suggest that hamartin and tuberin negatively regulate beta-catenin stability and activity by participating in the beta-catenin degradation complex.  相似文献   

5.
Summary. Tuberous sclerosis (TSC) is an autosomal dominant tumor suppressor gene syndrome affecting about 1 in 6000 to 10000 individuals. The genes, TSC1, encoding hamartin, and TSC2, encoding tuberin are responsible for TSC. Since their identification 1997 and 1993 respectively, a variety of different functions have been described for the TSC gene products. Hamartin and tuberin form a complex, providing a tentative explanation for the similar disease phenotype in TSC patients with mutations in either of these genes. In addition, associations of hamartin or tuberin with several different proteins have been demonstrated. In this review, we summarize the current knowledge on hamartin- and tuberin-interacting proteins and discuss their role for the understanding of the functions of the TSC gene products.  相似文献   

6.
The products of the TSC1 (hamartin) and TCS2 (tuberin) tumor suppressor genes negatively regulate cell growth by inhibiting mTOR signaling. Recent research has led to the postulation that tuberin and/or hamartin are involved in tumor migration, presumably through Rho activation. Here we show that LEF-8 cells, which contain a Y1571 missense mutation in tuberin, express higher Rac1 activity than tuberin negative and positive cells. We also provide evidence of obvious lamellipodia formation in LEF-8 cells. Since the production of TSC2Y1571H cannot form a hetero-complex with hamartin, we further analyzed another mutant, TSC2R611Q, which also lacks the ability to form a complex with hamartin. Introducing both forms of mutated TSC2 into COS-1 cells increased Rac1 activity as well as cell motility. We also found these two mutants interacted with Rac1. We further demonstrated that the introduction of mutated TSC2 into COS-1 cells can generate higher reactive oxygen species (ROS). These results indicate that loss-of-function mutated tuberin can activate Rac1 and thereby increase ROS production.  相似文献   

7.
Tuberous sclerosis complex, an autosomal dominant disease caused by mutations in either TSC1 or TSC2, is characterized by the development of hamartomas in a variety of organs. The proteins encoded by TSC1 and TSC2, hamartin and tuberin, respectively, associate with each other forming a tight complex. Here we show that hamartin binds the neurofilament light chain and it is possible to recover the hamartin-tuberin complex over the neurofilament light chain rod domain spanning amino acids 93-156 by affinity precipitation. Homologous rod domains in other intermediate filaments such as neurofilament medium chain, alpha-internexin, vimentin, and desmin are not able to bind hamartin. In cultured cortical neurons, hamartin and tuberin co-localize with neurofilament light chain preferentially in the proximal to central growth cone region. Interestingly, in the distal part of the growth cone hamartin overlaps with the ezrin-radixin-moesin family of actin binding proteins, and we have validated the interaction of hamartin with moesin. These results demonstrate that hamartin may anchor neuronal intermediate filaments to the actin cytoskeleton, which may be critical for some of the CNS functions of the hamartin-tuberin complex, and abolishing this through mutations in TSC1 or TSC2 may lead to certain neurological manifestations associated with the disease.  相似文献   

8.
The mechanistic target of rapamycin complex 1 (mTORC1) increases translation, cell size and angiogenesis, and inhibits autophagy. mTORC1 is negatively regulated by hamartin and tuberin, the protein products of the tumor suppressors TSC1 and TSC2 that are mutated in Tuberous Sclerosis Complex (TSC) and sporadic Lymphangioleiomyomatosis (LAM). Hamartin interacts with the centrosomal and mitotic kinase polo-like kinase 1 (PLK1). Hamartin and tuberin deficient cells have abnormalities in centrosome duplication, mitotic progression, and cytokinesis, suggesting that the hamartin/tuberin heterodimer and mTORC1 signaling are involved in centrosome biology and mitosis. Here we report that PLK1 protein levels are increased in hamartin and tuberin deficient cells and LAM patient-derived specimens, and that this increase is rapamycin-sensitive. Pharmacological inhibition of PLK1 by the small-molecule inhibitor BI-2536 significantly decreased the viability and clonogenic survival of hamartin and tuberin deficient cells, which was associated with increased apoptosis. BI-2536 increased p62, LC3B-I and GFP-LC3 punctae, and inhibited HBSS-induced degradation of p62, suggesting that PLK1 inhibition attenuates autophagy. Finally, PLK1 inhibition repressed the expression and protein levels of key autophagy genes and proteins and the protein levels of Bcl-2 family members, suggesting that PLK1 regulates both autophagic and apoptotic responses. Taken together, our data point toward a previously unrecognized role of PLK1 on the survival of cells with mTORC1 hyperactivation, and the potential use of PLK1 inhibitors as novel therapeutics for tumors with dysregulated mTORC1 signaling, including TSC and LAM.  相似文献   

9.
Tumour suppressors hamartin and tuberin, encoded by tuberous sclerosis complex 1(TSC1) and TSC2 genes, respectively, are critical regulators of cell growth and proliferation. Mutations in TSC1 and TSC2 genes are the cause of an autosomal dominant disorder known as tuberous sclerosis complex (TSC). Another genetic disorder, lymphangioleiomyomatosis (LAM), is also associated with mutations in the TSC2 gene. Hamartin and tuberin control cell growth by negatively regulating S6 kinase 1 (S6K1) and eukaryotic initiation factor 4E binding protein 1 (4E-BP1), potentially through their upstream modulator mammalian target of rapamycin (mTOR). Growth factors and insulin promote Akt/PKB-dependent phosphorylation of tuberin, which in turn, releases S6K1 from negative regulation by tuberin and results in the activation of S6K1. Although much has been written regarding the molecular genetics of TSC and LAM, which is associated with either the loss of or mutation in the TSC1 and TSC2 genes, few reviews have addressed the intracellular signalling pathways regulated by hamartin and tuberin. The current review will fill the gap in our understanding of their role in cellular signalling networks, and by improving this understanding, an integrated picture regarding the normal function of tuberin and hamartin is beginning to emerge.  相似文献   

10.
11.
Tuberous sclerosis is caused by mutations to either the TSC1 or TSC2 tumor suppressor gene. The disease is characterized by a broad phenotypic spectrum that includes seizures, mental retardation, renal dysfunction, and dermatological abnormalities. TSC1 encodes a 130-kDa protein called hamartin, and TSC2 encodes a 200-kDa protein called tuberin. Although it has been shown that hamartin and tuberin form a complex and mediate phosphoinositide 3-kinase/Akt-dependent phosphorylation of the ribosomal protein S6, it is not yet clear how inactivation of either protein leads to tuberous sclerosis. Therefore, to obtain additional insight into tuberin and hamartin function, yeast two-hybrid screening experiments were performed to identify proteins that interact with tuberin. One of the proteins identified was 14-3-3zeta, a member of the 14-3-3 protein family. The interaction between tuberin and 14-3-3zeta was confirmed in vitro and by co-immunoprecipitation; multiple sites within tuberin for 14-3-3zeta binding were identified; and it was determined that 14-3-3zeta associated with the tuberin-hamartin complex. Finally, it was shown that the tuberin/14-3-3zeta interaction is regulated by Akt-mediated phosphorylation of tuberin, providing insight into how tuberin may regulate phosphorylation of S6.  相似文献   

12.
Mutations in the tumor suppressor genes TSC1 and TSC2, encoding hamartin and tuberin, respectively, cause the tumor syndrome tuberous sclerosis with similar phenotypes. Until now, over 50 proteins have been demonstrated to interact with hamartin and/or tuberin. Besides tuberin, the proteins DOCK7, ezrin/radixin/moesin, FIP200, IKKbeta, Melted, Merlin, NADE(p75NTR), NF-L, Plk1 and TBC7 have been found to interact with hamartin. Whereas Plk1 and TBC7 have been demonstrated not to bind to tuberin, for all the other hamartin-interacting proteins the question, whether they can also bind to tuberin, has not been studied. Tuberin interacts with 14-3-3 beta,epsilon,gamma,eta,sigma,tau,zeta, Akt, AMPK, CaM, CRB3/PATJ, cyclin A, cyclins D1, D2, D3, Dsh, ERalpha, Erk, FoxO1, HERC1, HPV16 E6, HSCP-70, HSP70-1, MK2, NEK1, p27KIP1, Pam, PC1, PP2Ac, Rabaptin-5, Rheb, RxRalpha/VDR and SMAD2/3. 14-3-3 beta,epsilon,gamma,eta,sigma,tau,zeta, Akt, Dsh, FoxO1, HERC1, p27KIP1 and PP2Ac are known not to bind to hamartin. For the other tuberin-interacting proteins this question remains elusive. The proteins axin, Cdk1, cyclin B1, GADD34, GSK3, mTOR and RSK1 have been found to co-immunoprecipitate with both, hamartin and tuberin. The kinases Cdk1 and IKKbeta phosphorylate hamartin, Erk, Akt, MK2, AMPK and RSK1 phosphorylate tuberin, and GSK3 phosphorylates both, hamartin and tuberin. This detailed summary of protein interactions allows new insights into their relevance for the wide variety of different functions of hamartin and tuberin.  相似文献   

13.
The mechanistic target of rapamycin complex 1 (mTORC1) increases translation, cell size and angiogenesis, and inhibits autophagy. mTORC1 is negatively regulated by hamartin and tuberin, the protein products of the tumor suppressors TSC1 and TSC2 that are mutated in Tuberous Sclerosis Complex (TSC) and sporadic Lymphangioleiomyomatosis (LAM). Hamartin interacts with the centrosomal and mitotic kinase polo-like kinase 1 (PLK1). Hamartin and tuberin deficient cells have abnormalities in centrosome duplication, mitotic progression, and cytokinesis, suggesting that the hamartin/tuberin heterodimer and mTORC1 signaling are involved in centrosome biology and mitosis. Here we report that PLK1 protein levels are increased in hamartin and tuberin deficient cells and LAM patient-derived specimens, and that this increase is rapamycin-sensitive. Pharmacological inhibition of PLK1 by the small-molecule inhibitor BI-2536 significantly decreased the viability and clonogenic survival of hamartin and tuberin deficient cells, which was associated with increased apoptosis. BI-2536 increased p62, LC3B-I and GFP-LC3 punctae, and inhibited HBSS-induced degradation of p62, suggesting that PLK1 inhibition attenuates autophagy. Finally, PLK1 inhibition repressed the expression and protein levels of key autophagy genes and proteins and the protein levels of Bcl-2 family members, suggesting that PLK1 regulates both autophagic and apoptotic responses. Taken together, our data point toward a previously unrecognized role of PLK1 on the survival of cells with mTORC1 hyperactivation, and the potential use of PLK1 inhibitors as novel therapeutics for tumors with dysregulated mTORC1 signaling, including TSC and LAM.  相似文献   

14.
Mutations in the genes TSC1 or TSC2 cause the autosomal dominantly inherited tumor suppressor syndrome tuberous sclerosis, which is characterized by the development of tumors, named hamartomas, in different organs. The TSC gene products, hamartin and tuberin, form a complex, of which tuberin is assumed to be the functional component. Both, hamartin and tuberin have been implicated in the control of the cell cycle by activating the cyclin-dependent kinase inhibitor p27 and in cell size regulation by inhibiting the mammalian target of rapamycin (mTOR) a regulator of the p70 ribosomal protein S6 kinase (p70S6K) and its target the ribosomal protein S6. The tuberin/hamartin complex was shown to protect p27 from protein degradation. Within the mTOR signaling pathway tuberin harbors GTPase activating (GAP) potential toward Rheb, which is a potent regulator of mTOR. In this study, we have analyzed the protein levels of tuberin, p27, cyclin D1, mTOR and phospho mTOR Ser2448 (activated mTOR), S6 and phospho S6 Ser240/244 (activated S6) and as controls α-tubulin and topoisomerase IIβ, in ten different cells, including primary normal cells, immortalized and transformed cell lines.  相似文献   

15.
Two genes, TSC1 and TSC2, have been shown to be responsible for tuberous sclerosis (TSC). The detection of loss of heterozygosity of TSC1 or TSC2 in hamartomas, the growths characteristically occurring in TSC patients, suggested a tumor suppressor function for their gene products hamartin and tuberin. Studies analyzing ectopically modulated expression of TSC2 in human and rodent cells together with the finding that a homolog of TSC2 regulates the Drosophila cell cycle suggest that TSC is a disease of proliferation/cell cycle control. We discuss this question including very recent data obtained from analyzing mice expressing a modulated TSC2 transgene, and from studying the effects of deregulated TSC1 expression. Elucidation of the cellular functions of these proteins will form the basis of a better understanding of how mutations in these genes cause the disease and for the development of new therapeutic strategies.  相似文献   

16.
Summary. Tuberous sclerosis (TSC) is an autosomal dominantly inherited disease affecting 1 in 6000 individuals. The TSC gene products, hamartin and tuberin, form a complex, of which tuberin is assumed to be the functional component being involved in a wide variety of different cellular processes. Tuberin has been demonstrated to be localized to both, the cytoplasm and the nucleus. The cytoplasmic/nuclear localization of tuberin is known to be regulated by the serine/threonine protein kinase Akt. Akt also regulates the cytoplasmic/nuclear localization of the cyclin-dependent kinase inhibitor p27. In this study the localization of these two Akt-regulated proteins was analysed in different cell lines.  相似文献   

17.
Hamartin and tuberin are products of the tumor suppressor genes, TSC1 and TSC2, respectively. When mutated, a characteristic spectrum of tumor-like growths develop resulting in the syndrome of tuberous sclerosis complex. The phenotypes associated with TSC1 and TSC2 mutations are largely indistinguishable suggesting a common biochemical pathway. Indeed, hamartin and tuberin have been shown to interact stably in vitro and in vivo. Factors that regulate their interaction are likely critical to the understanding of disease pathogenesis. In this study, we showed that tuberin is phosphorylated at serine and tyrosine residues in response to serum and other factors, and it undergoes serial phosphorylation that can be detected by differences in electrophoretic mobilities. A disease-related TSC2 mutation (Y1571H) nearly abolished tuberin phosphorylation when stimulated with pervanadate. Expression of this mutant tuberin caused a marked reduction in TSC1-TSC2 interaction compared with wild-type protein and significantly curtailed the growth inhibitory effects of tuberin when overexpressed in COS1 cells, consistent with a loss of function mutation. Examination of a second pathologic mutation, P1675L, revealed a similar relationship between limited phosphorylation and reduced interaction with hamartin. Our data show for the first time that 1) tuberin is phosphorylated at tyrosine and serine residues, 2) TSC1-TSC2 interaction is regulated by tuberin phosphorylation, and 3) defective phosphorylation of tuberin is associated with loss of its tumor suppressor activity. These findings suggest that phosphorylation may be a key regulatory mechanism controlling TSC1-TSC2 function.  相似文献   

18.
Loss of tuberin, the product of TSC2 gene, increases mammalian target of rapamycin (mTOR) signaling, promoting cell growth and tumor development. However, in cells expressing tuberin, it is not known how repression of mTOR signaling is relieved to activate this pathway in response to growth factors and how hamartin participates in this process. We show that hamartin colocalizes with hypophosphorylated tuberin at the membrane, where tuberin exerts its GTPase-activating protein (GAP) activity to repress Rheb signaling. In response to growth signals, tuberin is phosphorylated by AKT and translocates to the cytosol, relieving Rheb repression. Phosphorylation of tuberin at serines 939 and 981 does not alter its intrinsic GAP activity toward Rheb but partitions tuberin to the cytosol, where it is bound by 14-3-3 proteins. Thus, tuberin bound by 14-3-3 in response to AKT phosphorylation is sequestered away from its membrane-bound activation partner (hamartin) and its target GTPase (Rheb) to relieve the growth inhibitory effects of this tumor suppressor.  相似文献   

19.
Tuberous Sclerosis Complex (TSC) is an autosomal dominant disorder associated with mutations in TSC1, which codes for hamartin, or TSC2, which codes for tuberin. The brain is one of the most severely affected organs, and CNS lesions include cortical tubers and subependymal giant cell astrocytomas, resulting in mental retardation and seizures. Tuberin and hamartin function together as a complex in mammals and Drosophila. We report here the association of Pam, a protein identified as an interactor of Myc, with the tuberin-hamartin complex in the brain. The C terminus of Pam containing the RING zinc finger motif binds to tuberin. Pam is expressed in embryonic and adult brain as well as in cultured neurons. Pam has two forms in the rat CNS, an approximately 450-kDa form expressed in early embryonic stages and an approximately 350-kDa form observed in the postnatal period. In cortical neurons, Pam co-localizes with tuberin and hamartin in neurites and growth cones. Although Pam function(s) are yet to be defined, the highly conserved Pam homologs, HIW (Drosophila) and RPM-1 (Caenorhabditis elegans), are neuron-specific proteins that regulate synaptic growth. Here we show that HIW can genetically interact with the Tsc1.Tsc2 complex in Drosophila and could negatively regulate Tsc1.Tsc2 activity. Based on genetic studies, HIW has been implicated in ubiquitination, possibly functioning as an E3 ubiquitin ligase through the RING zinc finger domain. Therefore, we hypothesize that Pam, through its interaction with tuberin, could regulate the ubiquitination and proteasomal degradation of the tuberin-hamartin complex particularly in the CNS.  相似文献   

20.
Tuberous sclerosis is a multi-organ disorder characterized by the formation of benign tumors, called hamartomas, which affects more than 1 million people worldwide. The syndrome is initiated by a mutation in one of two tumor suppressor genes, TSC1 or TSC2, that encode for the proteins hamartin and tuberin, respectively. Herein, we demonstrate that tuberin binds and regulates the G2/M cyclin, cyclin B1. We have determined that this binding region encompasses a mutational hotspot within tuberin that is implicated in some of the most severe cases of TS. Mimicking a mutation found in a subset of patients with tuberous sclerosis, we found a significant reduction in the binding between tuberin and cyclin B1. Functionally, our data supports that tuberin plays a role in regulating the cellular localization of cyclin B1. These results demonstrate a novel and clinically relevant mechanism, where tuberin functions in mitotic onset.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号