首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Reactive oxygen species (ROS) production by an NADPH oxidase (NOX) encoded by AtrbohC/RHD2 is required for root hair growth in Arabidopsis thaliana. ROP (RHO of plants) GTPases are also required for normal root hair growth and have been proposed to regulate ROS production in plants. Therefore, the role of ROP GTPase in NOX-dependent ROS formation by root hairs was investigated. Plants overexpressing wild-type ROP2 (ROP2 OX), constitutively active (CA-rop2), or dominant negative (DN-rop2) rop2 mutant proteins were used. Superoxide formation by root hairs was detected by superoxide dismutase-sensitive nitroblue tetrazolium reduction, and ROS production in the root hair differentiation zone was detected by dihydrofluorescein diacetate oxidation. Both probes showed that ROS production was increased in ROP2 OX and CA-rop2 plants, and decreased in DN-rop2 plants, relative to wild-type plants. When CA-rop2 was expressed in the NOX loss-of-function rhd2-1 mutant, ROS formation and root hair growth were impaired, suggesting that RHD2 is required for this ROP2-dependent ROS formation.  相似文献   

2.
Root hairs play important roles in the interaction of plants with their environment. Root hairs anchor the plant in the soil, facilitate nutrient uptake from the rhizosphere, and participate in symbiotic plant-microbe interactions. These specialized cells grow in a polar fashion which gives rise to their elongated shape, a process mediated in part by a family of small GTPases known as Rops. RopGEFs (GEF, guanine nucleotide exchange factor) activate Rops to effect tip growth in Arabidopsis pollen and root hairs, but the genes mediating tip growth in legumes have not yet been characterized. In this report we describe the Rop and RopGEF gene families from the model legume Medicago truncatula and from the crop legume soybean. We find that one member of the M. truncatula gene family, MtRopGEF2, is required for root hair development because silencing this gene by RNA interference affects the cytosolic Ca2+ gradient and subcellular structure of root hairs, and reduces root hair growth. Consistent with its role in polar growth, we find that a GFP::MtRopGEF2 fusion protein localizes in the apex of emerging and actively growing root hairs. The amino terminus of MtRopGEF2 regulates its ability to interact with MtRops in yeast, and regulates its biological activity in vivo.  相似文献   

3.
Yang G  Gao P  Zhang H  Huang S  Zheng ZL 《PloS one》2007,2(10):e1074
Root hair tip growth provides a unique model system for the study of plant cell polarity. Transgenic plants expressing constitutively active (CA) forms of ROP (Rho-of-plants) GTPases have been shown to cause the disruption of root hair polarity likely as a result of the alteration of actin filaments (AF) and microtubules (MT) organization. Towards understanding the mechanism by which ROP controls the cytoskeletal organization during root hair tip growth, we have screened for CA-rop2 suppressors or enhancers using CA1-1, a transgenic line that expresses CA-rop2 and shows only mild disruption of tip growth. Here, we report the characterization of a CA-rop2 enhancer (cae1-1 CA1-1) that exhibits bulbous root hairs. The cae1-1 mutation on its own caused a waving and branching root hair phenotype. CAE1 encodes the root hair growth-related, ARM domain-containing kinesin-like protein MRH2 (and thus cae1-1 was renamed to mrh2-3). Cortical MT displayed fragmentation and random orientation in mrh2 root hairs. Consistently, the MT-stabilizing drug taxol could partially rescue the wavy root hair phenotype of mrh2-3, and the MT-depolymerizing drug Oryzalin slightly enhanced the root hair tip growth defect in CA1-1. Interestingly, the addition of the actin-depolymerizing drug Latrunculin B further enhanced the Oryzalin effect. This indicates that the cross-talk of MT and AF organization is important for the mrh2-3 CA1-1 phenotype. Although we did not observe an apparent effect of the MRH2 mutation in AF organization, we found that mrh2-3 root hair growth was more sensitive to Latrunculin B. Moreover, an ARM domain-containing MRH2 fragment could bind to the polymerized actin in vitro. Therefore, our genetic analyses, together with cell biological and pharmacological evidence, suggest that the plant-specific kinesin-related protein MRH2 is an important component that controls MT organization and is likely involved in the ROP2 GTPase-controlled coordination of AF and MT during polarized growth of root hairs.  相似文献   

4.
Fu Y  Li H  Yang Z 《The Plant cell》2002,14(4):777-794
Polar cell expansion in differentiating tissues is critical for the development and morphogenesis of plant organs and is modulated by hormonal and developmental signals, yet little is known about signaling in this fundamental process in plants. In contrast to tip-growing cells, such as pollen tubes and root hairs, cells in developing tissues are thought to expand by diffuse growth. In this study, we provide evidence that these cells expand in two phases with distinct mechanisms. In the early phase, cell expansion can occur in both longitudinal and radial or lateral directions and is mediated by Rop GTPase signaling, a mechanism known to control tip growth. The expression of a dominant-negative mutant for ROP2 (DN-rop2) inhibited polar cell expansion, whereas the expression of a constitutively active mutant (CA-rop2) caused isotropic expansion in the early phase. In the late phase, expansion occurs only in the longitudinal direction and is not affected by DN-rop2 or CA-rop2 expression. The transition from the early to the late phase coincides with the reorientation of cortical microtubules from random to transverse arrangements. Thus, cell expansion in the late phase is consistent with polar diffuse growth, in which polarity probably is defined by transverse cortical microtubules. We show that the direction of cell expansion in the early phase is associated with the localization of diffuse fine cortical F-actin in leaf epidermal cells. DN-rop2 expression specifically inhibited the formation of this F-actin, but not actin cables, whereas CA-rop2 expression caused delocalized distribution of this fine F-actin throughout the cell cortex. Furthermore, green fluorescent protein-ROP2 was localized preferentially to the cortical region of the cell, where expansion apparently occurs. These observations suggest that ROP2 control of the polar expansion of cells within tissues is analogous to the Rop control of tip growth and of tip-localized F-actin in pollen tubes and root hairs and that the tip growth mechanism also may modulate polar cell expansion in differentiating tissues.  相似文献   

5.
Cell polarity is fundamentally important to plant growth and development, yet the mechanism governing its development is understood poorly. Several studies have revealed a role for Rop GTPases in pollen polar tip growth. Rop is also localized to the future site of root hair development and the tip of root hairs, and expression of constitutively active Rop mutants impacts on the morphogenesis of tip-growing root hairs as well as on non-tip-growing cells. These findings highlight the importance of Rop as a common switch in cell polarity control in plants.  相似文献   

6.
Nuclear dynamics in root hairs, which depends upon the actin cytoskeleton, appears to be an important factor in root-hair tip growth. Previous evidence suggests that there is an absolute requirement for the nucleus to be a fixed distance from the growing root-hair tip for tip growth to proceed. To test this hypothesis, nuclear dynamics were examined in root-hair cells bearing multiple root hairs. The majority of root-hair cells of transgenic plants overexpressing the ROP2 GTPase (ROP2 OX) bear multiple root hairs. Simultaneous and sustained fast tip growth occurred in multiple root hairs of ROP2 OX, with the continual presence of tip-localized cytoplasm in these growing hairs. Nuclear dynamics were imaged in ROP2 OX by co-expressing a transgene encoding a nuclear localization signal (NLS)-green fluorescent protein (GFP) fusion protein. The nucleus was in continual proximity to one of the growing root-hair tips, whilst the other tip elongated at a similar rate but in the absence of the nucleus from the shank of that root hair. To test whether this phenomenon was an artefact of ROP2 overexpression, nuclear dynamics were examined in wild-type and NLS-GFP transgenic plants. Multiple root hairs on the same cell underwent simultaneous and sustained fast tip growth, with the nucleus lying deep within the shank of only one of these hairs. The nucleus was also moved into the root-hair tip during the severe root-hair tip branching which is characteristic of ROP2 OX transgenic plants. These results suggest that fast tip growth can proceed in some multiple root hairs at extreme distances from the nucleus.  相似文献   

7.
Root hairs develop as long extensions from root epidermal cells. After the formation of an initial bulge at the distal end of the epidermal cell, the root hair structure elongates by tip growth. Because root hairs are not surrounded by other cells, root hair formation provides an excellent system for studying the highly complex process of plant cell growth. Pharmacological experiments with actin filament-interfering drugs have provided evidence that the actin cytoskeleton is an important factor in the establishment of cell polarity and in the maintenance of the tip growth machinery at the apex of the growing root hair. However, there has been no genetic evidence to directly support this assumption. We have isolated an Arabidopsis mutant, deformed root hairs 1 (der1), that is impaired in root hair development. The DER1 locus was cloned by map-based cloning and encodes ACTIN2 (ACT2), a major actin of the vegetative tissue. The three der1 alleles develop the mutant phenotype to different degrees and are all missense mutations, thus providing the means to study the effect of partially functional ACT2. The detailed characterization of the der1 phenotypes revealed that ACT2 is not only involved in root hair tip growth, but is also required for correct selection of the bulge site on the epidermal cell. Thus, the der1 mutants are useful tools to better understand the function of the actin cytoskeleton in the process of root hair formation.  相似文献   

8.
Root hairs develop from bulges on root epidermal cells and elongate by tip growth, in which Golgi vesicles are targeted, released and inserted into the plasma membrane on one side of the cell. We studied the role of actin in vesicle delivery and retention by comparing the actin filament configuration during bulge formation, root hair initiation, sustained tip growth, growth termination, and in full-grown hairs. Lipochito-oligosaccharides (LCOs) were used to interfere with growth ( De Ruijter et al . 1998 , Plant J. 13, 341–350), and cytochalasin D (CD) was used to interfere with actin function. Actin filament bundles lie net-axially in cytoplasmic strands in the root hair tube. In the subapex of growing hairs, these bundles flare out into fine bundles. The apex is devoid of actin filament bundles. This subapical actin filament configuration is not present in full-grown hairs; instead, actin filament bundles loop through the tip. After LCO application, the tips of hairs that are terminating growth swell, and a new outgrowth appears from a site in the swelling. At the start of this outgrowth, net-axial fine bundles of actin filaments reappear, and the tip region of the outgrowth is devoid of actin filament bundles. CD at 1.0 μ m , which does not affect cytoplasmic streaming, does not inhibit bulge formation and LCO-induced swelling, but inhibits initiation of polar growth from bulges, elongation of root hairs and LCO-induced outgrowth from swellings. We conclude that elongating net-axial fine bundles of actin filaments, which we call FB-actin, function in polar growth by targeting and releasing Golgi vesicles to the vesicle-rich region, while actin filament bundles looping through the tip impede vesicle retention.  相似文献   

9.
Two recessive mutant alleles at CAN OF WORMS1 (COW1), a new locus involved in root hair morphogenesis, have been identified in Arabidopsis thaliana L. Heynh. Root hairs on Cow1- mutants are short and wide and occasionally formed as pairs at a single site of hair formation. The COW1 locus maps to chromosome 4. Root hairs on Cow1- plants form in the usual positions, suggesting that the phenotype is not the result of abnormal positional signals. Root hairs on Cow1- roots begin hair formation normally, forming a small bulge, or root hair initiation site, of normal size and shape and in the usual position on the hair-forming cell. However, when Cow1- root hairs start to elongate by tip growth, abnormalities in the shape and elongation rate of the hairs become apparent. Genetic evidence from double-mutant analysis of cow1-1 and other loci involved in root hair development supports our conclusion that COW1 is required during root hair elongation.  相似文献   

10.
The root hairs of plants are tubular projections of root epidermal cells and are suitable for investigating the control of cellular morphogenesis. In wild-typeArabidopsis thaliana (L.) Heynh, growing root hairs were found to exhibit cellular expansion limited to the apical end of the cell, a polarized distribution of organelles in the cytoplasm, and vesicles of several types located near the growing tip. Therhd3 mutant produces short and wavy root hairs with an average volume less than one-third of the wild-type hairs, indicating abnormal cell expansion. The mutant hairs display a striking reduction in vacuole size and a corresponding increase in the relative proportion of cytoplasm throughout hair development. Bead-labeling experiments and ultrastructural analyses indicate that the wavy-hair phenotype of the mutant is caused by asymmetric tip growth, possibly due to abnormally distributed vesicles in cortical areas flanking the hair tips. It is suggested that a major effect of therhd3 mutation is to inhibit vacuole enlargement which normally accompanies root hair cell expansion.  相似文献   

11.
Hypaphorine, the major indolic compound isolated from the ectomycorrhizal fungus Pisolithus tinctorius, controls the elongation rate of root hairs. At inhibitory concentrations (100 μM), hypaphorine induced a transitory swelling of root hair tips of Eucalyptus globulus Labill. ssp. bicostata. When the polar tip growth resumed, a characteristic deformation was still visible on elongating hairs. At higher hypaphorine concentrations (500 μM and greater), root hair elongation stopped, only 15 min after application. However, root hair initiation from trichoblasts was not affected by hypaphorine. Hypaphorine activity could not be mimicked by related molecules such as indole-3-acetic acid (IAA) or tryptophan. While IAA had no activity on root hair elongation, IAA was able to restore the tip growth of root hairs following inhibition by hypaphorine. These results suggest that hypaphorine and endogenous IAA counteract in controlling root hair elongation. During ectomycorrhiza development, the absence of root hairs might be due in part to fungal release of molecules, such as hypaphorine, that inhibit the elongation of root hairs. Received: 27 October 1999 / Accepted: 14 March 2000  相似文献   

12.
The Rop GTPase switch controls multiple developmental processes in Arabidopsis   总被引:21,自引:0,他引:21  
Li H  Shen JJ  Zheng ZL  Lin Y  Yang Z 《Plant physiology》2001,126(2):670-684
G proteins are universal molecular switches in eukaryotic signal transduction. The Arabidopsis genome sequence reveals no RAS small GTPase and only one or a few heterotrimeric G proteins, two predominant classes of signaling G proteins found in animals. In contrast, Arabidopsis possesses a unique family of 11 Rop GTPases that belong to the Rho family of small GTPases. Previous studies indicate that Rop controls actin-dependent pollen tube growth and H(2)O(2)-dependent defense responses. In this study, we tested the hypothesis that the Rop GTPase acts as a versatile molecular switch in signaling to multiple developmental processes in Arabidopsis. Immunolocalization using a general antibody against the Rop family proteins revealed a ubiquitous distribution of Rop proteins in all vegetative and reproductive tissues and cells in Arabidopsis. The cauliflower mosaic virus 35S promoter-directed expression of constitutively active GTP-bound rop2 (CA-rop2) and dominant negative GDP-bound rop2 (DN-rop2) mutant genes impacted many aspects of plant growth and development, including embryo development, seed dormancy, seedling development, lateral root initiation, morphogenesis of lateral organs in the shoot, shoot apical dominance and growth, phyllotaxis, and lateral organ orientation. The rop2 transgenic plants also displayed altered responses to the exogenous application of several hormones, such as abscisic acid-mediated seed dormancy, auxin-dependent lateral shoot initiation, and brassinolide-mediated hypocotyl elongation. CA-rop2 and DN-rop2 expression had opposite effects on most of the affected processes, supporting a direct signaling role for Rop in regulating these processes. Based on these observations and previous results, we propose that Rop2 and other members of the Rop family participate in multiple distinct signaling pathways that control plant growth, development, and responses to the environment.  相似文献   

13.
Root hairs elongate in a highly polarized manner known as tip growth. Overexpression of constitutively active Rho of Plant (ROP)/RAC GTPases mutants induces swelling of root hairs. Here, we demonstrate that Atrop11CA‐induced swelling of root hairs depends on the composition of the growth medium. Depletion of ammonium allowed normal root hair elongation in Atrop11CA plants, induced the development of longer root hairs in wild‐type plants and suppressed the effect of Atrop11CA expression on actin organization and reactive oxygen species distribution, whereas membrane localization of the protein was not affected. Ammonium at concentrations higher than 1 mM and the presence of nitrate were required for induction of swelling. Oscillations in wall and cytoplasmic pH are known to accompany tip growth in root hairs, and buffering of the growth medium decreased Atrop11CA‐induced swelling. Fluorescence ratio imaging experiments revealed that in wild‐type root hairs, the addition of NH4NO3 to the growth medium induced an increase in the amplitude of extracellular and intracellular pH oscillations and an overall decrease in cytoplasmic pH at the cell apex. Based on these results, we suggest a model in which ROP GTPases and nitrogen‐dependent pH oscillations function in parallel pathways, creating a positive feedback loop during root hair growth.  相似文献   

14.
Phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2] functions as a site-specific signal on membranes to promote cytoskeletal reorganization and membrane trafficking. Localization of PtdIns(4,5)P2 to apices of growing root hairs and pollen tubes suggests that it plays an important role in tip growth. However, its regulation and mode of action remain unclear. We found that Arabidopsis thaliana PIP5K3 (for Phosphatidylinositol Phosphate 5-Kinase 3) encodes a phosphatidylinositol 4-phosphate 5-kinase, a key enzyme producing PtdIns(4,5)P2, that is preferentially expressed in growing root hairs. T-DNA insertion mutations that substantially reduced the expression of PIP5K3 caused significantly shorter root hairs than in the wild type. By contrast, overexpression caused longer root hairs and multiple protruding sites on a single trichoblast. A yellow fluorescent protein (YFP) fusion of PIP5K3, driven by the PIP5K3 promoter, complemented the short-root-hair phenotype. PIP5K3-YFP localized to the plasma membrane and cytoplasmic space of elongating root hair apices, to growing root hair bulges, and, notably, to sites about to form root hair bulges. The signal was greatest in rapidly growing root hairs and quickly disappeared when elongation ceased. These results provide evidence that PIP5K3 is involved in localizing PtdIns(4,5)P2 to the elongating root hair apex and is a key regulator of the machinery that initiates and promotes root hair tip growth.  相似文献   

15.
The polarized growth of cells as diverse as fungal hyphae, pollen tubes, algal rhizoids and root hairs is characterized by a highly localized regulation of cell expansion confined to the growing tip. In apically growing plant cells, a tip-focused [Ca2+]c gradient and the cytoskeleton have been associated with growth. Although actin has been established to be essential for the maintenance of elongation, the role of microtubules remains unclear. To address whether the microtubule cytoskeleton is involved in root hair growth and orientation, we applied microtubule antagonists to root hairs of Arabidopsis. In this report, we show that depolymerizing or stabilizing the microtubule cytoskeleton of these apically growing root hairs led to a loss of directionality of growth and the formation of multiple, independent growth points in a single root hair. Each growing point contained a tip-focused gradient of [Ca2+]c. Experimental generation of a new [Ca2+]c gradient in root hairs pre-treated with microtubule antagonists, using the caged-calcium ionophore Br-A23187, was capable of inducing the formation of a new growth point at the site of elevated calcium influx. These data indicate a role for microtubules in regulating the directionality and stability of apical growth in root hairs. In addition, these results suggest that the action of the microtubules may be mediated through interactions with the cellular machinery that maintains the [Ca2+]c gradient at the tip.  相似文献   

16.
To investigate the configuration and function of microtubules (MTs) in tip-growing Medicago truncatula root hairs, we used immunocytochemistry or in vivo decoration by a GFP linked to a MT-binding domain. The two approaches gave similar results and allowed the study of MTs during hair development. Cortical MTs (CMTs) are present in all developmental stages. During the transition from bulge to a tip-growing root hair, endoplasmic MTs (EMTs) appear at the tip of the young hair and remain there until growth arrest. EMTs are a specific feature of tip-growing hairs, forming a three-dimensional array throughout the subapical cytoplasmic dense region. During growth arrest, EMTs, together with the subapical cytoplasmic dense region, progressively disappear, whereas CMTs extend further toward the tip. In full-grown root hairs, CMTs, the only remaining population of MTs, converge at the tip and their density decreases over time. Upon treatment of growing hairs with 1 microM oryzalin, EMTs disappear, but CMTs remain present. The subapical cytoplasmic dense region becomes very short, the distance nucleus tip increases, growth slows down, and the nucleus still follows the advancing tip, though at a much larger distance. Taxol has no effect on the cytoarchitecture of growing hairs; the subapical cytoplasmic dense region remains intact, the nucleus keeps its distance from the tip, but growth rate drops to the same extent as in hairs treated with 1 microM oryzalin. The role of EMTs in growing root hairs is discussed.  相似文献   

17.
极性生长是植物生长发育中的常见现象,但囊泡运输与极性生长的关系还未完全明确。花粉管和根毛是植物细胞极性生长的典型模式。早期研究显示NtGNL1(Nicotiana tabacum GNOM-LIKE 1)通过调节囊泡的后高尔基体转运来影响烟草的花粉管生长。本文以NtGNL1 RNAi转基因植株为材料,研究NtGNL1基因在根毛生长中的作用。结果表明,NtGNL1 RNAi转基因植株的根毛生长明显滞后于野生型,且其根毛出现膨大、弯折、扭曲等形态,与NtGNL1 RNAi转基因植株的花粉管异常形态类似。q RT-PCR检测RNAi转基因株系根毛中PIN1、PIN2、GL2、ROP6、RHD6基因的m RNA表达量,显示PIN2和GL2的表达量显著下调,PIN1、ROP6和RHD6的表达量变化不明显。FM4-64染色表明烟草根表皮细胞和根毛的囊泡分布都受到影响,即NtGNL1基因也影响根毛中的囊泡运输。BFA处理加剧了囊泡的聚集程度,提示根毛尖端还存在其它对BFA敏感并调控囊泡运输的基因。以上证据显示,NtGNL1基因通过囊泡运输途径影响烟草根毛的极性生长,NtGNL1基因的表达下调也影响了PIN2和GL2的表达,从而间接影响根毛的极性生长。  相似文献   

18.
A member of the cellulose synthase-like (subfamily D) gene family of Arabidopsis, AtCSLD3, has been identified by T-DNA tagging. The analysis of the corresponding mutant, csld3-1, showed that the AtCSLD3 gene plays a role in root hair growth in plants. Root hairs grow in phases: First a bulge is formed and then the root hair elongates by polarized growth, the so-called "tip growth." In the mutant, root hairs were initiated at the correct position and grew into a bulge, but their elongation was severely reduced. The tips of the csld3-1 root hairs easily leaked cytoplasm, indicating that the tensile strength of the cell wall had changed at the site of the tip. Based on the mutant phenotype and the functional conservation between CSLD3 and the genuine cellulose synthase proteins, we hypothesized that the CSLD3 protein is essential for the synthesis of polymers for the fast-growing primary cell wall at the root hair tip. The distinct mutant phenotype and the ubiquitous expression pattern indicate that the CSLD3 gene product is only limiting at the zone of the root hair tip, suggesting particular physical properties of the cell wall at this specific site of the root hair cell.  相似文献   

19.
20.
Membrane trafficking and cytoskeletal dynamics are important cellular processes that drive tip growth in root hairs. These processes interact with a multitude of signaling pathways that allow for the efficient transfer of information to specify the direction in which tip growth occurs. Here, we show that AGD1, a class I ADP ribosylation factor GTPase-activating protein, is important for maintaining straight growth in Arabidopsis (Arabidopsis thaliana) root hairs, since mutations in the AGD1 gene resulted in wavy root hair growth. Live cell imaging of growing agd1 root hairs revealed bundles of endoplasmic microtubules and actin filaments extending into the extreme tip. The wavy phenotype and pattern of cytoskeletal distribution in root hairs of agd1 partially resembled that of mutants in an armadillo repeat-containing kinesin (ARK1). Root hairs of double agd1 ark1 mutants were more severely deformed compared with single mutants. Organelle trafficking as revealed by a fluorescent Golgi marker was slightly inhibited, and Golgi stacks frequently protruded into the extreme root hair apex of agd1 mutants. Transient expression of green fluorescent protein-AGD1 in tobacco (Nicotiana tabacum) epidermal cells labeled punctate bodies that partially colocalized with the endocytic marker FM4-64, while ARK1-yellow fluorescent protein associated with microtubules. Brefeldin A rescued the phenotype of agd1, indicating that the altered activity of an AGD1-dependent ADP ribosylation factor contributes to the defective growth, organelle trafficking, and cytoskeletal organization of agd1 root hairs. We propose that AGD1, a regulator of membrane trafficking, and ARK1, a microtubule motor, are components of converging signaling pathways that affect cytoskeletal organization to specify growth orientation in Arabidopsis root hairs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号