首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Antimycin A (AMA) inhibits succinate oxidase, NADH oxidase, and mitochondrial electron transport chain between cytochrome b and c. We recently demonstrated that AMA inhibited the growth of Calu-6 lung cancer cells through apoptosis. Here, we investigated the effects of AMA and/or MAPK inhibitors on Calu-6 lung cancer cells in relation to cell growth, cell death, reactive oxygen species (ROS), and GSH levels. Treatment with AMA inhibited the growth of Calu-6 cells at 72 h. AMA-induced apoptosis was accompanied by the loss of mitochondrial membrane potential (MMP; ΔΨm). While ROS were decreased in AMA-treated Calu-6 cells, O 2 ?? among ROS was increased. AMA also induced GSH depletion in Calu-6 cells. Treatment with MEK inhibitor intensified cell death, MMP (ΔΨm) loss, and GSH depletion in AMA-treated Calu-6 cells. JNK inhibitor also increased cell death, MMP (ΔΨm) loss, and ROS levels in these cells. Treatment with p38 inhibitor magnified cell growth inhibition by AMA and increased cell death, MMP (ΔΨm) loss, ROS level, and GSH depletion in AMA-treated cells. Conclusively, all the MAPK inhibitors slightly intensified cell death in AMA-treated Calu-6 cells. The changes of ROS and GSH by AMA and/or MAPK inhibitors were in part involved in cell growth and death in Calu-6 cells.  相似文献   

2.
Arsenic trioxide (ATO; As2O3) can induce apoptotic cell death in various cancer cells including lung cancer cells. However, little is known about the toxicological effects of ATO on normal primary lung cells. In this study, we investigated the cellular effects of ATO on human pulmonary fibroblast (HPF) cells in relation to cell growth inhibition and death. ATO inhibited HPF cell growth with an IC50 of approximately 30–40 μM at 24 h and induced cell death accompanied by the loss of mitochondrial membrane potential (MMP; ΔΨm). Thus, HPF cells were considered to be very resistant to ATO insults. ATO increased the expression of p53 protein and decreased that of Bcl-2 protein. This agent activated caspase-8 but not caspase-3 in HPF cells. Z-VAD (a pan-caspase inhibitor; 15 μM) did not significantly decrease cell growth inhibition, death and MMP (ΔΨm) loss by ATO. Moreover, administration of Bax or casase-8 siRNA attenuated HPF cell death by ATO whereas p53 or caspase-3 siRNAs did not affect cell death. In conclusion, HPF cells were resistant to ATO and higher doses of ATO induced the growth inhibition and death in HPF cells via the regulation of Bcl-2 family and caspase-8.  相似文献   

3.
Suberoyl bishydroxamic acid (SBHA) is a HDAC inhibitor that can regulate many biological functions including apoptosis and proliferation in various cancer cells. Here, we evaluated the effect of SBHA on the growth of HeLa cervical cancer cells in relation to apoptosis, reactive oxygen species (ROS) and glutathione (GSH) levels. Dose-dependent inhibition of cell growth was observed in HeLa cells with an IC50 of approximately 15 μM at 72 h. SBHA also induced apoptosis in HeLa cells, as evidenced by sub-G1 cells, annexin V-FITC staining cells, activations of caspase 3 and 8, and the loss of mitochondrial membrane potential (ΔΨm). In addition, all of the tested caspase inhibitors rescued some cells from SBHA-induced HeLa cell death. SBHA increased ROS levels including O 2 ?? and induced GSH depletion in HeLa cells. Generally, caspase inhibitors did not affect ROS levels in SBHA-treated HeLa cells, but they significantly prevented GSH depletion in these cells. Furthermore, while the well-known antioxidants, N-acetyl cysteine and vitamin C, did not affect cell death, ROS level or GSH depletion in SBHA-treated HeLa cells, l-buthionine sulfoximine, a GSH synthesis inhibitor, enhanced cell death and GSH depletion in these cells. In conclusion, SBHA inhibits the growth of HeLa cervical cancer cells via caspase-dependent apoptosis, and the inhibition is independent of ROS level changes, but dependent on GSH level changes.  相似文献   

4.
The proteasome inhibitor MG132 has been shown to induce apoptotic cell death through the formation of reactive oxygen species (ROS). Here, we evaluated the effects of MG132 on the growth and death of As4.1 juxtaglomerular cells in relation to ROS and glutathione (GSH) levels. MG132 inhibited the growth of As4.1 cells with an IC50 of approximately 0.3–0.4 μM at 48 h and induced cell death, which was accompanied by the loss of mitochondrial membrane potential (MMP; ΔΨm), Bcl-2 decrease, activation of caspase-3 and -8, and PARP cleavage. MG132 increased intracellular ROS levels including O2? and GSH depleted cell numbers. N-acetyl cysteine (NAC, a well-known antioxidant) significantly decreased ROS level and GSH depleted cell numbers in MG132-treated As4.1 cells, along with the prevention of cell growth inhibition, cell death and MMP (ΔΨm) loss. NAC also decreased the caspase-3 activity of MG132. l-Buthionine sulfoximine (BSO; an inhibitor of GSH synthesis) or diethyldithiocarbamate (DDC; an inhibitor of Cu/Zn-SOD) did not affect cell growth, death, ROS and GSH levels in MG132-treated As4.1 cells. Conclusively, MG132 reduced the growth of As4.1 cells via apoptosis. The changes of ROS and GSH by MG132 were involved in As4.1 cell growth and death.  相似文献   

5.
Suberoyl bishydroxamic acid (SBHA) as a histone deacetylase (HDAC) inhibitor has various cellular effects such as cell growth and apoptosis. In the present study, we evaluated the effects of SBHA on the growth and death of A549 lung cancer cells. SBHA inhibited the growth of A549 cells with an IC50 of approximately 50 μM at 72 h in a dose-dependent manner. DNA flow cytometric analysis indicated that SBHA induced a G2/M phase arrest of the cell cycle. This agent also induced apoptosis, as evidenced by sub-G1 cells and annexin V-FITC staining cells. SBHA-induced apoptosis was accompanied by the loss of mitochondrial membrane potential (MMP; ΔΨm), Bcl-2 decrease, Bax increase, and the activation of caspase-3. All of the tested caspase inhibitors significantly rescued some cells from SBHA-induced A549 cell death. However, none of the caspase inhibitors prevented the loss of MMP (ΔΨm) induced by SBHA. Intracellular reactive oxygen species (ROS) levels including O 2 ?? were increased in 50 μM SBHA-treated A549 cells. None of the caspase inhibitors attenuated ROS levels in these cells. SBHA also elevated the number of glutathione (GSH)-depleted cells in A549 cells, which was reduced by treatment with caspase inhibitors. In conclusion, this is the first report that SBHA inhibited the growth of A549 lung cancer cells via caspase-dependent apoptosis, which was related to GSH depletion rather than changes in ROS level.  相似文献   

6.
In the present study we demonstrated that the flavonoid derivative trifolin acetate (TA), obtained by acetylation of naturally occurring trifolin, induces apoptosis. Associated downstream signaling events were also investigated. TA-induced cell death was prevented by the non-specific caspase inhibitor z-VAD-fmk and reduced by the presence of the selective caspase inhibitors z-LEHD-fmk (caspase-9), z-DEVD-fmk (caspase-3) and z-VEID-fmk (caspase-6). The apoptotic effect of TA was associated with (i) the release of cytochrome c from mitochondria which was not accompanied by dissipation of the mitochondrial membrane potential (ΔΨm), (ii) the activation of the mitogen-activated protein kinases (MAPKs) pathway and (iii) abrogated by the over-expression of Bcl-2 or Bcl-xL. TA-induced cell death was attenuated by inhibition of extracellular signal-regulated kinases (ERK) 1/2 with U0126 and inhibition of p38MAPK with SB203580. In contrast, inhibition of c-Jun NH2-terminal kinase (JNK) by SP600125 significantly enhanced apoptosis. Although reactive oxygen species (ROS) increased in response to TA, this did not seem to play a pivotal role in the apoptotic process since different anti-oxidants were unable to provide cell protection. The present study demonstrates that TA-induced cell death is mediated by an intrinsic-dependent apoptotic event involving mitochondria and MAPK, and through a mechanism independent of ROS generation.  相似文献   

7.
Gallic acid (GA) is generally distributed in a variety of plants and foods, and its various biological effects have been reported. Here, we investigated the effects of GA and/or caspase inhibitors on Calu-6 and A549 lung cancer cells in relation to cell death and reactive oxygen species (ROS). The growths of Calu-6 and A549 cells were diminished with an IC(50) of approximately 30 and 150 μM GA at 24 h, respectively. GA also inhibited the growth of primary human pulmonary fibroblast (HPF) cells with an IC(50) of about 300 μM. GA induced apoptosis and/or necrosis in lung cancer cells, which was accompanied by the loss of mitochondrial membrane potential (MMP, ΔΨ(m)). The percents of MMP (ΔΨ(m)) loss and death cells by GA were lower in A549 cells than in Calu-6 cells. Caspase inhibitors did not significantly rescued lung cancer cells from GA-induced cell death. GA increased ROS levels including O(2) (?-) and induced GSH depletion in both lung cancer cells. Z-VAD (pan-caspase inhibitor) did not decrease ROS levels and GSH depleted cell number in GA-treated lung cancer cells. In conclusion, GA inhibited the growth of lung cancer and normal cells. GA-induced lung cancer cell death was accompanied by ROS increase and GSH depletion.  相似文献   

8.
Bioenergetic aspects of apoptosis, necrosis and mitoptosis   总被引:6,自引:2,他引:4  
In this review I summarize interrelations between bioenergetic processes and such programmed death phenomena as cell suicide (apoptosis and necrosis) and mitochondrial suicide (mitoptosis). The following conclusions are made. (I) ATP and rather often mitochondrial hyperpolarization (i.e. an increase in membrane potential, ΔΨ) are required for certain steps of apoptosis and necrosis. (II) Apoptosis, even if it is accompanied by ΔΨ and [ATP] increases at its early stage, finally results in a ΔΨ collapse and ATP decrease. (III) Moderate (about three-fold) lowering of [ATP] for short and long periods of time induces apoptosis and necrosis, respectively. In some types of apoptosis and necrosis, the cell death is mediated by a ΔΨ-dependent overproduction of ROS by the initial (Complex I) and the middle (Complex III) spans of the respiratory chain. ROS initiate mitoptosis which is postulated to rid the intracellular population of mitochondria from those that are ROS overproducing. Massive mitoptosis can result in cell death due to release to cytosol of the cell death proteins normally hidden in the mitochondrial intermembrane space.  相似文献   

9.
This study examined the impact of ceramide, an intracellular mediator of apoptosis, on the mitochondria to test the hypothesis that ceramide utilized p38 MAPK in the mitochondria to alter mitochondrial potential and induce apoptosis. The capacity of ceramide to adversely affect mitochondria was demonstrated by the significant loss of mitochondrial potential (ΔΨm), indicated by a J-aggregate fluorescent probe, after embryonic chick cardiomyocytes were treated with the cell permeable ceramide analogue C2-ceramide. p38 MAPK was identified in the mitochondrial fraction of the cell and p38 MAPK phosphorylation in this mitochondrial fraction of the cell occurred with ceramide treatment. In addition, SAPK phosphorylation and a decrease in ERK phosphorylation occurred in whole cell lysates after ceramide treatment. The p38 MAPK inhibitor SB 202190 but not the MEK inhibitor PD 98059 significantly inhibited ceramide-induced apoptosis and loss of ΔΨm. These data suggest that p38 MAPK is present in the mitochondria and its activation by ceramide indicates local signaling more directly coupled to the mitochondrial pathway in apoptosis. (Mol Cell Biochem 278: 39–51, 2005)  相似文献   

10.
Zebularine (Zeb) as a DNA methyltrasferase (DNMT) inhibitor has various cellular effects such as cell growth inhibition and apoptosis. In the present study, we evaluated the effects of Zeb on the growth and death of HeLa cervical cancer cells. Zeb inhibited the growth of HeLa cells with an IC(50) of approximately 130?μM at 72?h in a dose-dependent manner. DNA flow cytometric analysis indicated that Zeb induced an S phase arrest of the cell cycle, which was accompanied by the increased levels of cdk2 and cyclin A proteins. This agent also induced apoptosis, which was accompanied by the loss of mitochondrial membrane potential (Ψ(m)), PARP-1 cleavage and the activation of caspase-3, -8 and -9. All of the tested caspase inhibitors significantly rescued some cells from Zeb-induced HeLa cell death. In relation to reactive oxygen species (ROS) and glutathione (GSH) levels, O (2) (?-) level was significantly increased in 100?μM Zeb-treated HeLa cells and caspase inhibitors reduced O (2) (?-) level in these cells. Zeb induced GSH depletion in HeLa cells, which was attenuated by caspase inhibitors. In conclusion, this is the first report that Zeb inhibited the growth of HeLa cells via cell cycle arrest and apoptosis.  相似文献   

11.
Incubation of T. cruzi epimastigotes with the lectin Cramoll 1,4 in Ca2+ containing medium led to agglutination and inhibition of cell proliferation. The lectin (50 μg/ml) induced plasma membrane permeabilization followed by Ca2+ influx and mitochondrial Ca2+ accumulation, a result that resembles the classical effect of digitonin. Cramoll 1,4 stimulated (five-fold) mitochondrial reactive oxygen species (ROS) production, significantly decreased the electrical mitochondrial membrane potential (ΔΨm) and impaired ADP phosphorylation. The rate of uncoupled respiration in epimastigotes was not affected by Cramoll 1,4 plus Ca2+ treatment, but oligomycin-induced resting respiration was 65% higher in treated cells than in controls. Experiments using T. cruzi mitochondrial fractions showed that, in contrast to digitonin, the lectin significantly decreased ΔΨm by a mechanism sensitive to EGTA. In agreement with the results showing plasma membrane permeabilization and impairment of oxidative phosphorylation by the lectin, fluorescence microscopy experiments using propidium iodide revealed that Cramoll 1,4 induced epimastigotes death by necrosis.  相似文献   

12.
Antimycin A (AMA) inhibits succinate oxidase and NADH oxidase, and also inhibits mitochondrial electron transport between cytochromes b and c. We investigated the involvement of ROS and GSH in AMA-induced HeLa cell death. AMA increased the intracellular H(2)O(2) and O(2)(*-) levels and reduced the intracellular GSH content. ROS scavengers (Tempol, Tiron, Trimetazidine and NAC) did not down-regulate the production of ROS and inhibit apoptosis in AMA-treated cells. Treatment with NAC and N-propylgallate showing the enhancement of GSH depletion in AMA-treated cells significantly intensified the levels of apoptosis. Calpain inhibitors I and II (calpain inhibitor III) and Ca(2+)-chelating agent (EGTA/AM) significantly reduced H(2)O(2) levels in AMA-treated HeLa cells. However, treatment with calpain inhibitor III intensified the levels of O(2)(*-) in AMA-treated cells. In addition, calpain inhibitor III strongly depleted GSH content with an enhancement of apoptosis in AMA-treated cells. Conclusively, the changes of ROS by AMA were not tightly correlated with apoptosis in HeLa cells. However, intracellular GSH levels are tightly related to AMA-induced cell death.  相似文献   

13.
A triterpenediol (TPD) comprising of isomeric mixture of 3α, 24-dihydroxyurs-12-ene and 3α, 24-dihydroxyolean-12-ene from Boswellia serrata induces apoptosis in cancer cells. An attempt was made in this study to investigate the mechanism of cell death by TPD in human leukemia HL-60 cells. It inhibited cell proliferation with IC50 ∼ 12 μg/ml and produced apoptosis as measured by various biological end points e.g. increased sub-G0 DNA fraction, DNA ladder formation, enhanced AnnexinV-FITC binding of the cells. Further, initial events involved massive reactive oxygen species (ROS) and nitric oxide (NO) formation, which were significantly inhibited by their respective inhibitors. Persistent high levels of NO and ROS caused Bcl-2 cleavage and translocation of Bax to mitochondria, which lead to loss of mitochondrial membrane potential (Δψm) and release of cytochrome c, AIF, Smac/DIABLO to the cytosol. These events were associated with decreased expression of survivin and ICAD with attendant activation of caspases leading to PARP cleavage. Furthermore, TPD up regulated the expression of cell death receptors DR4 and TNF-R1 level, leading to caspase-8 activation. These studies thus demonstrate that TPD produces oxidative stress in cancer cells that triggers self-demise by ROS and NO regulated activation of both the intrinsic and extrinsic signaling cascades.  相似文献   

14.
Mitochondrial membrane permeabilization (MMP) is considered as the “point-of-no-return” in numerous models of programmed cell death. Indeed, mitochondria determine the intrinsic pathway of apoptosis, and play a major role in the extrinsic route as well. MMP affects the inner and outer mitochondrial membranes (IM and OM, respectively) to a variable degree. OM permeabilization culminates in the release of proteins that normally are confined in the mitochondrial intermembrane space (IMS), including caspase activators (e.g. cytochrome c) and caspase-independent death effectors (e.g. apoptosis-inducing factor). Partial IM permeabilization disrupts mitochondrial ion and volume homeostasis and dissipates the mitochondrial transmembrane potential (ΔΨm). The assessment of early mitochondrial alterations allows for the identification of cells that are committed to die but have not displayed yet the apoptotic phenotype. Several techniques to measure MMP by cytofluorometry and fluorescence microscopy have been developed. Here, we summarize the currently available methods for the detection of MMP, and provide a comparative analysis of these techniques.  相似文献   

15.
Exposure of a cell to an electric field results in inducement of a voltage across its membrane (induced transmembrane voltage, ΔΨ m) and, for sufficiently strong fields, in a transient increase of membrane permeability (electroporation). We review the analytical, numerical and experimental methods for determination of ΔΨ m and a method for monitoring of transmembrane transport. We then combine these methods to investigate the correlation between ΔΨ m and molecular transport through an electroporated membrane for isolated cells of regular and irregular shapes, for cells in dense suspensions as well as for cells in monolayer clusters. Our experiments on isolated cells of both regular and irregular shapes confirm the theoretical prediction that the highest absolute values of ΔΨ m are found in the membrane regions facing the electrodes and that electroporation-mediated transport is confined to these same regions. For cells in clusters, the location of transport regions implies that, at the field strengths sufficient for electroporation, the cells behave as electrically insulated (i.e., as individual) cells. In contrast, with substantially weaker, nonelectroporating fields, potentiometric measurements show that the cells in these same clusters behave as electrically interconnected cells (i.e., as one large cell). These results suggest that sufficiently high electric fields affect the intercellular pathways and thus alter the electric behavior of the cells with respect to their normal physiological state.  相似文献   

16.
Most cancer cells, including GL15 glioblastoma cells, rely on glycolysis for energy supply. The effect of antiglycolytic bromopyruvate on respiratory parameters and viability of GL15 cells was investigated. Bromopyruvate caused Δψm and MTT collapse, ATP decrease, and cell viability loss without involving apoptotic or necrotic pathways. The autophagy marker LC3-II was increased. Δψm decrease was accompanied by reactive oxygen species (ROS) increase and cytochrome c (cyt c) disappearance, suggesting a link between free radical generation and intramitochondrial cyt c degradation. Indeed, the free radical inducer menadione caused a decrease in cyt c that was reversed by N-acetylcysteine. Cyt c is tightly bound to the inner mitochondrial membrane in GL15 cells, which may confer protein peroxidase activity, resulting in auto-oxidation and protein targeting to degradation in the presence of ROS. This process is directed towards impairment of the apoptotic cyt c cascade, although cells are committed to die.  相似文献   

17.
Arsenic trioxide (ATO) can affect many biological functions such as apoptosis and differentiation in various cells. We investigated the involvement of ROS and GSH in ATO-induced HeLa cell death using ROS scavengers, especially N-acetylcysteine (NAC). ATO increased intracellular O(2)(*-) levels and reduced intracellular GSH content. The ROS scavengers, Tempol, Tiron and Trimetazidine, did not significantly reduce levels of ROS or GSH depletion in ATO-treated HeLa cells. Nor did they reduce the apoptosis induced by ATO. In contrast, treatment with NAC reduced ROS levels and GSH depletion in the ATO-treated HeLa cells and prevented ATO-induced apoptosis. Treatment with exogenous SOD and catalase reduced the depletion of GSH content in ATO-treated cells. Catalase strongly protected the cells from ATO-induced apoptosis. In addition, treatment with SOD, catalase and NAC slightly inhibited the G1 phase accumulation induced by ATO. In conclusion, NAC protects HeLa cells from apoptosis induced by ATO by up-regulating intracellular GSH content and partially reducing the production of O(2)(*-).  相似文献   

18.
15-Deoxy-Δ12,14-prostaglandin J2 (15d-PGJ2) is a naturally occurring cyclopentenone metabolite of prostaglandin D2 (PGD2) and is known as a specific potent ligand for the peroxisome proliferators activator receptor-γ (PPARγ). 15d-PGJ2 inhibits cell growth and induces apoptosis in a number of different cancer cells. However, the underlying mechanism by which 15d-PGJ2 induces cell death remains to be defined. The present study was undertaken to determine the effect of 15d-PGJ2 on cell death in A172 human glioma cells. 15d-PGJ2 caused reactive oxygen species (ROS) generation. 15d-PGJ2-induced ROS production and cell death were prevented by the antioxidant N-acetylcysteine. Activation of mitogen-activated protein kinases (MAPK) was not observed in cells treated with 15d-PGJ2 and inhibitors of MAPK subfamilies also were not effective in preventing 15d-PGJ2-induced cell death. 15d-PGJ2 treatment caused mitochondrial dysfunction, as evidenced by depolarization of mitochondrial membrane potential. 15d-PGJ2 induced caspase activation at 24 h of treatment, but the 15d-PGJ2-induced cell death was not prevented by caspase inhibitors. The antiapoptotic protein XIAP levels and release of apoptosis inducing factor (AIF) into the cytosol were not altered by 15d-PGJ2 treatment. Taken together, these findings indicate that 15d-PGJ2 triggers cell death through a caspase-independent mechanism and ROS production and disruption of mitochondrial membrane potential play an important role in the 15d-PGJ2-induced cell death in A172 human glioma cells.  相似文献   

19.
Background Hyperhomocysteinaemia (HHC) is thought to be a risk factor for cardiovascular disease including heart failure. While numerous studies have analyzed the role of homocysteine (Hcy) in the vasculature, only a few studies investigated the role of Hcy in the heart. Therefore we have analyzed the effects of Hcy on isolated cardiomyocytes. Methods H9c2 cells (rat cardiomyoblast cells) and adult rat cardiomyocytes were incubated with Hcy and were analyzed for cell viability. Furthermore, we determined the effects of Hcy on intracellular mediators related to cell viability in cardiomyocytes, namely NOX2, reactive oxygen species (ROS), mitochondrial membrane potential (ΔΨ m) and ATP concentrations. Results We found that incubation of H9c2 cells with 0.1 mM D,L-Hcy (= 60 μM l-Hcy) resulted in an increase of ΔΨ m as well as ATP concentrations. 1.1 mM d,l-Hcy (= 460 μM l-Hcy) induced reversible flip-flop of the plasma membrane phospholipids, but not apoptosis. Incubation with 2.73 mM d,l-Hcy (= 1.18 mM l-Hcy) induced apoptosis and necrosis. This loss of cell viability was accompanied by a thread-to-grain transition of the mitochondrial reticulum, ATP depletion and nuclear NOX2 expression coinciding with ROS production as evident from the presence of nitrotyrosin residues. Notably, only at this concentration we found a significant increase in S-adenosylhomocysteine which is considered the primary culprit in HHC. Conclusion We found concentration-dependent effects of Hcy in cardiomyocytes, varying from induction of reversible flip-flop of the plasma membrane phospholipids, to apoptosis and necrosis.  相似文献   

20.
Pulse-treatment of U-937 human promonocytic cells with cadmium chloride followed by recovery caused caspase-9/caspase-3-dependent, caspase-8-independent apoptosis. However, pre-incubation with the glutathione (GSH)-suppressing agent DL-buthionine-(S,R)-sulfoximine (cadmium/BSO), or co-treatment with H2O2 (cadmium/H2O2), switched the mode of death to caspase-independent necrosis. The switch from apoptosis to necrosis did not involve gross alterations in Apaf-1 and pro-caspase-9 expression, nor inhibition of cytochrome c release from mitochondria. However, cadmium/H2O2-induced necrosis involved ATP depletion and was prevented by 3-aminobenzamide, while cadmium/BSO-induced necrosis was ATP independent. Pre-incubation with BSO increased the intracellular cadmium accumulation, while co-treatment with H2O2 did not. Both treatments caused intracellular peroxide over-accumulation and disruption of mitochondrial transmembrane potential (ΔΨm). However, while post-treatment with N-acetyl-L-cysteine or butylated hydroxyanisole reduced the cadmium/BSO-mediated necrosis and ΔΨm disruption, it did not reduce the effects of cadmium/H2O2. Bcl-2 over-expression, which reduced peroxide accumulation without affecting the intracellular GSH content, attenuated necrosis generation by cadmium/H2O2 but not by cadmium/BSO. By contrast, AIF suppression, which reduced peroxide accumulation and increased the GSH content, attenuated the toxicity of both treatments. These results unravel the existence of two different oxidation-mediated necrotic pathways in cadmium-treated cells, one of them resulting from ATP-dependent apoptosis blockade, and the other involving the concurrence of multiple regulatory factors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号