首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
GANGLIOSIDE ABNORMALITIES IN MULTIPLE SCLEROSIS   总被引:6,自引:6,他引:0  
Abstract— Gangliosides were isolated from plaque tissue and normal appearing white matter of multiple sclerosis (MS) brain. All four plaques showed decreased ganglioside concn relative to normal human white matter on a wet wt basis, but significant elevation in terms of dry wt. The wet wt and dry wt concn of MS white matter gangliosides showed smaller but statistically significant decreases below normal. Thin-layer patterns of the plaques showed several departures from normal white matter, including decrease of G4 and G5, and complete loss of G7 (sialosylgalactosylceramide). Most of the plaques had significant elevation of G2A and G3A along with increases of the slower-migrating polysialogangliosides. An additional ganglioside was present between G2 and G2A which was not seen in normal white matter. The TLC pattern of MS white matter gangliosides was essentially normal. The evidence for a general decrease of acidic lipids within normal appearing white matter is discussed.  相似文献   

2.
Abstract— The pathway of biosynthesis of N -acetylgalactosamine-containing gangliosides in mouse neuroblastoma has been studied using NB41A cells grown in monolayer tissue culture. Cell-free enzyme preparations catalyzed the transfer of NeuNAc from CMP-NeuNAc to lactosylceramide (GL-2a), to form GM3. Asialo-GM2 was neither an acceptor nor a competitive inhibitor of the sialyltransferase (CMP-NeuNAc: GL-2a N-acetylneuraminyltransferase, EC 2.4.99.-) under a variety of experimental conditions. Enzyme preparations also contained an N -acetylgalactosaminyltransferase (UDP-GalNAc. GM3 N -acetylgalactosaminyltransferase, EC 2.4.1.-) which catalyzed the conversion of GM3 to GM2. No significant transfer of N -acetylgalactosamine to GL-2a could be demonstrated. The results of the glycosyltransferase assays support the concept that the first NeuNAc of brain gangliosides is introduced into GL-2a. The present data suggests that the occurrence of asialo-GM2 in NB41A cells under some culture conditions is a consequence of the catabolism of higher gangliosides.  相似文献   

3.
THE EFFECT OF DEVELOPMENT ON THE GANGLIOSIDES OF RAT AND PIG BRAIN   总被引:10,自引:8,他引:2  
Abstract— The ganglioside content of the forebrain, brain stem and cerebellum have been studied, in the rat at various ages from 1 day to 27 months, and in the pig at various ages from 93 days gestation to 30 months. Each part of the brain was analysed for total ganglioside NANA and for four major gangliosides (GMl, GD1a, GDlb and GT1 in the nomenclature of S vennerholm , 1963). In the rat forebrain, the concentration of ganglioside NANA rose rapidly between 1 and 21 days after birth, fell to 3 months and subsequently rose to a mature value at 6 months. In the rat cerebellum, the peak concentration was reached at 2 months and the lower adult value at 9 months, whilst in the brain stern, the concentration rose more slowly and had a broad peak from 15 days to 2 months. Values are also given for the changes in the total amounts in each brain part. The changes in the concentrations and total amounts of ganglioside NANA, in the three parts of the pig brain were, on the whole, similar to those in rat brain except that the percentage distribution of the major gangliosides had almost attained the mature pattern at birth. In the forebrain of both species, the disialoganglioside, GD1a, accounted for the highest percentage of the total gangliosides. The results are discussed with respect to their possible structural significance.  相似文献   

4.
Abstract— Gangliosides were isolated from purified human myelin in a yield of 62 μg of lipid-bound sialic acid per 100 mg of dry myelin. Sialosylgalactosyl ceramide (G7) was found to be a major component of the ganglioside fraction, amounting to 15 per cent of the total sialic acid. It accounted for 10 per cent of lipid-bound sialic acid in adult human white matter, making it the third most abundant ganglioside on a molar basis. These results were obtained with an improved method for isolating total gangliosides in high yield, by employing DEAE-Sephadex column chromatography. Myelin from other mammalian species had considerably less G7, and there were also indications of maturational changes. Both 2-hydroxy and unsubstituted fatty acids were components of the ceramide unit, in a ratio of 3:2, respectively. The overall fatty acid pattern was very similar to that for myelin cerebroside and sulphatide. Long-chain bases included only C18 species, with sphingosine predominating (>90 per cent). These observations suggest a metabolic relationship between G7 and either cerebroside or sulphatide.  相似文献   

5.
Abstract: Rat glioma mouse neuroblastoma hybrid neurotumor cells (NG108-15), synchronized by amino acid deprivation, showed a cell-cycle-dependent peak of activity of a ganglioside N-acetylgalactosaminyl transferase 14-24 h following release from the cell cycle block (S/G2 phase). Maximal expression of two typical lysosomal hydrolases, N-acetyl-β-hexosaminidase and β-galactosidase, occurred between 18 and 21 h following release (S phase), declining to G1 phase levels during the peak of N-acetylgalactosamine (GalNAc) transferase activity. In addition, glycosyltransferase activity in G2 phase cells showed an increase in apparent Vmax (suggesting the presence of more enzyme/mg of cell protein) and apparent binding affinity for uridine diphosphate N-acetylgalactosamine (UDP-GalNAc) (32 versus 14 M) when compared to transferase activity in the G1 phase. However, the opioid peptide enkephalin [D-Ala2, o-Leu5], which inhibits ganglioside GalNAc transferase activity in unsynchronized NG108-15 cultures, was much more inhibitory in whole cells 8 h after release from the cell cycle block (G1 phase) than in cells 20 h after release (G, phase), with 50% inhibition occurring at 2 ± 10-9M and 2 ± 10-7M, respectively. These results suggest that the GalNAc transferase activity is regulated in more than one way during the cell cycle, since both Vmax and Km changes are observed, and that the cyclic AMP-dependent mechanism by which opiates reduce transferase activity is receptor mediated and cell cycle dependent.  相似文献   

6.
Abstract— An analysis of the [3H]DFP-labelled catalytic subunits of mammalian (bovine SCG) acetylcholinesterase (AChE, EC 3.1.1.7.) indicates a monomer molecular weight of 75,000. This is equivalent to the mass previously determined for the smallest active form and demonstrates that the globular, or G forms, are respectively monomeric (G1 form, 4S), dimeric (G2 form, 6.5S) and tetrameric (G4 form, 10S). In the tetrameric G4 form the catalytic chains are associated in dimers, by disulphide bonds.
The effect of reduction and proteolysis has shown that the dimeric form (G2 form, 6.5S) is readily reduced into G1, while the tetramer G4 is very stable, being only dissociated by a combination of reduction and proteolysis by high concentration of trypsin. The asymmetric forms A12 (16S), A8 (13S) and A4 (9S) are not sensitive to reduction, but are readily dissociated by low concentrations of trypsin, into each other, progressively liberating isolated tetramers. We obtained essentially identical results with AChE preparations from rat brain or superior cervical ganglion. These observations support a general model for the quaternary structure of acetylcholinesterase molecular forms.  相似文献   

7.
Abstract: The distribution of gangliosides was studied in the weaver ( wv/wv ) mutant mouse, where the vast majority of postmitotic granule cell neurons die prior to their differentiation. The wv mutation also shows a dosage effect, as granule cell migration is slowed or retarded in the + /wv heterozygotes. By correlating changes in ganglioside composition with the well-documented histological events that occur during cerebellar development in the normal (+/+), heterozygous ( +/wv ), and weaver ( wv/ wv ) mutant mice, information was obtained on the cellular localization and function of gangliosides. Ganglioside GM1 may be enriched in granule cell growth cones and play an important role in neurite outgrowth. A striking accumulation of GM1, which may result from altered metabolism, occurred in the adult wvlwv mice. GD3 was heavily concentrated in undifferentiated granule cells, but was rapidly displaced by the more complex gangliosides during differentiation. GD1a became enriched in granule cells during formation of synaptic and dendritic membranes, whereas GT1a appeared enriched in Purkinje cell synaptic spines. A possible fucose-containing ganglioside was quantitated only in the wvlwv mice. Ganglioside GT1b became enriched in granule cells during synaptogenesis, whereas GQ1b became enriched in these cells after synaptogenesis. The concentrations of GT1b and especially GQ1b increased continuously with age. Our results provide further evidence for a differential cellular enrichment of gangliosides in the mouse cerebellum and also suggest that certain gangliosides may be differentially distributed within the membranes of these cells at various stages of development.  相似文献   

8.
Abstract— The lipid composition of chick brain and sciatic nerve was determined during development. It was confirmed that the addition of CaCl2 to solvents during the extraction of lipids from brain results in much higher yields of diphosphoinositides particularly from unmyelinated embryo brain. Unlike the earlier report for rat brain, the recovery of triphosphoinositides was also Substantially increased. The amount of CaCl2, required to achieve optimal recoveries decreased with increasing age and addition of more than this optimal amount depressed the yields of polyphosphoinositides, particularly triphosphoinositides. CaCl2, addition did not improve the yield of diphosphoinositides from sciatic nerve of any age but drastically reduced recovery of triphosphoinositidcs. Differenccs in the effect of CaCl2 were not the result of variation in the tissue concentrations of calcium or magnesium.
The lipid composition of sciatic nerve closely reflected that of the myelin. Both polyphosphoinositides were absent initially and their accumulation paralleled that of cerebrosides and sulfatides. The concentration of diphosphoinositides remained constant after the period of most active myelination while triphosphoinositides and the galactolipids continued to increase suggesting maturational changes in the myelin composition. The pattern of deposition in chick brain was similar except for the much greater contribution of non-myelin structures. Both polyphosphoinositides were present in equimolar amounts in pre-myelination embryonic tissue. The concentration of diphosphoinositides increased during active myelination only while triphosphoinositides continued to increase thereafter.  相似文献   

9.
Actinomycin D (0.5 μg/ml) did not prevent M stage cells from entering G1 stage, but blocked their progress from G1 to S stage. The position of the block was approximately 1.4 hr before S stage or just after the beginning of G1 stage. Actinomycin D in this concentration also significantly depressed uridine-3H uptake into G1 stage cells, but did not suppress leucine-3H uptake by M and G1 cells. This suggests that some proteins may be synthesized in M and G1 stage cells by messenger RNA left over from the previous cell cycle. However, entry of G1 cells into S stage would require synthesis of new messenger RNA near the beginning of G1 stage. Puromycin (10 μg/ml) did not prevent M cells from entering G1 stage, but blocked their progress from G1 to S stage. The site of blockage was about 0.7 hr before S stage or in the first two-third of G1 stage. This might be the site where the cells synthesize new G1 proteins necessary for entry to S stage.
Comparison of sensitivities of G1 and G2 stages to the two antibiotics reveals that the puromycin sensitivity of G1 cells was similar to that of G2 cells, but the actinomycin D sensitivity of G1 was greater than that of G2 cells.  相似文献   

10.
EFFECT OF DEVELOPMENT ON THE GANGLIOSIDES OF HUMAN BRAIN   总被引:9,自引:7,他引:2  
Abstract— The ganglioside content and composition of brains from twenty-five human fetuses, three new-born babies and ten children, were studied. The ages ranged from 13 weeks gestation to 26 months postpartum. Each brain was divided into forebrain. cerebellum and brain stem. The concentration of total gangliosides rose to a plateau at different stages of development in the different parts, whereas the total amount reached a constant value at 9 months of age in each part. The developmental profile of individual gangliosides differed in the different parts of the brain. Thus, in the forebrain GD1a. and in the cerebellum GD1a rose to become the major gangliosides. The brain stem showed little change in its ganglioside pattern during the developmental period studied. The possible significance of these charges in the gangliosides during development is discussed.  相似文献   

11.
Abstract— Gangliosides were isolated from myelin prepared from mouse brains of different ages (23 to 490 days). Quantitative estimation of lipid-bound sialic acid levels indicated a gradual increase from 560 μg/g of myelin at 23 days to about 1200 μg/g of myelin at older ages. The major ganglioside in all myelin preparations was the monosialoganglioside G4 (GM1). However, considerable amounts of di- and trisialo species also were found in myelin from young animals. In contrast to human myelin in which the monosialoganglioside, sialosylgalactosylceramide (G7) was highly enriched (L edeen et al. , 1973), a much smaller enrichment of this ganglioside was noticed in mouse brain myelin. Ganglioside G7 was not detectable in myelin until the animals were 35 days old, and showed a slight increase with increasing age after that. The results strongly indicated that the concentration of G7 in myelin is species specific and age dependent. The study also demonstrated that the ganglioside accretion in developing mouse brain myelin was attributable to the enrichment of monosialogangliosides G4 (GM1), G5 (GM2) and G7 at the expense of polysialogangliosides.  相似文献   

12.
The duration of the mitotic cycle and of its components was analysed for each of the six successive generations of differentiating spermatogonia (A1, A2, A3, A4, intermediate and B), using radioautographed whole mounts of seminiferous tubules from testes of adult Sprague-Dawley rats. Cell cycles were determined from two successive waves of per cent labeled metaphases obtained during the period of 81 hr after a single dose of 3H-thymidine. Except for the A1 spermatogonia, all spermatogonial types (A2 to B) had similar cell cycle durations of 41-42.5 hr and comparable pre-DNA synthesis phases (G1) of 11-13 hr. Although the combined duration of DNA synthesis (S) and the post-synthesis phase (G2) remained identical for all the cell types including A1, there was a progressive lengthening of the S period at the expense of G2 during the process of spermatogonial maturation. This change was most marked during the transition from A1 to A3 spermatogonia when the S period increased from 14 hr to 21 hr, and the G2 phase shortened from 13 hr to 7.5 hr. This feature seems to be unique to germ cells and may be associated with an increasing amount of heterochromatin in the nucleus. Excluding the development of type A1 cells, the entire process of spermatogonial maturation lasted for 208 hr. Combined data on cell cycle times indicated that every 313 hr or 13 days, a new sequence of spermatogonial differentiation was initiated by the A1 cells. This was equivalent to the duration of one 'cycle' of the seminiferous epithelium as measured by other techniques.  相似文献   

13.
Myelin Gangliosides in Vertebrates   总被引:3,自引:3,他引:0  
Abstract: A phylogenetic survey of brain myelin ganglioside patterns and concentrations has been carried out on 16 vertebrate species. Gangliosides were isolated from purified myelin and found to vary in concentration from 25 μg of sialic acid per 100 mg of myeh for goldfish to a value of 395 for turkey. The latter species had approximately equivalent amounts of GM1 and GM4 as the two major gangliosides. The 11 mammals studied all had GM1 as the major ganglioside, with variable amounts of GM4; rhesus monkey and human had 20-25% GM4, whereas the others had less than 10%. Amphibia and fish myelin contained the least total ganglioside, with patterns that showed relatively little GM1 and no detectable GM4. Alligator myelin was unique in having a total concentration as high as the avian species, but a pattern with predominantly diand trisialo gangliosides.  相似文献   

14.
Cytophotometric determination of single-cell DNA after repeated 3H-thymidine labelling of the JB-1 ascites tumour in the plateau phase of growth showed a massive accumulation of unlabelled cells with both G1 and G2 content. Autoradiography combined with cytophotometry or colcemid block demonstrated that some of these unlabelled cells were rapidly triggered into the cell cycle when plateau tumours were transferred to new hosts. This indicated that tumour cells may be held up in non-cycling stages corresponding to both the G1 and the G2 phase of the cell cycle.  相似文献   

15.
Single-celled protonemata of the fern Adiantum capillus-veneris, kept under continuous red light, grew with a very low rate of cell division, and the cell cycle was arrested in the early G1 phase. Cell division was induced by transferring the protonemata to the dark after various light treatments, and the duration of component phases in the cell cycle was determined by a continuous-labelling technique with 3H-thymidine. Blue light irradiation greatly reduced the duration of the G1 phase but did not affect that of other phases. The greater the fluence of blue light, the shorter was the duration of G1 phase was observed. In contrast, a brief exposure of red-light-grown protonemata to far-red light given immediately before the dark incubation showed no effect on the duration of G1 S and M phases but significantly extended that of the G2 phase. The effect of far-red light on the G2 phase was reversed by red light, and the effects of red and far-red light were repeatedly reversible. The progression in the M phase was shown by means of a time-lapse video system to be not at all influenced by any pre-irradiation described above.  相似文献   

16.
Abstract— —Continuous cell lines, primary cell cultures derived from embryonic CNS, and homogenates made from adult and embryonic CNS were compared with respect to their lipid pattern and their ability to bind 125I-labelled tetanus toxin. In parallel experiments de novo synthesis of gangliosides in the cell lines was studied, using [14C]glucosamine as precursor. Of the total lipid only gangliosides were specifically labelled by [14C]glucosamine. The patterns of the de novo synthesized gangliosides corresponded to those present in the respective cells.
Pronounced binding of 125I-labelled toxin was only detectable in tissues containing long-chain gangliosides (ganglioside C which represents GDIb and GTI).
Accordingly, hybrid (neuroblastoma x glioma) cells, due to their lack of long-chain gangliosides, bound just-discernible amounts of labelled toxin. When previously exposed to gangliosides, their binding of tetanus toxin tremendously increased.
It was concluded that only the long-chain gangliosides in the neuronal cells are functionally involved in the binding of the tetanus toxin and that these acceptors of tetanus toxin can be transplanted.  相似文献   

17.
We previously observed that gangliosides GM2, GM1, and GM3 inhibit Ca2+-uptake via the sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) in neurons and in brain microsomes. We now systematically examine the effect of various gangliosides and their analogs on Ca2+-uptake via SERCA and demonstrate that an exposed carboxyl group on the ganglioside sialic acid residue is required for inhibition. Thus, asialo-GM2 and asialo-GM1 have no inhibitory effect, and modifications of the carboxyl group of GM1 and GM2 into a hydroxymethyl residue (CH2OH), a methyl ester (COOCH3) or a taurine-conjugated amide (CONHCH2CH2SO3H) drastically diminish their inhibitory activities. We also demonstrate that the saccharides must be attached to a ceramide backbone in order to inhibit SERCA as the ceramide-free ganglioside saccharides only inhibit SERCA to a minimal extent. Finally, we attempted to use the ceramide-free ganglioside saccharides to antagonize the effects of the gangliosides on SERCA; although some reversal was observed, the inhibitory effects of the gangliosides were not completely abolished.  相似文献   

18.
GANGLIOSIDE COMPOSITION AND CONTENT OF RAT-BRAIN SUBCELLULAR FRACTIONS   总被引:4,自引:3,他引:1  
Abstract— The composition and content of gangliosides from rat-brain microsomal, synaptosomal, mitochondrial and myelin fractions were studied. Outer membranes of synaptosomes were also isolated, separated into subfractions and investigated. Of all the fractions studied the outer membranes of synaptosomes are richest in gangliosides, in one of their sub-fractions the concentration of gangliosides per mg of protein is five times higher than in the homogenate. Microsomes are rich in gangliosides as well, but to a lesser degree, whereas the mitochondrial fraction contains considerably smaller amounts of gangliosides per mg of protein than does the homogenate. The ganglioside pattern of outer membranes of synaptosomes and of their subfractions is somewhat different from that of the homogenate; the outer membranes contain approximately one-third less monosialogangliosides. On the contrary a very high content of monosialogangliosides is characteristic of the ganglioside pattern of the myelin fraction. In this fraction monosialoganglioside GMI (nomenclature of Svennerholm, 1963) constitutes 60–63 per cent of ganglioside sialic acid, or 75–80 molar per cent of gangliosides, the content of di- and trisialogangliosides being much lower than in other fractions. Fatty acid and long chain base composition of gangliosides from synaptosomal and microsomal fractions and homogenate is very similar, almost identical. In gangliosides from myelin fractions the relaitve content of palmitic and monoenoic acids is higher and that of arachinic acid and C20-sphingosine—lower than in other fractions studied. The difference in ganglioside composition of synaptosomes and their outer membranes and on the other hand of myelin appears to reflect the difference in ganglioside composition of neuronal and oligodendroglial plasma membranes.  相似文献   

19.
Abstract: The present study examined myelin gangliosides in the developing offspring of rats that were pair-fed control or ethanol liquid diets prior to and during gestation. Between 17 and 31 days of age, we observed an increase in the proportion of GM1 in myelin (from 15% to 38% of ganglioside sialic acid) and a decrease in the proportion of GT1b (from 26% to 4%). GM4 was detected at all ages examined. Between 17 and 31 days of age, there was an increase in the proportion of N -acetylman-nosamine-derived radioactivity associated with GM1 (from 16% to 22%) and GM4 (from 5% to 13%), and a decrease in that associated with GT1b (from 24% to 4%). Small, but sygnificant (p < 0.05), developmentally related differences were found in GD2 and GD3. Detection of GM4 in myelin of young rats in the present study appears to depend on the use of nonpartitioning methods of ganglioside extraction. Although the distribution of myelin gangliosides and radioactivity was near-normal in ethanol-treated pups, there was a consistent decrease in the proportion and radioactivity associated with the major myelin ganglioside, GM1.  相似文献   

20.
Abstract Clostridium botulinum type E derivative toxin directly bound to gangliosides GT1b, GD1a, and GQ1b but not to GM1 or GD1b at pH 5.0 or above, At the same pH values, it bound to negatively charged phospholipids but not to noncharged ones. At pH 4.0, it bound to any of gangliosides and phospholipids including GM1, GD1a, and non-charged phospholipids. It bound to ceramide, a hydrophobic component of ganglioside and also to sphingomyelin, a phospholipid containing a ceramide moiety, only at pH 4.0. It bound to ceramide and sphingomyelin less firmly than to other phospholipids at pH 4.0. We assume that botulinum toxin adheres to the neural cell surface mainly by sialic acid-specific and charge-dependent binding possibly aided by nonspecific hydrophobic(toxin)-hydrophobic(lipids, mainly phospholipids) interaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号