首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Two ent-18-acetoxy-6-oxomanoyl oxides, epimers at C-13, have been prepared from ent-6alpha,8alpha,18-trihydroxylabda-13(16),14-diene (andalusol), isolated from Sideritis foetens, by means of several chemical pathways and a regioselective acylation with Candida cylindracea lipase (CCL). Biotransformation of these 13-epimeric ent-manoyl oxides by Fusarium moniliforme and Neurospora crassa produced mainly ent-1beta- or ent-11alpha-hydroxylations, as well as their deacetylated derivatives, in both epimers. In addition, with the 13-epi substrate N. crassa originated other minor hydroxylations by the ent-alpha face at C-1 or at C-12, whereas an ent-11beta-hydroxyl group, probably originated by reduction of an 11-oxo derivative also isolated, was achieved with the 13-normal substrate.  相似文献   

2.
Biotransformation of sesquiterpene 4beta-hydroxyeudesmane-1,6-dione by the filamentous fungi Gliocladium roseum and Exserohilum halodes was achieved. With Exserohilum halodes, only one metabolite was obtained, as a result of the regio- and stereoselective reduction of the keto group at C-1, which is difficult to achieve by chemical means. Five metabolites were produced with Gliocladium roseum, three of which, the 7alpha-hydroxylated, the 7alpha,11- and the 1alpha,8alpha-dihydroxylated derivatives, have not previously been reported. The hydroxylation at C-11 is the main action of this microorganism. These 11-hydroxylated compounds can be chemically transformed into 6beta,12-eudesmanolides.  相似文献   

3.
The rabbit liver microsomal P-450 catalyzed oxidation of styrene (1a) and isomeric phenylpropenes, trans-1-phenylpropene (1b), cis-1-phenylpropene (1c) and 3-phenylpropene (1d), was investigated and the enantioselectivity of the epoxidation of the olefinic double bond was determined by checking the enantiomeric excesses of the corresponding first formed epoxides (2). These enantiomeric excesses were always modest, ranging between 7% of (1S,2S)-(2b) and 22% of (1R,2R)-(2c). In the case of (1d) a nonenantioselective hydroxylation at the benzylic-allylic C(3) was also oberved. The ratio between this hydroxylation and olefin epoxidation of (Id) was 1:2.  相似文献   

4.
The secosteroid hormone 1alpha,25-dihydroxyvitamin D(3) [1alpha,25(OH)(2)D(3)] is metabolized in its target tissues through modifications of both the side chain and the A-ring. The C-24 oxidation pathway, the main side chain modification pathway is initiated by hydroxylation at C-24 of the side chain and leads to the formation of the end product, calcitroic acid. The C-23 and C-26 oxidation pathways, the minor side chain modification pathways are initiated by hydroxylations at C-23 and C-26 of the side chain and lead to the formation of the end product, calcitriol lactone. The C-3 epimerization pathway, the newly discovered A-ring modification pathway is initiated by epimerization of the hydroxyl group at C-3 of the A-ring to form 1alpha,25(OH)(2)-3-epi-D(3). A rational design for the synthesis of potent analogs of 1alpha,25(OH)(2)D(3) is developed based on the knowledge of the various metabolic pathways of 1alpha,25(OH)(2)D(3). Structural modifications around the C-20 position, such as C-20 epimerization or introduction of the 16-double bond affect the configuration of the side chain. This results in the arrest of the C-24 hydroxylation initiated cascade of side chain modifications at the C-24 oxo stage, thus producing the stable C-24 oxo metabolites which are as active as their parent analogs. To prevent C-23 and C-24 hydroxylations, cis or trans double bonds, or a triple bond are incorporated in between C-23 and C-24. To prevent C-26 hydroxylation, the hydrogens on these carbons are replaced with fluorines. Furthermore, testing the metabolic fate of the various analogs with modifications of the A-ring, it was found that the rate of C-3 epimerization of 5,6-trans or 19-nor analogs is decreased to a significant extent. Assembly of all these protective structural modifications in single molecules has then produced the most active vitamin D(3) analogs 1alpha,25(OH)(2)-16,23-E-diene-26,27-hexafluoro-19-nor-D(3) (Ro 25-9022), 1alpha,25(OH)(2)-16,23-Z-diene-26,27-hexafluoro-19-nor-D(3) (Ro 26-2198), and 1alpha,25(OH)(2)-16-ene-23-yne-26,27-hexafluoro-19-nor-D(3) (Ro 25-6760), as indicated by their antiproliferative activities.  相似文献   

5.
The rabbit liver microsomal P-450 catalyzed oxidation of styrene (1a) and isomeric phenylpropenes, trans-1-phenylpropene (1b), cis-1-phenylpropene (1c) and 3-phenylpropene (1d), was investigated and the enantioselectivity of the epoxidation of the olefinic double bond was determined by checking the enantiomeric excesses of the corresponding first formed epoxides (2). These enantiomeric excesses were always modest, ranging between 7% of (1S,2S)-(2b) and 22% of (1R,2R)-(2c). In the case of (1d) a nonenantioselective hydroxylation at the benzylic-allylic C(3) was also oberved. The ratio between this hydroxylation and olefin epoxidation of (Id) was 1:2.  相似文献   

6.
In this paper, we report the synthesis and bioactivity of four synthetic analogues of 28-homobrassinosteroids, in order to evaluate the influence in bioactivity when the C-6 keto group is replaced by different functional groups. The synthetic analogues are 6-deoxo-28-homocastasterone [(22R,23R)-stigmasta-2alpha,3alpha,22,23-tetraol], 6alpha-hydroxy-28-homocastasterone [(22R,23R)-stigmasta-2alpha,3alpha,6alpha,22,23-pentaol], 6beta-hydroxy-28-homocastasterone [(22R,23R)-stigmasta-2alpha,3alpha,6beta,22,23-pentaol], and [(22R,23R)-6alpha-fluorostigmasta-2alpha,3alpha,22,23-tetraol]. Results indicate that replacement of the 6-keto moiety by an beta or alpha hydroxyl group led to a decrease in activity, whereas the 6-deoxo analogue showed a very low activity, confirming the importance of an electronegative moiety at C-6 to observe hormonal potency. The 6alpha-fluorinated analogue elicited a low activity, similar to that of the 6-deoxo analogue.  相似文献   

7.
1alpha,25-Dihydroxyvitamin D(3) [1alpha,25(OH)(2)D(3)] is mainly metabolized via the C-24 oxidation pathway and undergoes several side chain modifications which include C-24 hydroxylation, C-24 ketonization, C-23 hydroxylation and side chain cleavage between C-23 and C-24 to form the final product, calcitroic acid. In a recent study we reported that 1alpha,25-dihydroxyvitamin D(2) [1alpha,25(OH)(2)D(2)] like 1alpha,25(OH)(2)D(3), is also converted into the same final product, calcitroic acid. This finding indicated that 1alpha,25(OH)(2)D(2) also undergoes side chain cleavage between C-23 and C-24. As the side chain of 1alpha,25(OH)(2)D(2) when compared to the side chain of 1alpha,25(OH)(2)D(3), has a double bond between C-22 and C-23 and an extra methyl group at C-24 position, it opens the possibility for both (a) double bond reduction and (b) demethylation to occur during the metabolism of 1alpha,25(OH)(2)D(2). We undertook the present study to establish firmly the possibility of double bond reduction in the metabolism of vitamin D(2) related compounds. We compared the metabolism of 1alpha,25-dihydroxy-22-ene-vitamin D(3) [1alpha,25(OH)(2)-22-ene-D(3)], a synthetic vitamin D analog whose side chain differs from that of 1alpha,25(OH)(2)D(3) only through a single modification namely the presence of a double bond between C-22 and C-23. Metabolism studies were performed in the chronic myeloid leukemic cell line (RWLeu-4) and in the isolated perfused rat kidney. Our results indicate that both 1alpha,25(OH)(2)-22-ene-D(3) and 1alpha,25(OH)(2)D(3) are converted into common metabolites namely, 1alpha,24(R),25-trihydroxyvitamin D(3) [1alpha,24(R),25(OH)(3)D(3)], 1alpha,25-dihydroxy-24-oxovitamin D(3) [1alpha,25(OH)(2)-24-oxo-D(3)], 1alpha,23(S),25-trihydroxy-24-oxovitamin D(3) and 1alpha,23-dihydroxy-24,25,26,27-tetranorvitamin D(3). This finding indicates that the double bond in the side chain of 1alpha,25(OH)(2)-22-ene-D(3) is reduced during its metabolism. Along with the aforementioned metabolites, 1alpha,25(OH)(2)-22-ene-D(3) is also converted into two additional metabolites namely, 1alpha,24,25(OH)(3)-22-ene-D(3) and 1alpha,25(OH)(2)-24-oxo-22-ene-D(3). Furthermore, we did not observe direct conversion of 1alpha,25(OH)(2)-22-ene-D(3) into 1alpha,25(OH)(2)D(3). These findings indicate that 1alpha,25(OH)(2)-22-ene-D(3) is first converted into 1alpha,24,25(OH)(3)-22-ene-D(3) and 1alpha,25(OH)(2)-24-oxo-22-ene-D(3). Then the double bonds in the side chains of 1alpha,24,25(OH)(3)-22-ene-D(3) and 1alpha,25(OH)(2)-24-oxo-22-ene-D(3) undergo reduction to form 1alpha,24(R),25(OH)(3)D(3) and 1alpha,25(OH)(2)-24-oxo-D(3), respectively. Thus, our study indicates that the double bond in 1alpha,25(OH)(2)-22-ene-D(3) is reduced during its metabolism. Furthermore, it appears that the double bond reduction occurs only during the second or the third step of 1alpha,25(OH)(2)-22-ene-D(3) metabolism indicating that prior C-24 hydroxylation of 1alpha,25(OH)(2)-22-ene-D(3) is required for the double bond reduction to occur.  相似文献   

8.
The previously reported analog of pregnenolone having a 3,4-dihydro-2H-pyran attached via a Cz.sbnd;C bond to the C-20 position (1), stereoselectively reacts with m-chloroperoxybenzoic acid in methanol at -5 degrees C. Acid-catalyzed hydrolysis of the isolated intermediates gives good yields of mostly a new 27-norcholesterol analog: (20R,23R)-3,20,23,26-tetrahydroxy-27-norcholest-5-en-22-one-3-acetate (2a, and a smaller amount of its 23S enantiomer 2b). Three different conditions of epoxidation and methanolysis followed by acid-catalyzed hydrolysis typically produce approximately 2:1 ratios of the 23R:23S diastereoisomers with a C-23 hydroxy group at the new asymmetric center. Bromine also reacts stereoselectively with (20R)-3,20-dihydroxy-(3',4'-dihydro-2'H-pyranyl)-5-pregnene (4) giving mostly (20R,23R)-23-bromo-3,20,26-trihydroxy-27-norcholest-5-en-22-one (7a). Thus both major steroidal products 2a and 7a have the same C-23R configuration. Assignment of molecular structures and the absolute configurations to 1 and 2a were based on elemental analysis, mass spectra, nuclear magnetic resonance, FTIR infrared spectroscopic analysis and X-ray crystallography. Mechanisms are discussed for stereochemical selectivity during epoxidation and bromination of the 3,4-dihydro-2H-pyranyl ring in 1 and 4.  相似文献   

9.
The stereochemistry of the hydroxyl group at C-24 in 5 beta-ranol (27-nor-5 beta-cholestane-3 alpha,7 alpha,12 alpha,24,26-pentol) a principal bile alcohol of the bullfrog which is structurally related to the major human urinary bile alcohol, 27-nor-5 beta-cholestane-3 alpha,7 alpha,12 alpha,24,25-pentol, is described. Two isomers (IIIa and IIIb) at C-24 of 27-nor-5 beta-cholest-25-ene-3 alpha,7 alpha,12 alpha, 24-tetrol were synthesized from cholic acid (I) by the conversion to 3 alpha, 7 alpha, 12 alpha-triacetoxy-5 beta-cholan-24-al (II) followed by a Grignard reaction with vinylmagnesium bromide. The absolute configurations at C-24 of the unsaturated tetrols (IIIa and IIIb) were elucidated as S and R, respectively, by means of the difference of the reactivity to Sharpless oxidation, a stereoselective epoxidation. Catalytic hydrogenation of each delta 25-tetrol (IIIa or IIIb) gave (24R)- or (24S)-27-nor-5 beta-cholestane-3 alpha,7 alpha,12 alpha, 24-tetrol (IVa or IVb). The configurations at C-24 of two isomeric 3 alpha,7 alpha,12 alpha,24-tetrahydroxy-27-nor-5 beta-cholestan-26-oic acids (Va and Vb) were determined as S and R, respectively, by means of their conversion into the saturated tetrols (IVa and IVb) of known absolute configurations by a Kolbe electrolytic coupling with acetic acid. The lithium aluminum hydride reduction product of the 24R-acid (Vb) was identical with the naturally occurring 5 beta-ranol, hence 5 beta-ranol has the 24R configuration.  相似文献   

10.
The strain of Absidia coerulea was used to investigate the transformations of testosterone, androstenedione, progesterone and testosterone derivatives with additional C1–C2 double bond and/or 17-methyl group. All the examined substrates were transformed, mainly hydroxylated. It was found that the position and stereochemistry of the introduced hydroxyl group, as well as the yield of products, depended on the structure of the substrate. The first three substrates (hormones) underwent hydroxylation at C-14, and additional hydroxylation at 7 was observed in progesterone. The presence of the double bond (C1–C2) in 1-dehydrotestosterone did not influence the position of hydroxylation, but the product with additional C14–C15 double bond (at the same site as hydroxylation) was formed. 17-Methyltestosterone was hydroxylated at the 7 position, and also the dehydrogenated product (at the same site, with C6–C7 double bond) was obtained. The testosterone derivative with both C1–C2 double bond and 17-methyl group underwent hydroxylation at the 7 or 11β position, and a little amount of 14, 15 epoxide was formed.  相似文献   

11.
Synthesis and activity of a C-8 keto pleuromutilin derivative   总被引:4,自引:0,他引:4  
A C-8 keto pleuromutilin derivative has been synthesized from the biotransformation product 8-hydroxy mutilin. A key step in the process was the selective oxidation at C-8 of 8-hydroxy mutilin using tetrapropylammonium perruthenate. The presence of the C-8 keto group precipitated interesting intramolecular chemistry to afford a compound (10) with a novel pleuromutilin-derived ring system.  相似文献   

12.
Arabidopsis dwf4 is a brassinosteroid (BR)-deficient mutant, and the DWF4 gene encodes a cytochrome P450, CYP90B1. We report the catalytic activity and substrate specificity of CYP90B1. Recombinant CYP90B1 was produced in Escherichia coli, and CYP90B1 activity was measured in an in vitro assay reconstituted with NADPH-cytochrome P450 reductase. CYP90B1 converted campestanol (CN) to 6-deoxocathasterone, confirming that CYP90B1 is a steroid C-22 hydroxylase. The substrate specificity of CYP90B1 indicated that sterols with a double bond at positions C-5 and C-6 are preferred substrates compared with stanols, which have no double bond at the position. In particular, the catalytic efficiency (k(cat)/K(m)) of CYP90B1 for campesterol (CR) was 325 times greater than that for CN. As CR is more abundant than CN in planta, the results suggest that C-22 hydroxylation of CR before C-5alpha reduction is the main route of BR biosynthetic pathway, which contrasts with the generally accepted route via CN. In addition, CYP90B1 showed C-22 hydroxylation activity toward various C(27-29) sterols. Cholesterol (C27 sterol) is the best substrate, followed by CR (C28 sterol), whereas sitosterol (C29 sterol) is a poor substrate, suggesting that the substrate preference of CYP90B1 may explain the discrepancy between the in planta abundance of C27/C28/C29 sterols and C27/C28/C29 BRs.  相似文献   

13.
Swizdor A  Kołek T 《Steroids》2005,70(12):817-824
A series of 4- and/or 17alpha-substituted testosterone analogues has been incubated with the hydroxylating fungus Fusarium culmorum AM282. It was found that 19-norandrostenedione, 19-nortestosterone, 4-methoxytestosterone, 4-methyltestosterone, and 4-chloro-17alpha-methyltestosterone were hydroxylated exclusively or mainly at the 6beta-position. The mixtures of 6beta-, 15alpha-, and 12beta- or 11alpha-monohydroxy derivatives were obtained from 17alpha-methyltestosterone and 17alpha-ethyl-19-nortestosterone--the substrates with alkyl group at C-17alpha. 4-Chlorotestosterone was predominantly hydroxylated at 15alpha-position, but the reaction was accompanied by the reduction of 4-en-3-one system, which proceeded in the sequence: reduction of ketone to 3beta-alcohol and then reduction of the double 4,5 bond. The results obtained indicate an influence of stereoelectronic and steric effects of substitutes on regioselectivity of the hydroxylation of 4-en-3-one steroids by F. culmorum.  相似文献   

14.
The sesquiterpenes cadina-4,10(15)-dien-3-one (1) and aromadendr-1(10)-en-9-one (squamulosone) (14) along with the triterpenoid methyl ursolate (21) were incubated with the fungus Mucor plumbeus ATCC 4740. Substrates 1, 14 and ursolic acid (20) were isolated from the plant Hyptis verticillata in large quantities. M. plumbeus hydroxylated 1 at C-12 and C-14. When the iron content of the medium was reduced, however, hydroxylation at these positions was also accompanied by epoxidation of the exocyclic double bond. In total nine new oxygenated cadinanes have been obtained. Sesquiterpene 14 was converted to the novel 2alpha,13-dihydroxy derivative along with four other metabolites. Methyl ursolate (21) was transformed to a new compound, methyl 3beta,7beta,21beta-trihydroxyursa-9(11),12-dien-28-oate (22). Two other triterpenoids, 3beta,28-dihydroxyurs-12-ene (uvaol) (23) and 3beta,28-bis(dimethylcarbamoxy)urs-12-ene (24) were not transformed by the micro-organism, however.  相似文献   

15.
Zearalenone (ZEN) is a mycotoxin produced by Fusarium species and frequently found as a contaminant of food and feed. Earlier studies have disclosed that ZEN is biotransformed in microsomes from human and rat liver to multiple hydroxylated metabolites, two of which have recently been identified as products of aromatic hydroxylation. Here, we report for the first time on the structure elucidation of metabolites arising through hydroxylation of the aliphatic ring of ZEN at various positions. By using reference compounds and ZEN labeled with deuterium at specific positions, evidence was provided for the preferential hydroxylation of ZEN at C-8 and, to a lesser extent, at C-9, C-10, and C-5. In contrast, hydroxylation at C-6 could be ruled out, as could oxidation of the olefinic double bond. These results imply that the phase I metabolism of ZEN in the mammalian organism is more extensive than previously thought, and warrant further studies on the in vivo formation of the novel ZEN metabolites and their biological activities.  相似文献   

16.
Synthesis of the conveniently protected epimer at C-3' of the miharamycin sugar moiety was accomplished starting from the corresponding 3,3'-spiroepoxide. Reaction of the epoxide with lithium cyanide, followed by hydrolysis and spontaneous cyclization, afforded the intermediate deoxylactone methyl 4,6-O-benzylidene-3-C-(carboxymethyl)-alpha-D-glucopyranoside-3',2-lacto ne (8). Stereoselective hydroxylation with MoO5 x py x HMPA, reduction with lithium aluminum hydride and cyclization with diethyl azodicarboxylate-triphenylphosphine gave the target molecule methyl 2,3'-anhydro-4,6-O-benzylidene-3-C-[(R)-1,2-dihydroxyethyl]-alpha -D-glucopyranoside (5). Direct reduction of 8 gave other analogs having no C-3' hydroxyl group together with having a C-3' hydroxyl group (hemiacetal). In addition, C-3' epimers were also synthesized through C-3', C-3' dihydroxy analogs. Wittig reaction of an appropriate ketosugar with [(ethoxycarbonyl)methylene]triphenylphosphorane leading to a 7:3 Z/E mixture, followed by hydroxylation with osmium tetroxide, reduction and cyclization afforded the target molecule 5 and the miharamycin sugar moiety methyl 2,3'-anhydro-4,6-O-benzylidene-3-C-[(S)-1,2-dihydroxyethyl]-alpha -D-glucopyranoside. Examination of X-ray data for 5 and its NMR spectroscopy data allowed us to explain a contradiction reported in the literature.  相似文献   

17.
The biotransformation of 7alpha-hydroxy-ent-kaur-16-ene (epi-candol A) by the fungus Gibberella fujikuroi gave 7alpha,16alpha,17-trihydroxy-ent-kaur-16-ene and a seco-ring B derivative, fujenoic acid, whilst the incubation of candicandiol (7alpha,18-dihydroxy-ent-kaur-16-ene) and canditriol (7alpha,15alpha,18-trihydroxy-ent-kaur-16-ene) afforded 7alpha,18,19-trihydroxy-ent-kaur-16-ene and 7alpha,11beta,15alpha,18-tetrahydroxy-ent-kaur-16-ene, respectively. The presence of a 7alpha-hydroxyl group in epi-candol A avoids its biotransformation along the biosynthetic pathway of gibberellins, and directs it to the seco-ring B acids route. The 15alpha-hydroxyl group in canditriol inhibits oxidation at C-19 and direct hydroxylation at C-11(beta). The formation of fujenoic acid, from 7alpha-hydroxy-ent-kaur-16-ene, probably occurs via 7alpha-hydroxykaurenoic acid and 7-oxokaurenoic acid, with subsequent hydroxylation at the C-6(beta) position.  相似文献   

18.
The course of transformations of testosterone and its derivatives, including compounds with an additional C1,C2 double bond and/or a 17alpha-methyl group, a 17beta-acetyl group or without a 19-methyl group, by a Beauveria bassiana culture was investigated. The fungi promoted hydroxylation of these compounds at position 11alpha, oxidation of the 17beta-hydroxyl group, reduction of the C1,C2 or C4,C5 double bonds and degradation of the progesterone side-chain, leading to testosterone. The structure of 4-ene-3-oxo-steroids had no influence on regio- and stereochemistry of hydroxylation. In a similar manner, dehydroepiandrosterone was hydroxylated by Beauveria bassiana at position 11alpha, however, a small amount of 7alpha-hydroxylation product was also formed.  相似文献   

19.
The sex steroid binding protein (SBP) which binds androgens circulating in the blood of man has been examined to determine the structural requirements for high affinity binding. SBP was purified partially and the ability of each of more than 150 steroids to compete with [3H]dihydrotestosterone (17β-hydroxy-5α-androstan-3-one) for binding to SBP was assessed.Binding was enhanced by reduction of the Δ4 double bond to 5α-dihydro, addition of a methyl group at C-4 and in one case unsaturation at C-14, 15. Affinity was always reduced by modifications of the C-17β hydroxy. Binding was also severely decreased by deletion of the keto moiety at C-3; however, relatively high affinity was retained by an alcohol or an unsubstituted pyrazole group at C-3. Certain alpha surface substitutions such as 17α-ethinyl had limited effects on binding; whereas, other modifications such as 7α-methyl or 17α-methyl caused significant reduction in binding. Most modifications at C-2, 6, 9 or 11 also impaired affinity, and the 5β steroids had reduced affinity.  相似文献   

20.
Antibacterial bioassay guided fractionation of acetone extracts of Astragalus brachystachys resulted in isolation of sclareol and two related labdane-type diterpenoids, 14R-epoxysclareol and 6beta-hydroxysclareol. The antibacterial activity of the isolated compounds was measured and it was deduced that the epoxidation at the double bond of sclareol or hydroxylation at C-6 decreased the activity of the resulting compounds. Salvigenin (5-hydroxy-4',6,7-trimethoxyflavone) was also separated from this plant for the first time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号