首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
The nuclear import of proteins typically requires the presence of a nuclear localization sequence (NLS). Some proteins have more than one NLS, but the significance of having multiple NLSs is unclear. The enzyme 5-lipoxygenase (5-LO) has three NLSs that, unlike the tight cluster of basic residues of the classical SV40 large T antigen NLS, contain dispersed basic residues. When attached to green fluorescent protein (GFP), individual 5-LO NLSs caused quantitatively and statistically less import than the SV40 NLS. Combined 5-LO NLSs produced nuclear import that was comparable to that of the SV40 NLS. As expected, GFP/NLS proteins displayed relatively uniform import in all cells. However, a fusion protein of GFP plus the 5-LO protein, modified to contain only one functional NLS, produced some cells with import and some cells without import. A GFP/5-LO fusion protein containing two functional NLSs produced four identifiable levels of nuclear import. Quantitative and visual analysis of a population of cells expressing the intact GFP/5-LO protein, with three intact NLSs, indicated five levels of nuclear import. This suggested that the subcellular distribution of 5-LO may vary widely in normal cells of the body. Consistent with this, immunohistochemical staining of lung sections found that individual macrophages, in situ, displayed cell-specific levels of import of 5-LO. Since nuclear accumulation is known to affect 5-LO activity, multiple NLSs may allow graded regulation of activity via controlled import. Multiple NLSs on other proteins may likewise allow fine control of protein action through modulation of the level of import.  相似文献   

2.
The retinoblastoma (RB) tumor suppressor is a nuclear phosphoprotein central to control of cellular proliferation. We have previously shown that human RB possesses an evolutionarily conserved bipartite nuclear localization sequence (NLS) (KRSAEGSNPPKPLKKLR877) resembling that of nucleoplasmin. Here we analyze the kinetic properties of the RB NLS in detail with respect to recognition by cellular nuclear import factors, the importins (IMPs), and nuclear transport properties, comparing results to those for the NLSs from SV40 large tumor antigen (T-ag) and the Xenopus laevis phosphoprotein N1N2. Binding affinities of different IMPalpha subunits for the Rb NLS, in the absence or presence of IMPbeta subunits were determined, and NLS-dependent nuclear import reconstituted in vitro for the first time using purified IMPalpha/beta subunits together with recombinant human RanGDP and nuclear transport factor 2 (NTF2). RB NLS-mediated transport had a strict requirement for all components, with high NTF2 concentrations inhibiting transport. As in the case of transport mediated by the T-ag- and N1N2-NLSs, nuclear import of an RB-NLS containing beta-Gal fusion protein was reduced or abolished when anti-IMPalpha or beta antibody was added to cytosolic extract, respectively, confirming that RB NLS-mediated nuclear import occurs through action of IMPalpha/beta. We conclude that although mediated by IMPalpha/beta, and similar in most respects to transport mediated by the similarly bipartite N1N2 NLS, nuclear import conferred by the RB NLS has distinct properties, in part due to the affinity of its interaction with IMPalpha.  相似文献   

3.
We have established an in vitro snRNP nuclear import system using digitonin permeabilized somatic cells supplemented with cytosolic extracts. As model karyophiles we used digoxygenin labelled U1 snRNPs or fluorescein labelled U2 snRNPs. In vitro nuclear import of snRNPs is inhibited by anti-pore component antibodies, consistent with transport occurring through nuclear pores. This import requires ATP, cytosolic factors and a nuclear localization signal (NLS). SnRNP nuclear accumulation is saturable and distinct from protein transport. Nuclear import of snRNPs, in permeabilized NRK cells supplemented with somatic cell cytosol, requires the same NLS structures as those identified in micro-injected mammalian cells. In contrast to the situation in Xenopus oocytes, the m3G-cap is not required for in vitro nuclear import of U1 and U2 snRNPs in somatic cells. Instead, assembly of the Sm-core domain is both necessary and sufficient to mediate snRNP nuclear targeting. Interestingly, when the in vitro system was provided with cytosol from Xenopus oocytes instead of somatic cells, U1 and U2 snRNP nuclear import was provided with cytosol from Xenopus oocytes instead of somatic cells, U1 and U2 snRNP nuclear import was m3G-cap dependent. These results indicate that soluble cytosolic factors mediate the differential m3G-cap dependence of U1 and U2 snRNP nuclear import in somatic cells and oocytes. We also demonstrate the existence of a soluble cytosolic factor whose interaction with the U2 snRNP m3G-cap is both saturable and essential for U2 snRNP nuclear import in Xenopus oocytes.  相似文献   

4.
Ribosomal protein L5 forms a small, extraribosomal complex with 5 S ribosomal RNA, referred to as the 5 S ribonucleoprotein complex, which shuttles between nucleus and cytoplasm in Xenopus oocytes. Mapping elements in L5 that mediate nuclear protein import defines three separate such activities (L5-nuclear localization sequence (NLS)-1, -2, and -3), which are functional in both oocytes and somatic cells. RNA binding activity involves N-terminal as well as C-terminal elements of L5. In contrast to the full-length protein, none of the individual NLSs carrying L5 fragments are able to allow for the predominating accumulation in the nucleoli that is observed with the full-length protein. The separate L5-NLSs differ in respect to two activities. Firstly, only L5-NLS-1 and -3, not L5-NLS-2, are capable of promoting the nuclear transfer of a heterologous, covalently attached ribonucleoprotein complex. Secondly, only L5-NLS-1 is able to bind strongly to a variety of different import receptors; those that recognize L5-NLS-2 and -3 have yet to be identified.  相似文献   

5.
Little quantitative, kinetic information is available with respect to the process of nuclear import of conventional nuclear localization sequence (NLS)-containing proteins, which initially involves recognition and docking at the nuclear pore by importin alpha/beta. This study compares the binding and nuclear import properties of mouse (m) and yeast (y) importin (IMP) subunits with respect to the NLSs from the SV40 large tumor antigen (T-ag), and the Xenopus laevis phosphoprotein N1N2. m- and y-IMPalpha recognized both NLSs, with y-IMPalpha exhibiting higher affinity. m-IMPbeta greatly enhanced the binding of m-IMPalpha to the T-ag and N1N2 NLSs, but y-IMPbeta did not significantly affect the affinity of y-IMPalpha for the T-ag NLS. In contrast, y-IMPbeta enhanced y-IMPalpha binding to the NLS of N1N2, but to a lesser extent than the enhancement of m-IMPalpha binding by m-IMPbeta. NLS-dependent nuclear import was reconstituted in vitro using the different importin subunits together with the transport factors Ran and NTF2. Whereas T-ag NLS-mediated nuclear import did not exhibit an absolute requirement for NTF2, N1N2 NLS-mediated transport strictly required NTF2. High levels of NTF2 inhibited nuclear accumulation conferred by both NLSs. We conclude that different NLSs possess distinct nuclear import properties due to differences in recognition by importin and requirements for NTF2.  相似文献   

6.
To elucidate the function of the U69 protein kinase of human herpesvirus 6 (HHV-6) in vivo, we first analyzed its subcellular localization in HHV-6-infected Molt 3 cells by using polyclonal antibodies against the U69 protein. Immunofluorescence studies showed that the U69 signal localized to the nucleus in a mesh-like pattern in both HHV-6-infected and HHV6-transfected cells. A computer program predicted two overlapping classic nuclear localization signals (NLSs) in the N-terminal region of the protein; this NLS motif is highly conserved in the N-terminal region of most of the herpesvirus protein kinases examined to date. An N-terminal deletion mutant form of the protein failed to enter the nucleus, whereas a fusion protein of green fluorescent protein (GFP) and/or glutathione S-transferase (GST) and the U69 N-terminal region was transported into the nucleus, demonstrating that the predicted N-terminal NLSs of the protein actually function as NLSs. The nuclear transport of the GST-GFP fusion protein containing the N-terminal NLS of U69 was inhibited by wheat germ agglutinin and by the Q69L Ran-GTP mutant, indicating that the U69 protein is transported into the nucleus from the cytoplasm via classic nuclear transport machinery. A cell-free import assay showed that the nuclear transport of the U69 protein was mediated by importin alpha/beta in conjunction with the small GTPase Ran. When the import assay was performed with a low concentration of each importin-alpha subtype, NPI2/importin-alpha7 elicited more efficient transport activity than did Rch1/importin-alpha1 or Qip1/importin-alpha3. These results suggest a relationship between the localization of NPI2/importin-alpha7 and the cell tropism of HHV-6.  相似文献   

7.
信号蛋白分子的入核及出核转运是细胞因子和生长因子信号转导途径中的重要环节.核定位序列(NLS)是信号蛋白分子上与入核转运相关的氨基酸序列.核孔复合物(NPC)、核转运蛋白importin和能量供应体Ran/TC4在入核转运过程中也发挥了重要作用.另外,很多细胞因子和生长因子或其受体上所含有的NLS序列也具有核定位功能,并可能通过“伴侣机制”参与其他信号蛋白分子的入核转运.  相似文献   

8.
A GTPase distinct from Ran is involved in nuclear protein import   总被引:7,自引:0,他引:7       下载免费PDF全文
Signal-dependent transport of proteins into the nucleus is a multi-step process mediated by nuclear pore complexes and cytosolic transport factors. One of the cytosolic factors, Ran, is the only GTPase that has a characterized role in the nuclear import pathway. We have used a mutant form of Ran with altered nucleotide binding specificity to investigate whether any other GTPases are involved in nuclear protein import. D125N Ran (XTP-Ran) binds specifically to xanthosine triphosphate (XTP) and has a greatly reduced affinity for GTP, so it is no longer sensitive to inhibition by nonhydrolyzable analogues of GTP such as guanosine 5'-O-(3-thiotriphosphate) (GTP gamma S). using in vitro transport assays, we have found that nuclear import supported by XTP-Ran is nevertheless inhibited by the addition of non-hydrolyzable GTP analogues. This in conjunction with the properties of the inhibitory effect indicates that at least one additional GTPase is involved in the import process. Initial characterization suggests that the inhibited GTPase plays a direct role in protein import and could be a component of the nuclear pore complex.  相似文献   

9.
The full range of sequences that constitute nuclear localization signals (NLSs) remains to be established. Even though the sequence of the classical NLS contains polybasic residues that are recognized by importin-alpha, this import receptor can also bind cargo that contains no recognizable signal, such as STAT1. The situation is further complicated by the existence of six mammalian importin-alpha family members. We report the identification of an unusual type of NLS in human Ran binding protein 3 (RanBP3) that binds preferentially to importin-alpha3. RanBP3 contains a variant Ran binding domain most similar to that found in the yeast protein Yrb2p. Anti-RanBP3 immunofluorescence is predominantly nuclear. Microinjection of glutathione S-transferase-green fluorescent protein-RanBP3 fusions demonstrated that a region at the N terminus is essential and sufficient for nuclear localization. Deletion analysis further mapped the signal sequence to residues 40 to 57. This signal resembles the NLSs of c-Myc and Pho4p. However, several residues essential for import via the c-Myc NLS are unnecessary in the RanBP3 NLS. RanBP3 NLS-mediated import was blocked by competitive inhibitors of importin-alpha or importin-beta or by the absence of importin-alpha. Binding assays using recombinant importin-alpha1, -alpha3, -alpha4, -alpha5, and -alpha7 revealed a preferential interaction of the RanBP3 NLS with importin-alpha3 and -alpha4, in contrast to the simian virus 40 T-antigen NLS, which interacted to similar extents with all of the isoforms. Nuclear import of the RanBP3 NLS was most efficient in the presence of importin-alpha3. These results demonstrate that members of the importin-alpha family possess distinct preferences for certain NLS sequences and that the NLS consensus sequence is broader than was hitherto suspected.  相似文献   

10.
Replication of the RNAs of influenza virus occurs in the nucleus of infected cells. The nucleoprotein (NP) has been shown to be important for the import of the viral RNA into the nucleus and has been proposed to contain at least three different nuclear localization signals (NLSs). Here, an import assay in digitonin-permeabilized cells was used to further define the contribution of these NLSs. Mutation of the unconventional NLS impaired the nuclear import of the NP. A peptide bearing the unconventional NLS could inhibit the nuclear import of the NP in this import assay and prevent the NP-karyopherin alpha interaction in a binding assay confirming the crucial role of this signal. Interestingly, a peptide containing the SV40 T antigen NLS was unable to inhibit the nuclear import of NP or the NP-karyopherin alpha interaction, suggesting that the NP and the SV40 T antigen do not share a common binding site on karyopherin alpha. We also investigated the question of which NLS(s) is/are necessary for the viral ribonucleoprotein complex to enter the nucleus. We found that the peptide containing the unconventional NLS efficiently inhibited the nuclear import of the ribonucleoprotein complexes. This finding suggests that the unconventional NLS is the major signal necessary not only for the nuclear transport of free NP but also for the import of the ribonucleoprotein complexes. Finally, viral replication could be specifically inhibited by a membrane-permeable peptide containing the unconventional NLS, confirming the crucial role of this signal during the replicative cycle of the virus.  相似文献   

11.
蛋白质进入细胞核是由蛋白质分子内部的核定位信号(nuclear localization signal, NLS)引导的.NLS蛋白首先与NLS受体结合,然后在多种胞浆因子及核孔复合物蛋白的作用下穿过核孔、转位入核.蛋白质上存在NLS并不一定总能够引导蛋白质入核.当NLS被修饰或遮掩时,它们便不能被核转运装置所识别.因而,NLS的遮掩被解除之前,蛋白质一直被扣留在胞浆中.以调节转录因子的入核运送来控制转录因子的活性是基因表达调节的一个新概念,也是细胞生长和分化的另一水平的调节.  相似文献   

12.
Nucleocytoplasmic transport of proteins   总被引:4,自引:0,他引:4  
In eukaryotic cells, the movement of macromolecules between the nucleus and cytoplasm occurs through the nuclear pore complex (NPC)--a large protein complex spanning the nuclear envelope. The nuclear transport of proteins is usually mediated by a family of transport receptors known as karyopherins. Karyopherins bind to their cargoes via recognition of nuclear localization signal (NLS) for nuclear import or nuclear export signal (NES) for export to form a transport complex. Its transport through NPC is facilitated by transient interactions between the karyopherins and NPC components. The interactions of karyopherins with their cargoes are regulated by GTPase Ran. In the current review, we describe the NPC structure, NLS, and NES, as well as the model of classic Ran-dependent transport, with special emphasis on existing alternative mechanisms; we also propose a classification of the basic mechanisms of protein transport regulation.  相似文献   

13.
Nuclear protein import proceeds through the nuclear pore complex (NPC). Importin-beta mediates translocation via direct interaction with NPC components and carries importin-alpha with the NLS substrate from the cytoplasm into the nucleus. The import reaction is terminated by the direct binding of nuclear RanGTP to importin-beta which dissociates the importin heterodimer. Here, we analyse the sites of interaction on importin-beta for its multiple partners. Ran and importin-alpha respectively require residues 1-364 and 331-876 of importin-beta for binding. Thus, RanGTP-mediated release of importin-alpha from importin-beta is likely to be an active displacement rather than due to simple competition between Ran and importin-alpha for a common binding site. Importin-beta has at least two non-overlapping sites of interaction with the NPC, which could potentially be used sequentially during translocation. Our data also suggest that termination of import involves a transient release of importin-beta from the NPC. Importin-beta fragments which bind to the NPC, but not to Ran, resist this release mechanism. As would be predicted from this, these importin-beta mutants are very efficient inhibitors of NLS-dependent protein import. Surprisingly, however, they also inhibit M9 signal-mediated nuclear import as well as nuclear export of mRNA, U snRNA, and the NES-containing Rev protein. This suggests that mediators of these various transport events share binding sites on the NPC and/or that mechanisms exist to coordinate translocation through the NPC via different nucleocytoplasmic transport pathways.  相似文献   

14.
15.
Nuclear transport factor 2 (NTF2) is a soluble transport protein originally identified by its ability to stimulate nuclear localization signal (NLS)-dependent protein import in digitonin-permeabilized cells. NTF2 has been shown to bind nuclear pore complex proteins and the GDP form of Ran in vitro. Recently, it has been reported that NTF2 can stimulate the accumulation of Ran in digitonin-permeabilized cells. Evidence that NTF2 directly mediates Ran import or that NTF2 is required to maintain the nuclear concentration of Ran in living cells has not been obtained. Here we show that cytoplasmic injection of anti-NTF2 mAbs resulted in a dramatic relocalization of Ran to the cytoplasm. This provides the first evidence that NTF2 regulates the distribution of Ran in vivo. Moreover, anti-NTF2 mAbs inhibited nuclear import of both Ran and NLS-containing protein in vitro, suggesting that NTF2 stimulates NLS-dependent protein import by driving the nuclear accumulation of Ran. We also show that biotinylated NTF2-streptavidin microinjected into the cytoplasm accumulated at the nuclear envelope, indicating that NTF2 can target a binding partner to the nuclear pore complex. Taken together, our data show that NTF2 is an essential regulator of the Ran distribution in living cells and that NTF2-mediated Ran nuclear import is required for NLS-dependent protein import.  相似文献   

16.
The translocation of macromolecules into the nucleus is a fundamental eukaryotic process, regulating gene expression, cell division and differentiation, but which is impaired in a range of significant diseases including cancer and viral infection. The import of proteins into the nucleus is generally initiated by a specific, high affinity interaction between nuclear localisation signals (NLSs) and nuclear import receptors in the cytoplasm, and terminated through the disassembly of these complexes in the nucleus. For classical NLSs (cNLSs), this import is mediated by the importin-α (IMPα) adaptor protein, which in turn binds to IMPβ to mediate translocation of nuclear cargo across the nuclear envelope. The interaction and disassembly of import receptor:cargo complexes is reliant on the differential localisation of nucleotide bound Ran across the envelope, maintained in its low affinity, GDP-bound form in the cytoplasm, and its high affinity, GTP-bound form in the nucleus. This in turn is maintained by the differential localisation of Ran regulating proteins, with RanGAP in the cytoplasm maintaining Ran in its GDP-bound form, and RanGEF (Prp20 in yeast) in the nucleus maintaining Ran in its GTP-bound form. Here, we describe the 2.1 Å resolution x-ray crystal structure of IMPα in complex with the NLS of Prp20. We observe 1,091 Å2 of buried surface area mediated by an extensive array of contacts involving residues on armadillo repeats 2-7, utilising both the major and minor NLS binding sites of IMPα to contact bipartite NLS clusters 17RAKKMSK23 and 3KR4, respectively. One notable feature of the major site is the insertion of Prp20NLS Ala18 between the P0 and P1 NLS sites, noted in only a few classical bipartite NLSs. This study provides a detailed account of the binding mechanism enabling Prp20 interaction with the nuclear import receptor, and additional new information for the interaction between IMPα and cargo.  相似文献   

17.
18.
Transport of proteins into and out of the nucleus occurs through nuclear pore complexes (NPCs) and is mediated by the interaction of transport factors with nucleoporins at the NPC. Nuclear import of proteins containing classical nuclear localization signals (NLSs) is mediated by a heterodimeric protein complex, composed of karyopherin α and β1, that docks via β1 the NLS-protein to the NPC. The GTPase Ran; the RanGDP binding protein, p10; and the RanGTP binding protein, RanBP1 are involved in translocation of the docked NLS-protein into the nucleus. Recently, new distinct nuclear import and export pathways that are mediated by members of the karyopherin β family have been discovered. Karyopherin β2 mediates import of mRNA binding proteins, whereas karyopherin β3 and β4 mediate import of a set of ribosomal proteins. Two other β karyopherin family members, CRM1 and CAS, mediate export of proteins containing leucine-rich nuclear export signals (NES) and reexport of karyopherin α, respectively. This growing family contains new members that constitute potential transport factors for cargoes yet to be identified in the future. The common features of the members of karyopherin β family are the ability to bind RanGTP and the ability to interact directly with nucleoporins at the NPC. The challenge for the future will be to identify the distinct or, perhaps, overlapping cargo(es) for each member of the karyopherin β superfamily and to characterize the molecular mechanisms of translocation of karyopherins together with their cargoes through the NPC. J. Cell. Biochem. 70:231–239, 1998.© 1998 Wiley-Liss, Inc.  相似文献   

19.
The open reading frame UL84 of human cytomegalovirus encodes a multifunctional regulatory protein which is required for viral DNA replication and binds with high affinity to the immediate-early transactivator IE2-p86. Although the exact role of pUL84 in DNA replication is unknown, the nuclear localization of this protein is a prerequisite for this function. To investigate whether the activities of pUL84 are modulated by cellular proteins we used the Saccharomyces cerevisiae two-hybrid system to screen a cDNA-library for interacting proteins. Strong interactions were found between pUL84 and four members of the importin alpha protein family. These interactions could be confirmed in vitro by pull down experiments and in vivo by coimmunoprecipitation analysis from transfected cells. Using in vitro transport assays we showed that the pUL84 nuclear import required importin alpha, importin beta, and Ran, thus following the classical importin-mediated import pathway. Deletion mutagenesis of pUL84 revealed a domain of 282 amino acids which is required for binding to the importin alpha proteins. Its function as a nuclear localization signal (NLS) was confirmed by fusion to heterologous proteins. Although containing a cluster of basic amino acids similar to classical NLSs, this cluster did not contain the NLS activity. Thus, a complex structure appears to be essential for importin alpha binding and import activity.  相似文献   

20.
真核细胞核膜上的核孔复合体 (nuclear pore complex, NPC) 是细胞核内外进行物质交换的主要通道, 分子量较小的化合物可自由通过NPC或采取被动扩散的方式进入细胞核, 而分子量为50 kD以上的蛋白质则只能通过主动转运进入细胞核. 以这种方式进入细胞核的 蛋白质必须在其氨基酸序列上拥有特殊的核定位信号(nuclear localization signal, NLS)以被相应的核转运蛋白(karyopherins) 识别. 核定位信号具有多样性, 包括经典核定位信号(classical NLS,cNLS), 内输蛋白β2识别的核定位信号(又称PY模体-NLS)和其它类型的NLS. 每一类NLS具有相似的特征, 但并不具有完全保守的氨基酸组成. 不同的NLS, 往往对应着各不相同的核输入机制. 而对同一蛋白质来说, 也可能同时拥有几个功能性的NLS. 研究核定位信号一方面可以帮助揭示新的大分子物质核转运机制, 另一方面也有助于发现一些蛋白质的新功能. 本文对常见NLS的分类进行了总结, 并介绍了两种常用的NLS预测软件及鉴定NLS的一般策略.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号