首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Abstract: Deposit of β-amyloid protein (Aβ) in Alzheimer's disease brain may contribute to the associated neurodegeneration. We have studied the neurotoxicity of Aβ in primary cultures of murine cortical neurons, with the aim of identifying pharmacologic ways of attenuating the injury. Exposure of cultures to Aβ (25–35 fragment; 3–25 4mU M ) generally triggers slow, concentration-dependent neurodegeneration (over 24–72 h). With submaximal Aβ- (25–35) exposure (10 μ M ), substantial (>40% within 48 h) degeneration often occurs and is markedly attenuated by the presence of the Ca2+ channel blockers nimodipine (1–20 μ M ) and Co2+ (100 μ M ) during the Aβ exposure. However, Aβ neurotoxicity is not affected by the presence of glutamate receptor antagonists. We suggest that Ca2+ influx through voltage-gated Ca2+ channels may contribute to Aβ-induced neuronal injury and that nimodipine and Co2+, by attenuating such influx, are able to attenuate Aβ neurotoxicity.  相似文献   

2.
Abstract: Amyloid β protein (Aβ), the central constituent of senile plaques in Alzheimer's disease (AD) brain, is known to exert toxic effects on cultured neurons. The role of the voltage-sensitive Ca2+ channel (VSCC) in β(25–35) neurotoxicity was examined using rat cultured cortical and hippocampal neurons. When L-type VSCCs were blocked by application of nimodipine, β(25–35) neurotoxicity was attenuated, whereas application of ω-conotoxin GVIA (ω-CgTX-GVIA) or ω-agatoxin IVA (ω-Aga-IVA), the blocker for N- or P/Q-type VSCCs, had no effects. Whole-cell patch-clamp studies indicated that the Ca2+ current density of β(25–35)-treated neurons is about twofold higher than that of control neurons. Also, β(25–35) increased Ca2+ uptake, which was sensitive to nimodipine. The 2',7'-dichlorofluorescin diacetate assay showed the ability of β(25–35) to produce reactive oxygen species. Nimodipine had no effect on the level of free radicals. In contrast, vitamin E, a radical scavenger, reduced the level of free radicals, neurotoxicity, and Ca2+ uptake. These results suggest that β(25–35) generates free radicals, which in turn, increase Ca2+ influx via the L-type VSCC, thereby inducing neurotoxicity.  相似文献   

3.
Abstract: The Ca2+/calmodulin-dependent phosphatase calcineurin may have physiological and pathological roles in neurons, but little is known about the roles of the enzyme in glial cells. We have previously reported that reperfusion of cultured astrocytes in Ca2+-containing medium after exposure to Ca2+-free medium caused Ca2+ influx followed by delayed cell death. In this study, we examined if calcineurin is involved in this Ca2+-mediated astrocytic injury. FK506, an inhibitor of calcineurin, protected cultured rat astrocytes against paradoxical Ca2+ challenge-induced injury in a dose-dependent manner (10−10–10−8 M ). Cyclosporin A at 1 µ M mimicked the effect of FK506. Rapamycin (1 µ M ) did not affect astrocyte injury, but it blocked the protective effect of FK506. Deltamethrin (20 n M ), another calcineurin inhibitor, had a similar protective effect, whereas okadaic acid did not. FK506 affected neither paradoxical Ca2+ challenge-induced increase in cytosolic Ca2+ level nor Na+-Ca2+ exchange activity in the cells, suggesting that the calcineurin is involved in processes downstream of increased cytosolic Ca2+ level. Immunochemical studies showed that both calcineurin A (probably the Aβ2 isoform) and B subunits were expressed in the cells. It is concluded that calcineurin is present in cultured astrocytes and it has a pathological role in the cells.  相似文献   

4.
Abstract: The effects of synthetic β-amyloid (Aβ1–42) on cell viability and cellular Ca2+ homeostasis have been studied in the human neuron-like NT2N cell, which differentiates from a teratocarcinoma cell line, NTera2/C1.D1, by retinoic acid treatment. NT2N viability was measured using morphological criteria and fluorescent live/dead staining and quantified using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide metabolism. Aβ1–42 dose-dependently caused NT2N cell death when it was present in the cell culture for 14 days but had no effect on viability when it was present for 4 days. The lowest effective concentration was 4 µ M , and the strongest effect was produced by 40 µ M . Control NT2N cells produced spontaneous cytosolic Ca2+ oscillations under basal conditions. These oscillations were inhibited dose-dependently (0.4–40 µ M ) by Aβ1–42 that was present in the cell culture for 1 or 4 days. Ca2+ wave frequency was decreased from 0.21 ± 0.02 to 0.05 ± 0.02/min, amplitude from 88 ± 8 to 13 ± 4 n M , and average Ca2+ level from 130 ± 8 to 58 ± 3 n M . The Ca2+ responses to 30 m M K+ and 100 µ M glutamate were not different between control and Aβ-treated cells. Thus, the results do not support the hypothesis that cytosolic early Ca2+ accumulation mediates Aβ-induced NT2N cell death.  相似文献   

5.
Abstract: We examined the mechanism underlying the ATP-induced increase in the cytosolic Ca2+ concentration ([Ca]in) in acutely isolated chick ciliary ganglion neurons, using fura-2 microfluorometry. The ATP-induced increase in [Ca]in was dependent on external Ca2+, was blocked in a dose-dependent manner by reactive blue 2, and was substantially inhibited by both L- and N-type Ca2+ channel blockers. ATP was effective in increasing [Ca]in in the presence of a desensitizing concentration of nicotine (100 µ M ), and simultaneous addition of maximal doses of ATP and nicotine caused an additive increase in [Ca]in, suggesting that ATP acts on a site distinct from nicotinic acetylcholine receptors. ATP also increased the cytosolic Na+ concentration as determined by sodium-binding benzofuran isophthalate microfluorometry. These results suggest that ATP increases Na+ influx through P2 purinoceptor-associated channels resulting in membrane depolarization, which in turn increases Ca2+ influx through voltage-dependent Ca2+ channels. However, ATP still caused a small increase in [Ca]in under Na+-free conditions, and this [Ca]in increase was little affected by Ca2+ channel blockers. ATP also increased Mn2+ influx under Na+-free conditions, as indicated by quenching of fura-2 fluorescence. These results suggest that nonselective cationic channels activated by ATP are permeable not only to Ca2+ but also to Mn2+, in addition to monovalent cations.  相似文献   

6.
We show here that, within 1–2 min of application, systemin triggers a transient increase of cytoplasmic free calcium concentration ([Ca2+]c) in cells from Lycopersicon esculentum mesophyll. The systemin-induced Ca2+ increase was slightly but not significantly reduced by L-type Ca2+ channel blockers (nifedipine, verapamil and diltiazem) and the Ca2+ chelator [ethylene glycol tetraacetic acid (EGTA)], whereas inorganic Ca2+ channel blockers (LaCl3, CdCl2 and GdCl3) and compounds affecting the release of intracellular Ca2+ from the vacuole (ruthenium red, LiCl, neomycin) strongly reduced the systemin-induced [Ca2+]c increase. By contrast, no inhibitory effect was seen with the potassium and chloride channel blockers tested. Unlike systemin, other inducers of proteinase inhibitor (PI) and of wound-induced protein synthesis, such as jasmonic acid (JA) and bestatin, did not trigger an increase of cytoplasmic Ca2+. The systemin-induced elevation of cytoplasmic Ca2+ which might be an early step in the systemin signalling pathway, appears to involve an influx of extracellular Ca2+ simultaneously through several types of Ca2+ permeable channels, and a release of Ca2+ from intracellular stores sensitive to blockers of inositol 1,4,5-triphosphate (IP3)- and cyclic adenasine 5'-diphosphoribose (cADPR)-mediated Ca2+ release.  相似文献   

7.
Abstract: In the present communication we report that Ca2+-dependent acetylcholine release from K+-depolarized Torpedo electric organ synaptosomes is inhibited by morphine, and that this effect is blocked by the opiate antagonist naloxone. This finding suggests that the purely cholinergic Torpedo electric organ neurons contain pre-synaptic opiate receptors whose activation inhibits acetylcholine release. The mechanisms underlying this opiate inhibition were investigated by comparing the effects of morphine on acetylcholine release induced by K+ depolarization and by the Ca2+ ionophore A23187 and by examining the effect of morphine on 45Ca2+ influx into Torpedo nerve terminals. These experiments revealed that morphine inhibits 45Ca2+ influx into K+-depolarized Torpedo synaptosomes and that this effect is blocked by naloxone. The effects of morphine on K+ depolarization-mediated 45Ca2+ influx and on acetylcholine release have similar dose dependencies (half-maximal inhibition at 0.5–1 μ M ), suggesting that opiate inhibition of release is due to blockage of the presynaptic voltage-dependent Ca2+ channel. This conclusion is supported by the finding that morphine does not inhibit acetylcholine release when the Ca2+ channel is bypassed by introducing Ca2+ into the Torpedo nerve terminals via the Ca2+ ionophore.  相似文献   

8.
Abstract: Nitric oxide (NO) has been shown to be an important mediator in several forms of neurotoxicity. We previously reported that NO alters intracellular Ca2+ concentration ([Ca2+]i) homeostasis in cultured hippocampal neurons during 20-min exposures. In this study, we examine the relationship between late alterations of [Ca2+]i homeostasis and the delayed toxicity produced by NO. The NO-releasing agent S -nitrosocysteine (SNOC; 300 µ M ) reduced survival by about one half 1 day after 20-min exposures, as did other NO-releasing agents. SNOC also was found to produce prolonged elevations of [Ca2+]i, persisting at 2 and 6 h. Hemoglobin, a scavenger of NO, blocked both the late [Ca2+]i elevation and the delayed toxicity of SNOC. Removal of extracellular Ca2+ during the 20-min SNOC treatment failed to prevent the late [Ca2+]i elevations and did not prevent the delayed toxicity, but removal of extracellular Ca2+ for the 6 h after exposure as well blocked most of the toxicity. Western blots showed that SNOC exposure resulted in an increased proteolytic breakdown of the structural protein spectrin, generating a fragment with immunoreactivity suggesting activity of the Ca2+-activated protease calpain. The spectrin breakdown and the toxicity of SNOC were inhibited by treatment with calpain antagonists. We conclude that exposures to toxic levels of NO cause prolonged disruption of [Ca2+]i homeostatic mechanisms, and that the resulting persistent [Ca2+]i elevations contribute to the delayed neurotoxicity of NO.  相似文献   

9.
A low fluence of ultraviolet radiation (UV) causes cultured cells of Rosa damascena Mill cv. Gloire de Guilan to lose intracellular K+. This effect required the presence of Ca2+ in the medium. A reduction in the concentration of free Ca2+ to 10−5 M with ethyleneglycol-bis-(β-aminoethyl-ether)-N.N.N',N'-tetraacetic acid (EGTA) buffer inhibited the UV-stimulated efflux; this was correlated with a discharge of the membrane potential and a stimulation of the leakage of K+ from unirradiated cells. All the same effects were seen with La3+ at 0.2 m M. At 0.02 m M La3+, the UV-stimulated efflux of K+ was blocked without concomitant effects on the membrane potential or K+ efflux from control cells. It is suggested that removal of Ca2+ blocks or masks the UV-induced leakage of K+ by destabilizing the plasma membrane. In addition, La3+ may specifically inhibit the UV-stimulated opening of K+ or anion channels.  相似文献   

10.
Abstract: Increasing data suggest that the amyloid β-peptide (Aβ), which accumulates in the brains of Alzheimer's victims, plays a role in promoting neuronal degeneration. Cell culture studies have shown that Aβ can be neurotoxic and recent findings suggest that the mechanism involves destabilization of cellular calcium homeostasis. We now report that cytochalasin D, a compound that depolymerizes actin microfilaments selectively, protects cultured rat hippocampal neurons against Aβ neurotoxicity. Cytochalasin D was effective at concentrations that depolymerized actin (10–100 n M ). The elevation of [Ca2+]i induced by Aβ, and the enhancement of [Ca2+]i responses to glutamate in neurons exposed to Aβ, were markedly attenuated in neurons pretreated with cytochalasin D. The protective effect of cytochalasin D appeared to result from a specific effect on actin filaments and reduction in calcium influx, because cytochalasin E, another actin filament-disrupting agent, also protected neurons against Aβ toxicity; the microtubule-disrupting agent colchicine was ineffective; cytochalasin D did not protect neurons against the toxicity of hydrogen peroxide. These findings suggest that actin filaments play a role in modulating [Ca2+]i responses to neurotoxic insults and that depolymerization of actin can protect neurons against insults relevant to the pathogenesis of Alzheimer's disease.  相似文献   

11.
Recent studies have suggested that Ca2+/calmodulin (CaM) or CaM-like proteins may be involved in blue light (BL)-dependent proton pumping in guard cells. As the increase in cytosolic concentration of Ca2+ is required for the activation of CaM and CaM-like proteins, the origin of the Ca2+ was investigated by measuring BL-dependent proton pumping with various treatments using guard cell protoplasts (GCPs) from Vicia faba . BL-dependent proton pumping was affected neither by Ca2+ channel blockers nor by changes of Ca2+ concentration in the medium used for the GCPs. Addition of Ca2+ ionophores and an agonist to GCPs did not induce proton pumping. However, BL-dependent proton pumping was inhibited by 10 m M caffeine, which releases Ca2+ from the intracellular stores, and by 10 μ M 2,5-di-( tert -butyl)-1,4-benzohydroquinone (BHQ) and 10 μ M cyclopiazonic acid (CPA), inhibitors of Ca2+-ATPase in the sarcoplasmic and endoplasmic reticulum (ER). By contrast, the inhibitions were not observed by 10 μ M thapsigargin, an inhibitor of animal ER-type Ca2+-ATPase. The inhibitions by caffeine and BHQ were reversible. Light-dependent stomatal opening in the epidermis of Vicia was inhibited by caffeine, BHQ, and CPA. From these results, we conclude that the Ca2+ thought to be required for BL-dependent proton pumping may originate from intracellular Ca2+ stores, most likely from ER in guard cells, and that this origin of Ca2+ may generate a stimulus-specific Ca2+ signal for stomatal opening.  相似文献   

12.
Abstract: Human NT2-N neurons express Ca2+-permeable α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid glutamate receptors (AMPA-GluRs) and become vulnerable to excitotoxicity when AMPA-GluR desensitization is blocked with cyclothiazide. Although the initial increase in intracellular Ca2+ levels ([Ca2+]i) was 1.9-fold greater in the presence than in the absence of cyclothiazide, Ca2+ entry via AMPA-GluRs in an early phase of the exposure was not necessary to elicit excitotoxicity in these neurons. Rather, subsequent necrosis was caused by a >40-fold rise in [Na+]i, which induced a delayed [Ca2+]i rise. Transfer of the neurons to a 5 m M Na+ medium after AMPA-GluR activation accelerated the delayed [Ca2+]i rise and intensified excitotoxicity. Low-Na+ medium-enhanced excitotoxicity was partially blocked by amiloride or dizocilpine (MK-801), and completely blocked by removal of extracellular Ca2+, suggesting that Ca2+ entry by reverse operation of Na+/Ca2+ exchangers and via NMDA glutamate receptors was responsible for the neuronal death after excessive Na+ loading. Our results serve to emphasize the central role of neuronal Na+ loading in AMPA-GluR-mediated excitotoxicity in human neurons.  相似文献   

13.
When sperm of the sea urchin, Hemicentrotus pulcherrimus , were exposed to high pH (9.0) sea water, they showed large increases in intracellular Ca2+ ([Ca2+]i) and pH (pHi) and underwent the acrosome reaction (AR) without the aid of the egg jelly. Not only [Ca2+]i increase but also pHi rise did not occur under Ca2+-free conditions. Both the increases in [Ca2+]i and pHi and the AR by high pH were inhibited by a Ca2+ channel blockers, verapamil and nisoldipine, and by a lectin, wheat germ agglutinin (WGA) which interacts with a 220 kD membrane glycoprotein of sperm. These reagents inhibited also the AR by the egg jelly. The inhibitory effects of WGA were immediately canceled by the addition of N-acetyl-D-glucosamine, a sugar which is known to remove WGA from its binding site. These results suggest that 1) the same Ca2+ transport system is activated by high external pH and the egg jelly, 2) increase in [Ca2+]i is prerequisite for the stimulation of the H+-efflux system(s) and 3) the 220 kD WGA-binding membrane protein functions as a regulator protein of Ca2+ transport system.  相似文献   

14.
15.
Abstract: Hypoxia (5% O2) enhanced catecholamine release in cultured rat adrenal chromaffin cells. Also, the intracellular free Ca2+ concentration ([Ca2+]i) increased within 3 min in ∼50% of the chromaffin cells under hypoxic stimulation. The increase depended on the presence of extracellular Ca2+. Nifedipine and ω-conotoxin decreased the population of the cells that showed the hypoxia-induced [Ca2+]i increase, showing that the Ca2+ influx was attributable to L- and N-type voltage-dependent Ca2+ channels. The membrane potential was depolarized during the perfusion with the hypoxic solution and returned to the basal level following the change to the normoxic solution (20% O2). Membrane resistance increased twofold under the hypoxic condition. The current-voltage relationship showed a hypoxia-induced decrease in the outward K+ current. Among the K+ channel openers tested, cromakalim and levcromakalim, both of which interact with ATP-sensitive K+ channels, inhibited the hypoxia-induced [Ca2+]i increase and catecholamine release. The inhibitory effects of cromakalim and levcromakalim were reversed by glibenclamide and tolbutamide, potent blockers of ATP-sensitive K+ channels. These results suggest that some fractions of adrenal chromaffin cells are reactive to hypoxia and that K+ channels sensitive to cromakalim and glibenclamide might have a crucial role in hypoxia-induced responses. Adrenal chromaffin cells could thus be a useful model for the study of oxygen-sensing mechanisms.  相似文献   

16.
Abstract: Rapid Ca2+ signals evoked by K+ depolarization of rat cerebral cortical synaptosomes were measured by dual-channel Ca2+ spectrofluorometry coupled to a stopped-flow device. Kinetic analysis of the signal rise phase at various extracellular Ca2+ concentrations revealed that the responsible voltage-dependent Ca2+ channels, previously identified as P-type Ca2+ channels, inactivate owing to the rise in intracellular Ca2+ levels. At millimolar extracellular Ca2+ concentrations the channels were inactivated very rapidly and the rate was dependent on the high influx rate of Ca2+, thus limiting the Ca2+ signal amplitudes to 500–600 n M. A slower, probably voltage-dependent regulation appears to be effective at lower Ca2+ influx rates, leading to submaximal Ca2+ signal amplitudes. The functional feedback regulation of calcium channels via a sensor for intracellular Ca2+ levels appears to be responsible for the different inhibition characteristics of Cd2+ versus ω-agatoxin IVa.  相似文献   

17.
Abstract: Increasing extracellular pH from 7.4 to 8.5 caused a dramatic increase in the time required to recover from a glutamate (3 µ M , for 15 s)-induced increase in intracellular Ca2+ concentration ([Ca2+]i) in indo-1-loaded cultured cortical neurons. Recovery time in pH 7.4 HEPES-buffered saline solution (HBSS) was 126 ± 30 s, whereas recovery time was 216 ± 19 s when the pH was increased to 8.5. Removal of extracellular Ca2+ did not inhibit the prolongation of recovery caused by increasing pH. Extracellular alkalinization caused rapid intracellular alkalinization following glutamate exposure, suggesting that pH 8.5 HBSS may delay Ca2+ recovery by affecting intraneuronal Ca2+ buffering mechanisms, rather than an exclusively extracellular effect. The effect of pH 8.5 HBSS on Ca2+ recovery was similar to the effect of the mitochondrial uncoupler carbonyl cyanide p -(trifluoromethoxyphenyl)hydrazone (FCCP; 750 n M ). However, pH 8.5 HBSS did not have a quantitative effect on mitochondrial membrane potential comparable to that of FCCP in neurons loaded with a potential-sensitive fluorescent indicator, 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethylbenzimidazolocarbocyanine iodide (JC-1). We found that the effect of pH 8.5 HBSS on Ca2+ recovery was completely inhibited by the mitochondrial Na+/Ca2+ exchange inhibitor CGP-37157 (25 µ M ). This suggests that increased mitochondrial Ca2+ efflux via the mitochondrial Na2+/Ca2+ exchanger is responsible for the prolongation of [Ca2+]i recovery caused by alkaline pH following glutamate exposure.  相似文献   

18.
Abstract: Neuropeptide FF (NPFF), an FMRFamide-like peptide with antiopioid properties, inhibits morphine-induced analgesia but also produces hyperalgesia. In the present study, the mechanisms of NPFF release were investigated in an in vitro superfusion system with rat spinal cord slices. The opening of voltage-sensitive Na+ channels with veratridine (20 µ M ) induced calcium-dependent NPFF release, which was abolished by tetrodotoxin (1 µ M ), suggesting that NPFF release depends on nerve impulse activity. We also showed that NPFF release was a function of the extent of depolarization and was calcium dependent. The 30 m M K+-induced release was blocked by Co2+ or Ni2+ (2.5 m M ) but was unaffected by Ca2+ channel blockers of the L type—Cd2+ (100 µ M ), nifedipine or nimodipine (10 µ M ), diltiazem (20 µ M ), or verapamil (50 µ M )—or the N type—ω-conotoxin GVIA (1 µ M ). In contrast, ω-agatoxin IVA (1 µ M ) led to a 65% reduction in NPFF release, suggesting that P-type Ca2+ channels play a prominent role. The 35% remaining release resulted from activation of an unknown subtype. The NPFF-like material in superfusates recognized spinal NPFF receptors, suggesting that NPFF release in the spinal cord has a physiological role.  相似文献   

19.
Abstract: Nitric oxide has been recognized in recent years as an important mediator of neuronal toxicity, which in many cases involves alterations of the cytoplasmic Ca2+ concentration ([Ca2+]i). In [Ca2+]i fluorimetric experiments on cultured hippocampal neurons, the nitric oxide-releasing agent S -nitrosocysteine produced a delayed rise in [Ca2+]i over a 20-min exposure, which was accompanied by a progressive slowing of the kinetics of recovery from depolarization-induced [Ca2+]i transients. These effects were blocked by oxyhemoglobin and by superoxide dismutase, confirming nitric oxide as the responsible agent, and suggesting that they involved peroxynitrite formation. Similar alterations of [Ca2+]i homeostasis were produced by the mitochondrial ATP synthase inhibitor oligomycin, and when an ATP-regenerating system was supplied via the patch pipette in combined whole-cell patch-clamp-[Ca2+]i fluorimetry experiments, S -nitrosocysteine had no effect on the resting [Ca2+]i or on the recovery kinetics of [Ca2+]i transients induced by direct depolarization. We conclude that prolonged exposure to nitric oxide disrupts [Ca2+]i homeostasis in hippocampal neurons by impairing Ca2+ removal from the cytoplasm, possibly as a result of ATP depletion. The resulting persistent alterations in [Ca2+]i may contribute to the delayed neurotoxicity of nitric oxide.  相似文献   

20.
Abstract: The role of the Na+/Ca2+ exchanger and intracellular nonmitochondrial Ca2+ pool in the regulation of cytosolic free calcium concentration ([Ca2+]i) during catecholamine secretion was investigated. Catecholamine secretion and [Ca2+]i were simultaneously monitored in a single chromaffin cell. After high-K+ stimulation, control cells and cells in which the Na+/Ca2+ exchange activity was inhibited showed similar rates of [Ca2+]i elevation. However, the recovery of [Ca2+]i to resting levels was slower in the inhibited cells. Inhibition of the exchanger increased the total catecholamine secretion by prolonging the secretion. Inhibition of the Ca2+ pump of the intracellular Ca2+ pool with thapsigargin caused a significant delay in the recovery of [Ca2+]i and greatly enhanced the secretory events. These data suggest that both the Na+/Ca2+ exchanger and the thapsigargin-sensitive Ca2+ pool are important in the regulation of [Ca2+]i and, by modulating the time course of secretion, are important in determining the extent of secretion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号