首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
2.
Epinephrine (Epi), which initiates short-term responses to cope with stress, is, in part, stress-regulated via genetic control of its biosynthetic enzyme, phenylethanolamine N-methyltransferase (PNMT). In rats, immobilization (IMMO) stress activates the PNMT gene in the adrenal medulla via Egr-1 and Sp1 induction. Yet, elevated Epi induced by acute and chronic stress is associated with stress induced, chronic illnesses of cardiovascular, immune, cancerous, and behavioral etiologies. Major sources of Epi include the adrenal medulla and brainstem. Although catecholamines do not cross the blood-brain barrier, circulating Epi from the adrenal medulla may communicate with the central nervous system and stress circuitry by activating vagal nerve β-adrenergic receptors to release norepinephrine, which could then stimulate release of the same from the nucleus tractus solitarius and locus coeruleus. In turn, the basal lateral amygdala (BLA) may activate to stimulate afferents to the hypothalamus, neocortex, hippocampus, caudate nucleus, and other brain regions sequentially. Recently, we have shown that repeated IMMO or force swim stress may evoke stress resiliency, as suggested by changes in expression and extinction of fear memory in the fear-potentiated startle paradigm. However, concomitant adrenergic changes seem stressor dependent. Present studies aim to identify stressful conditions that elicit stress resiliency versus stress sensitivity, with the goal of developing a model to investigate the potential role of Epi in stress-associated illness. If chronic Epi over expression does elicit illness, possibilities for alternative therapeutics exist through regulating stress-induced Epi expression, adrenergic receptor function and/or corticosteroid effects on Epi, adrenergic receptors and the stress axis.  相似文献   

3.
4.
Sustaining epinephrine‐elicited behavioral and physiological responses during stress requires replenishment of epinephrine stores. Egr‐1 and Sp1 contribute by stimulating the gene encoding the epinephrine‐synthesizing enzyme, phenylethanolamine N‐methyltransferase (PNMT), as shown for immobilization stress in rats in adrenal medulla and for hypoxic stress in adrenal medulla‐derived PC12 cells. Hypoxia (5% O2) also activates hypoxia inducible factor (HIF) 1α, increasing mRNA, nuclear protein and nuclear protein/hypoxia response element binding complex formation. Hypoxia and HIF1α over‐expression also elevate PNMT promoter‐driven luciferase activity in PC12 cells. Hypoxia may be limiting as HIF1α over‐expression increases luciferase expression to no greater extent than oxygen reduction alone. HIF1α inducers CoCl2 or deferoxamine elevate luciferase as well. PC12 cells harboring a HIF1α expression construct show markedly higher levels of Egr‐1 and Sp1 mRNA and nuclear protein and PNMT mRNA and cytoplasmic protein. Inactivation of Egr‐1 and Sp1 binding sites in the proximal ?893 bp of PNMT promoter precludes HIF1α stimulation while a potential hypoxia response element (?282 bp) in the promoter shows weak HIF1α affinity at best. These findings are the first to suggest that hypoxia activates the proximal rat PNMT promoter primarily via HIF1α induction of Egr‐1 and Sp1 rather than by co‐activation by Egr‐1, Sp1 and HIF1α. In addition, the rise in HIF1α protein leading to Egr‐1 and Sp1 stimulation of PNMT appears to include HIF1α gene activation rather than simply prevention of HIF1α proteolytic degradation.  相似文献   

5.
6.
7.
Abstract: The effects of a single and of repeated immobilization stress on the expression of the final enzyme involved in epinephrine biosynthesis, phenylethanolamine N -methyltransferase (PNMT), are described. A single immobilization (whether lasting 5 or 120 min) caused a severalfold increase of the adrenal PNMT mRNA level as measured 2 h after the beginning of the procedure. This elevation was of a transient nature, peaked 3–6 h after the 2-h immobilization, and returned to control values by 12 h after the stress. When the animals were immobilized for 2 h/day for seven consecutive days, an increase in content of PNMT mRNA of a similar magnitude was observed, which persisted for at least 2 days after the seventh immobilization. The immobilization-induced increase was completely abolished in hypophysectomized animals, whereas adrenal denervation failed to prevent it. These data suggest that the immobilization-induced increase in adrenal PNMT mRNA level depends primarily on pituitary-adrenocortical regulation.  相似文献   

8.
Phenylethanolamine N-methyltransferase (PNMT, EC 2.1.1.28) is the terminal enzyme of the catecholaminergic pathway converting noradrenaline to adrenaline. Although preferentially localized in adrenal medulla, evidence exists that PNMT activity and gene expression are also present in the rat heart, kidney, spleen, lung, skeletal muscle, thymus, retina and different parts of the brain. However, data concerning PNMT gene expression in sympathetic ganglia are still missing. In this study, our effort was focused on identification of PNMT mRNA and/or protein in stellate ganglia and, if present, testing the effect of stress on PNMT mRNA and protein levels in this type of ganglia. We identified both PNMT mRNA and protein in stellate ganglia of rats and mice, although in much smaller amounts compared with adrenal medulla. PNMT gene expression and protein levels were also increased after repeated stress exposure in stellate ganglia of rats and wild-type mice. Similarly to adrenal medulla, the immobilization-induced increase was probably regulated by glucocorticoids, as determined indirectly using corticotropin-releasing hormone knockout mice, where immobilization-induced increase of PNMT mRNA was suppressed. Thus, glucocorticoids might play an important role in regulation of PNMT gene expression in stellate ganglia under stress conditions.  相似文献   

9.
Vesicular monoamine transporters (VMATs) mediate transmitter uptake into neurosecretory vesicles. There are two VMAT isoforms, VMAT1 and VMAT2, encoded by separate genes and displaying different cellular distributions and pharmacological properties. We examined the effect of immobilization stress (IMO) on expression of VMATs in the rat adrenal medulla. Under basal conditions, VMAT1 is widely expressed in all adrenal chromaffin cells, while VMAT2 is co-localized with tyrosine hydroxylase (TH) but not phenylethanolamine N-methyltransferase (PNMT), indicating its expression in norepinephrine (NE)-, but not epinephrine (Epi)-synthesizing chromaffin cells. After exposure to IMO, there was no change in levels of VMAT1 mRNA. However, VMAT2 mRNA was elevated after exposure of rats to 2 h IMO once (1× IMO) or daily for 6 days (6× IMO). The changes in VMAT2 mRNA were reflected by increased VMAT2 protein after the repeated IMO. Immunofluorescence revealed an increased number of cells expressing VMAT2 following repeated IMO and its colocalization with PNMT in many chromaffin cells. The findings suggest an adaptive mechanism in chromaffin cells whereby enhanced catecholamine storage capacity facilitates more efficient utilization of the well-characterized heightened catecholamine biosynthesis with repeated IMO stress.  相似文献   

10.
11.
Previously, we reported that cold stress induces a rapid increase in adrenomedullary PNMT mRNA levels, followed by concomitant increases in PNMT immunoreactivity (10). In the present study, the extracellular signals mediating this adaptive response to stress were investigated using northern analysis and RNA slot-blot hybridization. Although adrenal denervation significantly diminished cold-induced increments in adrenomedullary PNMT mRNA levels, it did not completely abolish the cold stress response. In contrast to these results, splanchnectomy completely inhibited cold-induced increments in TH mRNAs in the same tissue samples. These findings indicate that the effects of cold exposure on PNMT mRNA levels are mediated by both neural and non-neural mechanisms, and that adrenal PNMT and TH are differentially regulated in response to cold stress. Surprisingly, the neural component of the PNMT stress response could not be attenuated by peripheral administration of chlorisondamine, a powerful nicotinic ganglionic blocking agent. In contrast, chlorisondamine was effective in inhibiting sympathetic neural activity, as judged by the drug's ability to completely block increases in blood pressure, heart rate, and plasma catecholamines resulting from spinal cord stimulation in pithed rats. The administration of atropine, a muscarinic receptor antagonist, also failed to inhibit cold-induced alterations in adrenal PNMT mRNA. These results suggest that the trans-synaptic induction of adrenal PNMT mRNA involves a non-cholinergic component, and that cold-induced increases in PNMT mRNA are not coupled to acetylcholine-mediated adrenal catecholamine release.  相似文献   

12.
Phenylethanolamine N-methyltransferase (PNMT) is a final enzyme in catecholamine synthesizing cascade that converts noradrenaline to adrenaline. Although most profuse in adrenal medulla, PNMT is expressed also in the heart, particularly in cardiac atria and ventricles. In atria, the PNMT mRNA is much more abundant compared to ventricles. In present study we aimed to find out whether there is a difference in modulation of the PNMT gene expression in cardiac atria and ventricles. We used three methodological approaches: cold as a model of mild stress, hypoxia as a model of cardiac ischemic injury, and transgenic rats (TGR) with incorporated mouse renin gene (mREN-2)27, to determine involvement of renin-angiotensin pathway in the PNMT gene expression. We have found that PNMT gene expression was modulated differently in cardiac atria and ventricles. In atria, PNMT mRNA levels were increased by hypoxia, while cold stress decreased PNMT mRNA levels. In ventricles, no significant changes were observed by cold or hypoxia. On the other hand, angiotensin II elevated PNMT gene expression in ventricles, but not in atria. These results suggest that PNMT gene expression is modulated differently in cardiac atria and ventricles and might result in different physiological consequences.  相似文献   

13.
14.
15.
16.
17.
18.
Glucocorticoids act via glucocorticoid receptors (GR), typically localized in the cytosol (cGR). Rapid action is probably mediated via membrane receptors (mGR). In corticotropin-releasing hormone knockouts (CRH-KO), basal plasma glucocorticoid levels do differ from wild type levels (WT), but are approximately ten times lower during exposure to immobilization stress (IMMO) in comparison to WT. We tested the following hypotheses: (1) the mice lung tissue GR basal numbers would not be changed in CRH-KO (because of similar glucocorticoid levels), (2) the number of GR would be changed in WT but not in KO during short (30, 90, and 120 min) IMMO (because of higher increase of glucocorticoid levels in WT). The basal levels of cGR were not changed in CRH-KO (compared to WT), while mGR were significantly lower (62 %) in CRH-KO. In WT, there was the only decrease (to 32 %) in cGR after 120 min when we also found an increase in mGR in WT (to 201 %). In CRH-KO, IMMO caused gradual decrease in cGR (to 52 % after 30 min, to 46 % after 90 min, and to 32 % after 120 min). In CRH-KO, the only increase in mGR appeared already at 30 min of IMMO. These data suggest, on the contrary to our hypotheses, that CRH-KO are more susceptible to GR changes in early phases of stress.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号