首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We previously determined the chemical structures of four 2-phenylbenzotriazole mutagens (PBTA-1, -2, -3 and -4) in blue rayon-adsorbed material from the Nishitakase River in Kyoto prefecture and the Nikko River in Aichi prefecture in Japan. On the basis of a synthesis study, these four PBTA derivatives were deduced to have originated from corresponding dinitrophenylazo dyes by reduction and chlorination. 2-[(2-Bromo-4,6-dinitrophenyl)azo]-5-[bis(2-acetoxyethyl) amino]-4-methoxyacetanilide (Color Index Name, Disperse Blue 79:1; CAS Registry Number, 75497-74-4) is a very common dinitrophenylazo dye used in textile dyeing factories. In the present study, we synthesized 2-[4-[bis(2-acetoxyethyl)amino]-2-(acetylamino)-5-methoxyphenyl]-5-amino-7-bromo-4-chloro-2H-benzotriazole (PBTA-5) from Disperse Blue 79:1 by reduction with sodium hydrosulfite and subsequent chlorination with sodium hypochlorite. On hydrolysis of PBTA-5 with alkali, 2-[2-(acetylamino)-4-[bis(2-hydroxyethyl)amino]-5-methoxyphenyl]-5-amino-7-bromo-4-chloro-2H-benzotriazole (PBTA-6) was obtained. Both PBTA-5 and -6 were potent mutagens, inducing 723,000 revertants and 485,000 revertants per microgram of Salmonella typhimurium YG1024, respectively, in the presence of S9 mix. To clarify whether PBTA-5 and -6 exist in the environment, water samples were collected from five rivers flowing through regions where textile dyeing industries are developed. PBTA-6 was detected at levels of 3–134 ng/g blue rayon in all water samples that were examined. On the other hand, the amount of PBTA-5 in the samples was less than the detection limit.  相似文献   

2.
4-Amino-3,3′-dichloro-5,4′-dinitrobiphenyl (ADDB) is a novel chemical exerting strong mutagenicity, especially in the absence of metabolic activation. In addition to mutagenicity, ADDB may also disrupt the endocrine system in vitro. ADDB may be discharged from chemical plants near the Waka River and could be unintentionally formed via post-emission modification of drainage water containing 3,3′-dichlorobenzidine (DCB), which is a precursor in the manufacture of polymers and dye intermediates in chemical plants. The main purpose of this study was to make a comprehensive survey of the behaviour and levels of ADDB and suspected starting material or intermediates of ADDB, i.e., DCB, 3,3′-dichloro-4,4′-dinitrobiphenyl (DDB), and 4-amino-3,3′-dichloro-4′-nitrobipheny (ADNB) in Waka River water samples. We also postulated the formation pathway of ADDB. Water samples were collected at five sampling sites from the Waka River four times between March 2003 and December 2004. Samples were passed through Supelpak2 columns, and adsorbed materials were then extracted with methanol. Extracts were used for quantification of ADDB and the related chemicals by HPLC on reverse-phase columns; mutagenicity was evaluated in the Salmonella assay using the O-acetyltransferase-overexpressing strain YG1024. High levels of ADDB, DCB, DDB, and ADNB (12.0, 20,400, 134.8, and 149.4 ng/L-equivalent) were detected in the samples collected at the site where wastewater was discharged from chemical plants into the river. These water samples also showed stronger mutagenicity in YG1024 both with and without S9 mix than the other water samples collected from upstream and downstream sites. The results suggest that ADDB is unintentionally formed from DCB via ADNB in the process of wastewater treatment of drainage water containing DCB from chemical plants.  相似文献   

3.
We have previously isolated five mutagens in blue rayon-adsorbed substances from water at a site below sewage plants in the Nishitakase River, in Kyoto, Japan, and identified two of them as 2-phenylbenzotriazole derivatives, 2-[2-(acetylamino)-4-[bis(2-methoxyethyl)amino]-5-methoxyphenyl]-5-amino-7-bromo-4-chloro-2H-benzotriazole (PBTA-1) and 2-[2-(acetylamino)-4-[(2-cyanoethyl)ethylamino]-5-methoxyphenyl]-5-amino-7-bromo-4-chloro-2H-benzotriazole (PBTA-2). In the present study, we collected adsorbed materials on blue cotton (3 kg x 9 times) at the same location, and isolated a sufficient amount (97 microg) of one of the remaining three mutagens other than PBTA-1 and PBTA-2, for structural analysis, by multiple column chromatography. The structure of mutagen, accounting for 12% of the total mutagenicity of the blue rayon-adsorbed substances, was determined to be a PBTA-1 analogue, 2-[2-(acetylamino)-4-amino-5-methoxyphenyl]-5-amino-7-bromo-4-chloro-2H-benzotriazole (PBTA-4). PBTA-4 is a potent mutagen, inducing 190,000 and 7,800,000 revertants of Salmonella typhimurium TA98 and YG1024 per microgram, respectively, in the presence of S9 mix. In addition to the water of the Nishitakase River, PBTA-4 was detected in water samples from two rivers that flow through other regions where textile-dyeing industries have been developed. Like other PBTA analogues, PBTA-4 might also be produced from azo dyes during industrial processes in dyeing factories and treatment at sewage plants.  相似文献   

4.
We previously determined the chemical structures of four 2-phenylbenzotriazole mutagens (PBTA-1, -2, -3 and -4) in blue rayon-adsorbed material from the Nishitakase River in Kyoto prefecture and the Nikko River in Aichi prefecture in Japan. On the basis of a synthesis study, these four PBTA derivatives were deduced to have originated from corresponding dinitrophenylazo dyes by reduction and chlorination. 2-[(2-Bromo-4,6-dinitrophenyl)azo]-5-[bis(2-acetoxyethyl) amino]-4-methoxyacetanilide (Color Index Name, Disperse Blue 79:1; CAS Registry Number, 75497-74-4) is a very common dinitrophenylazo dye used in textile dyeing factories. In the present study, we synthesized 2-[4-[bis(2-acetoxyethyl)amino]-2-(acetylamino)-5-methoxyphenyl]-5-amino-7-bromo-4-chloro-2H-benzotriazole (PBTA-5) from Disperse Blue 79:1 by reduction with sodium hydrosulfite and subsequent chlorination with sodium hypochlorite. On hydrolysis of PBTA-5 with alkali, 2-[2-(acetylamino)-4-[bis(2-hydroxyethyl)amino]-5-methoxyphenyl]-5-amino-7-bromo-4-chloro-2H-benzotriazole (PBTA-6) was obtained. Both PBTA-5 and -6 were potent mutagens, inducing 723,000 revertants and 485,000 revertants per microgram of Salmonella typhimurium YG1024, respectively, in the presence of S9 mix. To clarify whether PBTA-5 and -6 exist in the environment, water samples were collected from five rivers flowing through regions where textile dyeing industries are developed. PBTA-6 was detected at levels of 3-134 ng/g blue rayon in all water samples that were examined. On the other hand, the amount of PBTA-5 in the samples was less than the detection limit.  相似文献   

5.
To clarify their mutagenic potential, samples of water from the Mawatari, Asuwa and Kitsune rivers, which flow through the central area of Fukui, Japan, were seasonally collected at six sites using blue rayon from July 1998 to August 2000. Forty-five of 52 (87%) of the water samples exhibited mutagenicity toward Salmonella typhimurium YG1024 and YG1029 with and without S9 mix, and the highest potencies were observed in YG1024 with S9 mix. The samples collected in summer and autumn tended to be more mutagenic than those collected in winter and spring. Fractionation using high-performance liquid chromatography (HPLC) suggests that several compounds are responsible for the mutagenicity of river water samples, and some of the major mutagens seem to be common among the samples. Three 2-phenylbenzotriazole (PBTA)-type mutagens, 2-[2-(acetylamino)-4-[(2-hydroxyethyl)amino]-5-methoxyphenyl]-5-amino-7-bromo-4-chloro-2H-benzotriazole (PBTA-3), 2-[2-(acetylamino)-4-amino-5-methoxyphenyl]-5-amino-7-bromo-4-chloro-2H-benzotriazole (PBTA-4) and 2-[2-(acetylamino)-4-[bis(2-hydroxyethyl)amino]-5-methoxyphenyl]-5-amino-7-bromo-4-chloro-2H-benzotriazole (PBTA-6), were quantified in samples collected between July 1998 and April 1999. At least one of these PBTA-type mutagens was detected in 23/24 (96%) of the samples. The amounts of PBTA-3, -4 and -6 were <0.08-58.7, <0.1-15.0 and <0.07-467.9 ng/g of blue rayon, respectively, and high levels of PBTA congeners were detected in the samples collected from each river in July and November 1998. The contributions of these PBTA congeners to the mutagenicity of water samples were also high in July and November 1998. The highest total contribution was observed for samples from the Asuwa river (67.6%). These findings suggest that these three rivers were continually and heavily contaminated with mutagens, and PBTA congeners were some of the major mutagens in these rivers.  相似文献   

6.
Previous studies have identified two potent aromatic amine mutagens in the Nishitakase River, a tributary of the Yodo River, which serves as the main drinking water supply for the Osaka area in Japan. The two potent mutagens are 2-[2-(acetylamino)-4-[bis(2-methoxyethyl)amino]-5-methoxyphenyl]-5-am ino-7-bromo-4-chloro-2H-benzotriazole (PBTA-1) and 2-[2-(acetylamino)-4-[N-(2-cyanoethyl)ethylamino]-5-methoxyphenyl]-5- amino-7-bromo-4-chloro-2H-benzotriazole (PBTA-2). PBTA-1 and PBTA-2 are presumed to be formed from azo dyes discharged in a reduced form from dye factories to sewage treatment plants where they become chlorinated and are then discharged into the river. PBTA-1 and PBTA-2 account for 21% and 17% of the mutagenic activity of the Nishitakase River, respectively. Here we determined the mutation spectra induced by these two mutagens in TA98, TA100, and TA104 at 30-35, 8-10, and 2x, respectively, above the background. In TA98, the PBTA compounds produced identical mutation spectra, with 100% of the revertants containing the hotspot 2-base deletion of CG within the (CG)(4) sequence. In TA100, 73% of the revertants were GC-->TA transversions, with most of the remaining being GC-->AT transitions; the spectra produced by the two compounds in TA100 were not significantly different (p=0.8). In TA104, as in TA100, the majority (83%-87%) of the revertants were GC-->TA transversions, with most of the remaining revertants (11%-13%) being AT-->TA transversions. Thus, 83%-87% of the mutations induced by the PBTA compounds in TA104 were at G/C sites. The mutation spectra produced by the two compounds in TA104 were not significantly different (p0.08). PBTA-1 and PBTA-2 are structurally similar and have similar mutagenic potencies and mutation spectra in the respective strains. The mutation spectra produced by the PBTA compounds (100% hotspot deletion in TA98 and primarily GC-->TA transversions in TA100 and TA104) are similar to those produced by other potent aromatic amines, which is the class of compounds from which the PBTA mutagens derive.  相似文献   

7.
A mutagen, 2-[2-(acetylamino)-4-[bis(2-methoxyethyl)amino]-5-methoxyphenyl]5-ami no-7-bromo-4-chloro-2H-benzotriiazole (PBTA-1), isolated from water of the Nishitakase River in Kyoto exhibits potent mutagenic activity in Salmonella typhimurium TA98 with S9 mix and has characteristic moieties, including bromo, chloro, acetylamino, bis(2-methoxyethyl)amino and primary amino groups on a 2-phenylbenzotriazole skeleton. The mutagenicities of PBTA-1, its congeners and five related 2-phenylbenzotriazoles were examined in S. typhimurium TA98 with S9 mix in order to elucidate the structure-activity relationships. The data obtained suggest that a primary amino group plays an essential role in the mutagenic activity as do aromatic amines including heterocyclic amines in cooked foods. The effect of planarity of the 2-phenylbenzotriazole ring was significant, and in addition, halogen groups of PBTA-1 influenced the enhancement of the mutagenic activity.  相似文献   

8.
We previously identified 2-[2-(acetylamino)-4-amino-5-methoxyphenyl]-5-amino-7-bromo-4-chloro-2H-benzotriazole (PBTA) congeners as major mutagens in water concentrates from several rivers that flow in three different areas, i.e. Kyoto, Aichi, and Fukui Prefectures, in Japan. In synthesis studies, these PBTAs were shown to be formed from corresponding dinitrophenylazo dyes via non-chlorinated derivatives (non-ClPBTAs). However, only non-ClPBTA-1, i.e. 2-[2-(acetylamino)-4-[bis(2-methoxyethyl)amino]-5-methoxyphenyl]-6-amino-4-bromo-2H-benzotriazole, had been detected as a minor contaminant in the Nishitakase River in Kyoto. In this study, analysis of mutagens in water concentrate from the Ho River, which flows through an area with a textile dyeing industry in Shizuoka Prefecture, Japan, allowed the isolation of four compounds (I, II, III, and IV). These four mutagens were identified as 2-[2-(acetylamino)-4-[N-(2-cyanoethyl)ethylamino]-5-methoxyphenyl]-6-amino-4-bromo-2H-benzotriazole (non-ClPBTA-2), 2-[2-(acetylamino)-4-[(2-hydroxyethyl)amino]-5-methoxyphenyl]-6-amino-4-bromo-2H-benzotriazole (non-ClPBTA-3), 2-(2-acetylamino-4-amino-5-methoxyphenyl)-6-amino-4-bromo-2H-benzotriazole (non-ClPBTA-4), and 2-[2-(acetylamino)-4-(diethylamino)-5-methoxyphenyl]-6-amino-4-bromo-2H-benzotriazole (non-ClPBTA-7) by spectral data and co-chromatography using synthesized standards. Non-ClPBTA-3 and -7 were highly mutagenic in Salmonella typhimurium YG1024, inducing 159,000 and 178,000 revertants/microg, respectively, in the presence of S9 mix. Like PBTAs, non-ClPBTAs might have been produced from azo dyes during industrial processes in dyeing factories and released into rivers.  相似文献   

9.
The 2-phenylbenzotriazole (PBTA)-type water pollutant, 2-[2-(acetylamino)-4-[N-(2-cyanoethyl)ethylamino]-5-methoxyphenyl]-5- amino-7-bromo-4-chloro-2H-benzotriazole (PBTA-2), has been recently identified in samples from the Nishitakase River in Kyoto, Japan, and shows potent mutagenic activities in Salmonella typhimurium in the presence of a microsomal metabolizing system (S9 mix). In the present study, we conducted the in vitro micronucleus (MN) test on PBTA-2 in the absence and presence of S9 mix in two Chinese hamster cell lines, CHL and V79-MZ. In the MN test, PBTA-2 was weakly positive in CHL cells and strongly positive in V79-MZ cells. Because the positive results were accompanied by a statistically significant increase in the number of polynuclear (PN) and/or mitotic (M) cells, we examined treated cells in metaphase to see if numerical chromosome aberrations were being induced. We found that PBTA-2 induces polyploidy in both CHL and V79-MZ cells. A detailed analysis of MN preparations showed that in CHL cells, PBTA-2 predominantly induces equal-sized binucleated cells. Rhodamine phalloidin staining revealed that PBTA-2 causes actin filament abnormalities in both cell lines similar to those caused by cytochalasin B. Cytochalasin B induced PN cells predominantly and dose dependently, and almost all the cells were equal-sized and binucleate. The results suggest that PBTA-2 has cytochalasin B-mimetic activity, although agents affecting actin filaments, such as cytochalasins, phallotoxins and chloropeptide, have been derived only from molds so far. This study also suggests that our MN test protocol may be used to identify chemicals that have cytochalasin B-mimetic activity as well as those that induce numerical aberrations.  相似文献   

10.
We performed the in vitro micronucleus (MN) test on 2-[2-(acetylamino)-4-[bis(2-methoxyethyl)amino]-5-methoxyphenyl]-5-amino-7-bromo-4-chloro-2H-benzotriazole (PBTA-1) and 2-[2-(acetylamino)-4-[N-(2-cyanoethyl)-ethylamino]-5-methoxyphenyl]-5-amino-7-bromo-4-chloro-2H-benzotriazole (PBTA-2), which are newly identified water pollutants from the Nishitakase river in Kyoto, Japan, and on their possible mother compounds (AZO DYE) and intermediates (non-ClPBTAs). We tested these compounds in the absence and presence of S9 mix in two Chinese hamster cell lines CHL and V79-MZ and scored MN, polynuclear and karyorrhectic (PN), and mitotic (M) cells. PBTA-2 in the absence of S9 mix induced the strongest responses in both cell lines. It was also a strong inducer of binucleate cells in PN cells in both cell lines, which suggested that it induced polyploidy. PBTA-1 showed clear positive results only in the absence of S9 mix and only in V79-MZ cells, inducing aneuploidy. In CHL cells AZO DYE-1 significantly induced MN cells in the presence of S9 mix, and AZO DYE-2 induced MN and PN cells, including binucleate cells and cells with a multilobed nucleus, in the absence of S9 mix. In V79-MZ cells, AZO DYE-1 and -2 induced primarily M cells in the presence of S9 mix. 9% of the M cells treated with 50 microg/ml AZO DYE-1 showed endoreduplication. AZO DYE-2 at 200 microg/ml condensed the chromatin in 100% of the cells. The non-ClPBTAs were a bit more cytotoxic than the other compounds and induced a slight increase in MN cells in both cell lines. Some of the chemicals tested induced a characteristic karyomorphology that might reflect abnormal cell division. Abnormalities of cell division could be detected in PN and M cells as well as in MN cells. Structure-activity relationships have also been discussed.  相似文献   

11.
Transforming naringin using the mycelium of Trichoderma harzianum CGMCC 1523 produces two metabolites, 3′,4′,5,7-tetrahydroxy flavanone-7-rhamnoglucoside (3′-OHN) and 3′,4′,5′,5,7-pentahydroxy flavanone-7-rhamnoglucoside (3′,5′-DOHN), both of which were characterized by ESI–MS, 1H NMR and 13C NMR analyses. The time course of the biotransformation by T. harzianum showed that 3′-OHN and 3′,5′-DOHN appeared simultaneously at 6 h, and the conversion yield (32.6%) of 3′,5′-DOHN was higher (10.6%) than that of 3′-OHN at 56 h. The optimal biotransformation temperature was 30 °C, the optimal pH was 5.0, and the optimal concentration of naringin was 400 mg/l. The bigger volume of biotransformation mixture and lower shaking speed did not favor hydroxylation reactions. The radical scavenging activity of naringin at 2000 μM was 11.1%, whereas activity of 3′-OHN at 100 μM could reach 38.4%, which is 68.6 times more than naringin. Antioxidative activity of 3′,5′-DOHN was increased 13.5% at 100 μM compared to 3′-OHN.  相似文献   

12.
3,3'-Dichlorobenzidine (DCB), which has been assigned as a possible carcinogen to humans (Group 2B) by IARC, is produced as a raw material in the manufacture of polymers and dye intermediates. In our previous paper, we identified DCB as an indirect-acting mutagenic constituent in the water concentrates from the Waka River, which flows through an industrial area in Wakayama, Japan. In this study, we have identified a novel mutagen in the water samples from the Waka River. Organic chemicals in the river water were adsorbed to blue rayon at the site where effluents from chemical plants and a sewage plant were discharged into the river. The adsorbate was highly mutagenic in Salmonella YG1024 in the presence and absence of S9 mix, inducing 440,000 and 170,000 revertants/g blue rayon equivalent, respectively. Two mutagenic fractions, which accounted for 18% and 12% of the total mutagenicity of the water concentrate in YG1024 with S9 mix, were separated by HPLC with a reversed-phase column following Sephadex LH20 column chromatography. Both fractions were further separated by HPLC using reversed-phase columns. On the basis of spectral analysis and co-chromatography using an authentic chemical standard, one mutagen in the former fraction was identified as DCB and one mutagen in the latter fraction was deduced to be a novel chemical, a 5-nitro derivative of DCB (5-nitro-DCB; 4,4'-diamino-3,3'-dichloro-5-nitrobiphenyl). 5-Nitro-DCB showed strong mutagenicity in YG1024 especially with S9 mix, inducing 24,200 revertants/microg. 5-Nitro-DCB was detected in water concentrates in the range from less than detection limit to 6.9 microg/g of blue rayon. DCB was also detected in the range from 13.2 to 104 micro/g of blue rayon. These results demonstrate that Waka River water might be continually contaminated with the indirect-acting mutagens DCB and 5-nitro-DCB as major mutagenic constituents of the river water.  相似文献   

13.
An isocratic reversed-phase LC-MS method for measuring concentrations of 5-chloro-2′,3′-dideoxy-3′-fluorouridine (935U83; I) directly and its 5′-glucuronide metabolite (5-chloro-2′,3′-dideoxy-5′-O-β- -glucopyranuronosyl-3′-fluorouridine) indirectly in human plasma was developed, validated, and applied to a Phase I clinical study. The pyrimidine nucleoside, I, was extracted from human plasma by using anionic solid-phase extraction. The concentration of the glucuronide conjugate was determined from the difference between the molar concentration of I in a sample hydrolyzed with β-glucuronidase and the nonhydrolyzed sample. Recovery of I from human plasma averaged 90%. The bias of the assay for I ranged from −5.5 to 7.1% during the validation and from −6.0 to 1.4% during application of the assay to the Phase I single-dose escalation study. The intra- and inter-day precision was less than 8% for I and its glucuronide conjugate. The lower and upper limits of quantitation for a 50-μl sample were 4 ng/ml and 3000 ng/ml, respectively. No significant endogenous interferences were noted in human plasma obtained from drug-free volunteers nor from predose samples of HIV-infected patients.  相似文献   

14.
We examined the in vivo mutagenicity of 2-[2-(acetylamino)-4-[bis(2-hydroxyethyl)amino]-5-methoxyphenyl]-5-amino-7-bromo-4-chloro-2H-benzotriazole (PBTA-6) and benzo[a]pyrene (BaP) by using transgenic (Tg) zebrafish carrying the mutational target gene rpsL. PBTA-6 is one of the PBTA-type compounds that were recently identified in highly mutagenic river water in Japan. BaP is a well-known contaminant that is frequently found in polluted water. Both compounds are potent mutagens, as determined by using the Ames test employing S9 mix and Salmonella. Adult rpsL Tg zebrafish were exposed to 0, 7, or 10 mg/L PBTA-6 or 0, 1.5, or 3 mg/L BaP for 96 h in a water bath and the mutations in their gills and hepatopancreata were measured 2-4 weeks later. At 3 weeks after exposure, 3 mg/L BaP significantly increased the rpsL mutant frequency (MF) in the gill and hepatopancreas by 5- and 2.3-fold, respectively, as compared to control fish. Sequence analysis showed that BaP mainly induced G:C to T:A and G:C to C:G transversions, which is consistent with the known mutagenic effects of BaP. In contrast, despite its extremely high mutagenic potency in Salmonella strains, PBTA-6 did not significantly increase the MF in the zebrafish gill or hepatopancreas. Although PBTA-6 is 300 times more mutagenic than BaP in the Ames test [T. Watanabe, H. Nukaya, Y. Terao, Y. Takahashi, A. Tada, T. Takamura, H. Sawanishi, T. Ohe, T. Hirayama, T. Sugimura, K. Wakabayashi, Synthesis of 2-phenylbenzotriazole-type mutagens, PBTA-5 and PBTA-6, and their detection in river water from Japan, Mutat. Res. 498 (2001) 107-115], calculation of the mutagenicity per mole of compound indicated that PBTA-6 was 33- and <3.7-fold less mutagenic in the zebrafish gill and hepatopancreas, respectively, than BaP.  相似文献   

15.
The halopyrimidine 5-bromo-2′-deoxyuridine (BUDR) can serve as one of many indicators of tumor malignity, complementary to histologic grade. We have developed a thin-layer chromatographic (TLC) technique that can assess tumor DNA base composition and analogue (BUDR) incorporation which vies with immunochemistry for BUDR. This requires post-labeling DNA by nick-translation and radioactive 5′-phosphorylation of representative 32P-α-dNMPs (deoxynucleotide monophosphates). Subsequent 3′-monophosphate digest exchanges a radioactive 32PO4 for the neighboring cold nucleotide. Separation in two dimensional PEI-cellulose TLC is carried out in acetic acid, (NH4)2SO4, and (NH4)HS04. TLC of dNMPs was applied to control HeLa DNA, and HeLa cells receiving BUDR. BUDR is detected in 106 HeLa cells after 12–72 h incubations. Findings in HeLa DNA demonstrate normal TLC retention factors for all 32P-dNMPs. Two dimensional RF (x,y axes in cm) demonstrate: dAMP=1.4, 9.4; dCMP=10.0, 13.5; dGMP=4.6, 4.4; dTMP=9.0, 7.4; and BUDRMP 6.4, 6.6. This technique quantifies BUDR-which parallels tumor S phase, and serves as an indicator of labelling index (LI).  相似文献   

16.
To determine if increased 5′-methylthioadenosine phosphorylase activity in activated lymphocytes may be responsible for the decreased inhibitory effect noted when 5′-methylthioadenosine is added after stimulation, the activity of this enzyme was monitored during lymphocyte transformation. A direct correlation existed between the transformation process and 5′-methylthioadenosine phosphorylase activity; the longer the stimulation process progressed, the greater the enzyme activity. The 7-deaza analog of 5′-methylthioadenosine, 5′-methylthiotubercidin, was utilized to explore further the role that the phosphorylase may play in the reversal process. 5′-Methylthioadenosine acted as a potent inhibitor, but not a substrate, of the 5′-methylthioadenosine phosphorylase, and was an even more potent inhibitor of lymphocyte transformation than 5′-methylthioadenosine. However, in direct contrast to the 5′-methylthioadenosine effect, inhibition by 5′-methylthiotubercidin could not be completely reversed. These data suggest the 5′-methylthioadenosine phosphorylase plays an important role in reversing 5′-methylthioadenosine-mediated inhibition and that the potent, nonreversible inhibitory effects of 5′-methylthiotubercidin are due to its resistance to 5′-methylthioadenosine phosphorylase degradation.  相似文献   

17.
This study aims to determine whether zinc enhances interferon (IFN)-α activity in U937 cells. Type 1 IFN2 receptor (IFNAR2) protein in U937 cells was measured by flow cytometry. After 24 h of exposure to zinc chloride or polaprezinc (a chelate of zinc and l-carnosine) at concentrations ranging from 50 to 200 μM, histograms showing anti-IFNAR2 antibody-positive cells shifted to a higher FITC intensity. Zinc chloride and polaprezinc increased IFNAR2 mRNA levels approximately 30% and 40%, respectively, compared to the control. l-Carnosine alone did not alter IFNAR2 mRNA or protein levels. Cellular levels of 2′–5′ oligoadenylate synthetases (OAS) were markedly increased by IFN-α, and the increase was significantly accelerated by polaprezinc. However, polaprezinc alone did not increase 2′–5′OAS levels. The finding suggests that zinc, especially polaprezinc, enhances the expression of INFAR2 in U937 cells, thereby inducing production of the anti-viral protein 2′–5′OAS.  相似文献   

18.
The kinetics of 3′-azido-3′-deoxythymidine phosphorylation with [32P]orthophosphoric acid was studied in the presence of various coupling agents. The most effective method, with the use of BrCN, provided the isolation of the target 3′-azido-3′-deoxythymidine 5′-[32P]monophosphate in 46% yield and with high specific radioactivity (>100 Ci/mmol).__________Translated from Bioorganicheskaya Khimiya, Vol. 31, No. 4, 2005, pp. 399–403.Original Russian Text Copyright © 2005 by Yanvarev, Shirokova, Skoblov.  相似文献   

19.
2-[2-(Acetylamino)-4-[bis(2-hydroxyethyl)amino]-5-methoxyphenyl]-5-amino-7-bromo-4-chloro-2H-benzotriazole (PBTA-6) and 4-amino-3,3'-dichloro-5,4'-dinitrobiphenyl (ADDB) are two compounds, which show strong mutagenicity toward bacteria, that have been identified as major mutagens in river water in Japan. In the present study, we examined the genotoxicity of PBTA-6 and ADDB in goldfish (Carassius auratus) by the micronucleus test and single-cell gel electrophoresis (comet assay). The frequencies of micronuclei in gill cells gradually increased until 96h after i.p. injection of PBTA-6 and ADDB at doses of 50mg/kg body weight, and then decreased 144h after injection. PBTA-6 induced micronuclei in gill cells dose-dependently at a dose range of 1-100mg/kg body weight, giving significantly high frequencies at doses of 50 and 100mg/kg body weight. On the other hand, no significant increase was observed in the peripheral erythrocytes of goldfish exposed to PBTA-6 or ADDB. In the comet assay, values of DNA tail moment and tail length in peripheral erythrocytes increased significantly until 6h after the i.p. injection of PBTA-6 (50mg/kg body weight), only to decrease by 9h after injection. Both the DNA tail moment and tail length were dose-dependently increased by injections of PBTA-6 at doses ranging from 1 to 50mg/kg. Significantly high values for tail moment and tail length were found in peripheral erythrocytes 3h after an i.p. injection of ADDB and persisted for up to 6h. These results show that both PBTA-6 and ADDB have genotoxic effects in goldfish.  相似文献   

20.
Synthesis and anti-inflammatory effects of certain furo[3′,2′:3,4]naphtho[1,2-d]imidazole derivatives 1218 were studied. These compounds were synthesized from naphtho[1,2-b]furan-4,5-dione (10) which in turn was prepared from the known 2-hydoxy-1,4-naphthoquinone (7) in a one pot reaction. Furo[3′,2′:3,4]naphtho[1,2-d]imidazole (12) was inactive (IC50 value of >30 μM) while its 5-phenyl derivative 13, with an IC50 value of 16.3 and 11.4 μM against lysozyme and β-glucuronidase release, respectively, was comparable to the positive trifluoperazine. The same potency was observed for 5-furan derivative 16 with an IC50 value of 19.5 and 11.3 μM against lysozyme and β-glucuronidase release, respectively. An electron-withdrawing NO2 substituted on 5-phenyl or 5-furanyl group led to the devoid of activity as in the cases of 14 and 17. Among them, compound 15 exhibited significant inhibitory effects, with an IC50 value of 7.4 and 5.0 μM against lysozyme and β-glucuronidase release, respectively.For the LPS-induced NO production, the phenyl derivatives 12–15 were inactive while the nitrofuran counterparts 17 and 18 suppress LPS-induced NO production significantly, with an IC50 value of 1.5 and 1.3 μM, respectively, which are more active than that of the positive 1400 W. Compounds 16–18 were capable of inhibiting LPS-induced iNOS protein expression at a dose-dependent manner in which compound 18, with an IC50 of 0.52 μM in the inhibition of iNOS expression, is approximately fivefold more potent than that of the positive 1400 W. In the CLP rat animal model, compound 18 was found to be more active than the positive hydrocortisone in the inhibition of the iNOS mRNA expression in rat lung tissue. The sepsis-induced PGE2 production in rat serum decreased 150% by the pretreatment of 18 in a dose of 10 mg/kg.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号