首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Anopheles minimus A, a major malaria vector in Southeast Asia, is the main target of vector control in this area. The impact of these control measures can be influenced by the population structure of the target species. In rural areas, An. minimus breeds along the banks of small clear-water streams, yet in the suburbs of Hanoi, northern Vietnam, there is an An. minimus population whose immature stages develop in water tanks. This study uses allozyme data (1) to assess the population structure of An. minimus A and (2) to evaluate the taxonomic status of the urban An. minimus population from Hanoi. The population from the suburbs of Hanoi was identified as An. minimus A. Although significant genetic differentiation was observed between rural and urban An. minimus A populations, they have not differentiated substantially by genetic drift. Limited macrogeographical differentiation was observed between two rural populations at distances of more than 1000 km. Consequently, geographical distance is not the primary factor in differentiating An. minimus A populations having the typical breeding ecology. The estimated effective population size is consistent with the moderate macrogeographical differentiation. Furthermore, no genetic structuring was observed between adult mosquitoes having different behaviour. The macrogeographical population structure indicates that genes may spread over large areas, whereas the presence of an 'urban' An. minimus A population shows the ability of this species to adapt to anthropogenic environmental changes.  相似文献   

2.
Insect vector-borne diseases continue to present a major challenge to human health. Understanding the factors that regulate the size of mosquito populations is considered fundamental to the ability to predict disease transmission rates and for vector population control. The mosquito, Anopheles pseudopunctipennis, a vector of Plasmodium spp., breeds in riverside pools containing filamentous algae in Mesoamerica. Breeding pools along 3 km sections of the River Coatan, Chiapas, Mexico were subjected to algal extraction or left as controls in a cross-over trial extending over 2 years. Initial densities of An. pseudopunctipennis larvae were directly proportional to the prevalence of filamentous algae in each breeding site. The extraction of algae brought about a striking decline in the density of An. pseudopunctipennis larvae sustained for about six weeks, and a concurrent reduction in the adult population in both years of the study. Mark-release experiments indicated that dispersal from adjacent untreated areas was unlikely to exert an important influence on the magnitude of mosquito control that we observed. Habitat manipulation by extraction of filamentous algae offers a unique opportunity for sustainable control of this malaria vector. This technique may represent a valuable intervention, complimenting insecticide spraying of households, to minimize Plasmodium transmission rates in Mesoamerica.  相似文献   

3.
Abstract. To develop a new strategy for control of exophilic/exophagic malaria vectors which rest on peridomestic foliage, Anopheles albimanus was used for laboratory bioassays of mosquito adulticides applied to various vegetation types. Of the three classes of insecticide tested, the pyrethroid (permethrin at 112 g/ha) showed greater foliar persistence than either the carbamate (bendiocarb at 340g/ha) or the organophosphorus compound (malathion at 277g/ha). Field evaluation of barrier spraying against An.albimanus was evaluated in rural villages of southwest Dominican Republic during 1989. The pyrethroid deltamethrin was sprayed aerially for ultra-low volume application at treatment rates of 17-19ga.i./ha in a radius of 500m around two villages. An.albimanus were monitored by light-traps and human bait collections at both treated villages, compared with two similar untreated villages, up to 9 nights post-treatment. Densities of female An.albimanus were significantly reduced in the sprayed villages for at least 8 or 9 nights. Further evaluation of barrier spraying is recommended to determine optimal pyrethroid formulations and applications rates, their impact on non-target fauna and efficacy against malaria transmission.  相似文献   

4.
An understanding of the genetic structure and diversity of vector species is crucial for effective control and management. In this study, mitochondrial DNA sequences were used to examine the genetic structure, diversity and demographic history of a black fly vector, Simulium nodosum Puri (Diptera: Simuliidae), in Thailand. A total of 145 sequences were obtained from 10 sampling locations collected across geographical ranges in the country. Low genetic diversity was found in populations of S. nodosum that could be explained by the recent population history of this species. Demographic history analysis revealed a signature of demographic expansion dating back to only 2600–5200 years ago. Recent population expansion in S. nodosum possibly followed an increase in agriculture that enabled its hosts', humans and domestic animals, densities to increase. Alternatively, the Thai populations could be a derivative of an older expansion event in the more northern populations. Mitochondrial DNA genealogy revealed no genetically divergent lineages, which agrees with the previous cytogenetic study. Genetic structure analyses found that only 27% of the pairwise comparisons were significantly different. The most likely explanation for the pattern of genetic structuring is the effect of genetic drift because of recent colonization.  相似文献   

5.
The impact of islands on the population structure of Anopheles flavirostris (Ludlow) (Diptera: Culicidae), the primary malaria vector in the Philippines, was assessed. A phylogenetic analysis of 16 cytochrome oxidase subunit 1 (CO1) haplotypes revealed three clades: one basal clade containing genetically disparate haplotypes from Mindanao, and two derived clades, one of which was largely confined to the largest island, Luzon, and one that was widespread except for Luzon. For the Luzon clade, nested clade analysis revealed an isolation-by-distance effect, and a mismatch distribution analysis diagnosed a recent demographic expansion (sum of squared deviation, SDD = 0.0093, P= 0.075), which mirrors demographic attributes found in mainland primary malaria vectors and could inflate estimates of gene flow from F(ST). For the widespread clade, evidence of range expansion and past fragmentation and/or long distance colonization from the Visayas or Mindanao to Palawan is suggested. A south-to-north range expansion of An. flavirostris is suggested; estimates of coalescence for the Luzon clade was 214 000 years ago (ya) (95% confidence interval 35 600-298 000 ya), i.e. late Pleistocene. Present day rather than Pleistocene island association and some, but not all, sea barriers appeared to be important for An. flavirostris population structure. Our results suggest that endemic island malaria vector species need to be considered before any generalizations are made about the population structure of primary and secondary vectors.  相似文献   

6.
Anopheles funestus is a primary vector of malaria in Africa south of the Sahara. We assessed its rangewide population genetic structure based on samples from 11 countries, using 10 physically mapped microsatellite loci, two per autosome arm and the X (N = 548), and 834 bp of the mitochondrial ND5 gene (N = 470). On the basis of microsatellite allele frequencies, we found three subdivisions: eastern (coastal Tanzania, Malawi, Mozambique and Madagascar), western (Burkina Faso, Mali, Nigeria and western Kenya), and central (Gabon, coastal Angola). A. funestus from the southwest of Uganda had affinities to all three subdivisions. Mitochondrial DNA (mtDNA) corroborated this structure, although mtDNA gene trees showed less resolution. The eastern subdivision had significantly lower diversity, similar to the pattern found in the codistributed malaria vector Anopheles gambiae. This suggests that both species have responded to common geographic and/or climatic constraints. The western division showed signatures of population expansion encompassing Kenya west of the Rift Valley through Burkina Faso and Mali. This pattern also bears similarity to A. gambiae, and may reflect a common response to expanding human populations following the development of agriculture. Due to the presumed recent population expansion, the correlation between genetic and geographic distance was weak. Mitochondrial DNA revealed further cryptic subdivision in A. funestus, not detected in the nuclear genome. Mozambique and Madagascar samples contained two mtDNA lineages, designated clade I and clade II, that were separated by two fixed differences and an average of 2% divergence, which implies that they have evolved independently for approximately 1 million years. Clade I was found in all 11 locations, whereas clade II was sampled only on Madagascar and Mozambique. We suggest that the latter clade may represent mtDNA capture by A. funestus, resulting from historical gene flow either among previously isolated and divergent populations or with a related species.  相似文献   

7.
8.
Adult Anopheles darlingi salivary glands are paired organs located on either side of the esophagus. The male glands consist of a single small lobe. The female gland is composed of two lateral lobes, with distinct proximal and distal portions, and a medial lobe. The lobes are acinar structures, organized as a unicellular epithelium that surrounds a salivary canal. The general cellular architecture is similar among the lobes, with secretory material appearing as large masses that push the cellular structures to the periphery of the organ. Cells of the proximal-lateral lobes show asynchronous cycles of secretory activity and contain secretory masses with finely filamentous aspect. In the distal-lateral lobes, cells display synchronous cycles of activity, and have a dense secretory product with mottled pattern. Cells of the medial lobe have secretory masses uniformly stained and highly electrondense. Biochemical analysis of the adult female salivary glands revealed apyrase, alpha-glucosidase and lysozyme activities. Alpha-glucosidase and lysozyme activities are detected mostly in the proximal lobes while apyrase is mainly accumulated in the distal lobes. This differential distribution of the analyzed enzymes reflects a specialization of different regions for sugar and blood feeding. Thus, the morphological differences observed in the lobes correlate with functional ones.  相似文献   

9.
Fat greenling (Hexagrammos otakii) is an important commercial fish in the Northwestern Pacific, being distributed along the coastal waters of the East/Japan Sea and the Yellow Sea. To investigate population genetic structure and demographic history of this species, one hundred and fifty five individuals were collected from five localities in the distribution range of the species and sequence variations in the mitochondrial genes COI, COIII-ND3-ND4L, and cytochrome b were examined. For all the genes in every sampling location, the nucleotide diversities were very low (0.001 ~ 0.005) although the haplotype diversities were relatively high, 0.55 ~ 0.81 for COI, 0.79 ~ 0.84 for COIII-ND3-ND4L, and 0.95 ~ 0.97 for cytochrome b. Hierarchical analysis of molecular variance (AMOVA), the conventional population statistic FST, and exact test of population differentiation revealed no significant genetic structuring among the samples, indicating that fat greening is panmictic throughout the range of its distribution. Neutrality tests such as Tajima’s D and Fu’s FS statistics and mismatch distribution analyses suggested that fat greening has undergone the demographic history of population expansion during the late Pleistocene period approximately 91,000 ~ 327,000 years ago. The star-burst patterns of haplotype networks and low nucleotide diversities also indicated recent population expansion. These results help establish the fisheries management strategy for fat greenling in the Northwestern Pacific.  相似文献   

10.
The population genetic structure of Anopheles darlingi, the major human malaria vector in the Neotropics, was examined using seven microsatellite loci from nine localities in central and western Amazonian Brazil. High levels of genetic variability were detected (5-25 alleles per locus; H E = 0.519-0.949). There was deviation from Hardy-Weinberg Equilibrium for 59.79% of the tests due to heterozygote deficits, while the analysis of linkage disequilibrium was significant for only two of 189 (1.05%) tests, most likely caused by null alleles. Genetic differentiation (F ST = 0.001-0.095; Nm = 4.7-363.8) indicates that gene flow is extensive among locations < 152 km apart (with two exceptions) and reduced, but not absent, at a larger geographic scale. Genetic and geographic distances were significantly correlated (R(2) = 0.893, P < 0.0002), supporting the isolation by distance (IBD) model. The overall estimate of Ne was 202.4 individuals under the linkage disequilibrium model, and 8 under the heterozygote excess model. Analysis of molecular variance showed that nearly all variation (approximately 94%) was within sample locations. The UPGMA phenogram clustered the samples geographically, with one branch including 5/6 of the state of Amazonas localities and the other branch the Acre, Rond?nia, and remaining Amazonas localities. Taken together, these data suggest little genetic structure for An. darlingi from central and western Amazonian Brazil. These findings also imply that the IBD model explains nearly all of the differentiation detected. In practical terms, populations of An. darlingi at distances < 152 km should respond similarly to vector control measures, because of high gene flow.  相似文献   

11.
High molecular weight DNA was extracted from the primary Neotropical malaria vector, Anopheles darlingi from Capanema, Pará, Brazil, to create a small insert genomic library, and then a phagemid library. Enriched sublibraries were constructed from the phagemid library using a microsatellite oligo primed second strand synthesis protocol. The resulting 242 760 individual clones were screened. The mean clone size of the positive clones was 302 bp. Flanking primers were designed for each suitable microsatellite sequence. Eight polymorphic loci were optimized and characterized. The allele size ranges are based on 253 samples of A. darlingi from eastern Amazonian and central Brazil.  相似文献   

12.
13.
Control of Anopheles albimanus, the main vector of malaria on the coast of the State of Chiapas, is based mainly on application of chemical insecticides, which has resulted in resistance to most registered insecticides. Strategies for biological control may provide sustainable alternatives. We report on the lethal effects of a native isolate of Gliocladium virens on An. albimanus larvae and adults, compared to that of strains of Beauveria bassiana and Metarhizium anisopliae. Conidial suspensions of G. virens, B. bassiana and M. anisopliae cultured on Sabouraud agar were tested in bioassays with An. albimanus larvae and adults. Mosquito larvae were more susceptible to all fungi, compared to adults. On early and late instar larvae, M. anisopliae showed the most pathogenic effect (LC50 of 1.4×105 conidia/mL in early instars; 1.1×105 conidia/mL in late instars), followed by G. virens (LC50 of 3.3×105 conidia/mL in early instars and 3.5×106 conidia/mL in late instars). Metarhizium anisopliae sensu lato and the native G. virens could be considered good choices for An. albimanus control in southern Mexico.  相似文献   

14.
15.
Satellite DNA is an enigmatic component of genomic DNA with unclear function that has been regarded as "junk." Yet, persistence of these tandem highly repetitive sequences in heterochromatic regions of most eukaryotic chromosomes attests to their importance in the genome. We explored the Anopheles gambiae genome for the presence of satellite repeats and identified 12 novel satellite DNA families. Certain families were found in close juxtaposition within the genome. Six satellites, falling into two evolutionarily linked groups, were investigated in detail. Four of them were experimentally confirmed to be linked to the Y chromosome, whereas their relatives occupy centromeric regions of either the X chromosome or the autosomes. A complex evolutionary pattern was revealed among the AgY477-like satellites, suggesting their rapid turnover in the A. gambiae complex and, potentially, recombination between sex chromosomes. The substitution pattern suggested rolling circle replication as an array expansion mechanism in the Y-linked 53-bp satellite families. Despite residing in different portions of the genome, the 53-bp satellites share the same monomer lengths, apparently maintained by molecular drive or structural constraints. Potential functional centromeric DNA structures, consisting of twofold dyad symmetries flanked by a common sequence motif, have been identified in both satellite groups.  相似文献   

16.
1. Histones from Anopheles albimanus adults were prepared by a combination of techniques including chromatin isolation and selective extractions. 2. The anopheline histones were identified on acid urea gels by comparing their electrophoretic profile with that of calf thymus histones and histones isolated from other tissue. 3. Excellent separation of histones was obtained after the extractions by a single electrophoretic run. 4. In addition to the five major classes of histones found in eukaryotes, a sixth class was detected and tentatively identified as histone H5. 5. This is the first report of histone H5 and its function in insects.  相似文献   

17.
Separating the confounding effects of long-term population history from gene flow can be difficult. Here, we address the question of what inferences about gene flow can be made from mitochondrial sequence data in three closely related species of mosquitoes, Anopheles dirus species A, C, and D, from southeast Asia. A total of 84 sequences of 923 bp of the mitochondrial cytochrome oxidase I gene were obtained from 14 populations in Thailand, Myanmar, and Bangladesh. The genealogy of sequences obtained from two populations of AN: dirus C indicates no contemporary gene flow between them. The F(ST) value of 0.421 therefore probably represents a recent common history, perhaps involving colonization events. Anopheles dirus A and D are parapatric, yet no differentiation was seen either within or between species. The starlike genealogy of their haplotypes, smooth unimodal mismatch distributions, and excess of low frequency mutations indicate population expansion in An. dirus A and D. This, rather than widespread gene flow, explains their low within-species F(ST) values (0.018 and 0.022). The greater genetic diversity of An. dirus D suggests that expansion occurred first in species D and subsequently in species A. The current geographical separation and low hybrid fitness of these species also argue against ongoing interspecific gene flow. They suggest instead either historical introgression of mtDNA from An. dirus D into species A followed by independent range expansions, or a selective sweep of mtDNA that originated in An. dirus D. While not excluding contemporary gene flow, historical population processes are sufficient to explain the data in An. dirus A and D. The genealogical relationships between haplotypes could not be used to make inferences of gene flow because of extensive homoplasy due to hypervariable sites and possibly also recombination. However, it is concluded that this approach, rather than the use of fixation indices, is required in the future to understand contemporary gene flow in these mosquitoes. The implications of these results for understanding gene flow in another important and comparable group of malaria vector mosquitoes in Africa, the An. gambiae complex, are also discussed.  相似文献   

18.
To elucidate the Anopheles nuneztovari s.l. taxonomic status at a microgeographic level in four malaria endemic localities from Antioquia and Córdoba, Colombia, fragments of the cytochrome oxidase subunit I (COI) and the white gene were used. The COI analysis showed low genetic differentiation with fixation index (F(ST)) levels between -0.02-0.137 and Nm values between 3-∞, indicating the presence of high gene flow among An. nuneztovari s.l. populations from the four localities. The COI network showed a single most common haplotype, type 1 (n = 55), present in all localities, as the likely ancestral haplotype. Analysis of the white gene showed that An. nuneztovari s.l. populations from both departments grouped with haplotypes 19 and 20, which are part of lineage 3 reported previously. The results of the present study suggest that An. nuneztovari s.l. is a single taxon in the area of the present study.  相似文献   

19.
Anopheles culicifacies, an important vector in the Indian subcontinent is a complex of five sibling species of which four are vectors. We describe the isolation of 31 microsatellite markers from the recently recognized isomorphic species A of which 13 were characterized in sympatric populations of Anopheles culicifacies isomorphic species A and B. The allele frequencies ranges from two to 12 in species A and two to seven in species B. Species A being a vector, and that these markers can be used in closely related species, makes the isolation of these markers important to study population structure of all sibling species in this complex.  相似文献   

20.
Onyabe DY  Conn JE 《Molecular ecology》2001,10(11):2577-2591
Ten microsatellite loci, four located within and six outside chromosome inversions, were employed to study the genetic structure of Anopheles arabiensis across the ecological zones of Nigeria (arid savannah in the north gradually turns into humid forest in the south). Regardless of location within or outside inversions, genetic variability at all loci was characterized by a reduction in both the number of alleles per locus and heterozygosity from savannah to forest. Across all loci, all but one allele in the forest also occurred in the savannah, whereas at least 78 alleles in the savannah were missing in the forest. Genetic differentiation increased with geographical distance; consequently, genetic distances between zones exceeded those within zones. The largest genetic distances were between localities at the extremes of the transect (range F(ST) = 0.196-0.258 and R(ST) = 0.183-0.468) and were as large as those between A. arabiensis and Anopheles gambiae s.s. Gene flow across the country was very low, so that Nm between the extremes of the transect was < 1. These data suggest that A. arabiensis has extended its range from the savannah into the forest during which it experienced a reduction in effective population size due to sequential founder effects. Gene flow post range expansion appears too restricted by geographical distance to homogenize the gene pool of A. arabiensis across Nigeria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号