首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 821 毫秒
1.
Renal fibroblasts are thought to play a major role in the development of renal fibrosis (RF). The mechanisms leading to this renal alteration remain poorly understood. We performed differential proteomic analyses with two established fibroblast cell lines with RF phenotype to identify new molecular pathways associated with RF. Differential 2-DE combined with mass spectrometry analysis revealed the alteration of more than 30 proteins in fibrotic kidney fibroblasts (TK188) compared to normal kidney fibroblast (TK173). Among these proteins, markers of the endoplasmic reticulum (ER) stress- and the unfolded protein response (UPR) pathway (GRP78, GRP94, ERP57, ERP72, and CALR) and the oxidative stress pathway proteins (PRDX1, PRDX2, PRDX6, HSP70, HYOU1) were highly up-regulated in fibrotic cells. Activation of these stress pathways through long time exposition of TK173, to high NaCl or glucose concentrations resulted in TK188 like phenotype. Parallel to an increase in reactive oxygen species, the stressed cells showed significant alteration of fibrosis markers, ER-stress and oxidative stress proteins. Similar effects of osmotic stress could be also observed on renal proximal tubule cells. Our data suggest an important role of the ER-stress proteins in fibrosis and highlights the pro-fibrotic effect of osmotic stress through activation of oxidative stress and ER-stress pathways.  相似文献   

2.
3.
Cells from patients with Fanconi anemia (FA), an inherited disorder that includes bone marrow failure and cancer predisposition, have increased sensitivity to oxidative stress through an unknown mechanism. We demonstrate that the FA group G (FANCG) protein is found in mitochondria. Wild-type but not G546R mutant FANCG physically interacts with the mitochondrial peroxidase peroxiredoxin-3 (PRDX3). PRDX3 is deregulated in FA cells, including cleavage by a calpainlike cysteine protease and mislocalization. FA-G cells demonstrate distorted mitochondrial structures, and mitochondrial extracts have a sevenfold decrease in thioredoxin-dependent peroxidase activity. Transient overexpression of PRDX3 suppresses the sensitivity of FA-G cells to H2O2, and decreased PRDX3 expression increases sensitivity to mitomycin C. Cells from the FA-A and -C subtypes also have PRDX3 cleavage and decreased peroxidase activity. This study demonstrates a role for the FA proteins in mitochondria witsh sensitivity to oxidative stress resulting from diminished peroxidase activity. These defects may lead to apoptosis and the accumulation of oxidative DNA damage in bone marrow precursors.  相似文献   

4.
H(2)O(2) induces a specific protein oxidation in yeast cells, and the glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (Tdh) is a major target. Using a 2D-gel system to study protein carbonylation, it is shown in this work that both Tdh2p and Tdh3p isozymes were oxidized during exposure to H(2)O(2). In addition, we identified two other proteins carbonylated and inactivated: Cu,Zn-superoxide dismutase and phosphoglycerate mutase. The oxidative inactivation of Cu,Zn-superoxide dismutase decreases the antioxidant capacity of yeast cells and probably contributes to H(2)O(2)-induced cell death. Cyclophilin 1 was also carbonylated, but CPH1 gene disruption did not affect peroxide stress sensitivity. The correlation between H(2)O(2) sensitivity and the accumulation of oxidized proteins was evaluated by assaying protein carbonyls in mutants deficient in the stress response regulators Yap1p and Skn7p. The results show that the high sensitivity of yap1delta and skn7delta mutants to H(2)O(2) was correlated with an increased induction of protein carbonylation. In wild-type cells, the acquisition of stress resistance by pre-exposure to a sublethal H(2)O(2) stress was associated with a lower accumulation of oxidized proteins. However, pre-exposure of yap1delta and skn7delta cells to 0.4 mM H(2)O(2) decreased protein carbonylation induced by 1.5 mM H(2)O(2), indicating that the adaptive mechanism involved in the protection of proteins from carbonylation is Yap1p- and Skn7p-independent.  相似文献   

5.
Pseudomonas aeruginosa is a ubiquitous pathogen most typically associated with wound infections, but also the main cause of mortality in patients suffering from cystic fibrosis (CF). The ability to adapt to oxidative stress associated with host immune defense may be one mechanism by which P. aeruginosa establishes infection in the cystic fibrosis lung and eventually out-competes other pathogenic bacteria to persist into chronic infection. We utilized a proteomics approach to identify the proteins associated with the oxidative stress response of P. aeruginosa PAO1 to hydrogen peroxide and superoxide-inducing paraquat. 2-DE and MS allowed for the identification of 59 and 58 protein spots that were statistically significantly altered following H(2) O(2) and paraquat treatment, respectively. We observed a unique mass and pI pattern for alkylhydroperoxide reductase C (AhpC) that was replicated by hypothetical protein PA3529 following treatment with 10?mM H(2) O(2) . AhpC belongs to the 2-Cys peroxiredoxin family and is a redox enzyme responsible for removing peroxides in bacterial cells. MS analysis showed that PA3529 was altered by the formation of a dimer via a disulfide bond in a manner analogous to that known for AhpC, and by cysteine overoxidation to Cys-sulfonic acid (SO(3) H) postoxidative stress. PA3529 is therefore a functional AhpC paralog expressed under H(2) O(2) stress. Following paraquat-induced oxidative stress, we also observed the overabundance and likely oxidative modification of a second hypothetical antioxidant protein (PA3450) that shares sequence similarity with 1-Cys peroxiredoxins. Other induced proteins included known oxidative stress proteins (superoxide dismutase and catalase), as well as those involved in iron acquisition (siderophore biosynthesis and receptor proteins FpvA and FptA) and hypothetical proteins, including others predicted to be antioxidants (PA0848). These data suggest that P. aeruginosa contains a plethora of novel antioxidant proteins that contribute to its increased resistance against oxidative stress.  相似文献   

6.
7.
目的:探讨氧化应激对热休克蛋白90α(Hsp90α)与ADP-核糖基化因子1(ARF1)细胞内定位、相互作用的影响。方法:应用500μM H2O2处理HepG2细胞,建立氧化应激模型,MTT比色法检测细胞活力,Western blotting检测Hsp90α和ARF1水平,细胞免疫荧光法、免疫共沉淀检测上述蛋白在氧化应激下的分布、共定位变化和相互作用。结果:MTT比色法结果提示,随氧化应激时间延长,细胞存活力降低;Western blotting结果显示,氧化应激可提高胞内Hsp90α和ARF1蛋白水平;免疫共沉淀结果显示,随氧化应激作用时间延长,Hsp90α与ARF1相互结合增多;细胞免疫荧光结果显示,随氧化应激作用时间延长,Hsp90α与ARF1荧光强度增强,并趋于沿胞膜分布。结论:提示氧化应激影响Hsp90α和ARF1的水平、胞内分布及相互作用。  相似文献   

8.
Peroxiredoxin 1 (PRDX1) is a ubiquitously expressed antioxidant with vital roles in basal metabolic functions. In addition PRDX1 is involved in cell differentiation and proliferation, apoptosis and innate immunity. In this study, we have characterized PRDX1 from the tammar wallaby (Macropus eugenii). Tammar PRDX1 has high conservation of functional residues and motifs, and demonstrates a close homology with eutherian and vertebrate orthologues. Stimulation of adult tammar leukocytes with lipopolysaccharide and lipoteichoic acid suggests a role for PRDX1 in innate immune defences. PRDX1 expression in the organs of tammar pouch young was mildly elevated early in life possibly reflecting its role in basal metabolic processes. Later increases in PRDX1 expression correlated with functional maturation of several immune organs or with preparation for increased oxidative stress of emergence. The findings of the study are reflections of the complex integrated roles that PRDX1 has in regulation of oxidative stress, apoptosis, cell differentiation and proliferation, and innate immunity.  相似文献   

9.
10.
Oxidized protein hydrolase (OPH) preferentially degrades oxidatively damaged proteins in vitro and is widely distributed in various cells and tissues. The role of OPH in intact cells exposed to oxidative stress was examined. For this purpose, using COS-7, a cell line derived from African green monkey kidney, COS-7-OPH cells that stably overexpressed OPH were established. When COS-7-OPH cells were exposed to oxidative stress induced by H(2)O(2) and paraquat, accumulation of protein carbonyls in the cells was apparently lower than that of parental COS-7 cells, and COS-7-OPH cells were significantly resistant to the oxidative stress compared with parental COS-7 cells. The majority of overexpressed OPH in the cells was found to be located uniformly in cytosol, and its location was not altered by H(2)O(2)-induced oxidative stress. Above results indicate that OPH in intact cells plays a preventive role against oxidative stress and suggest that OPH relieves cells from accumulation of oxidatively damaged proteins.  相似文献   

11.
AimsHyperglycemia-induced oxidative stress is implicated in pericyte apoptosis seen in diabetic retinopathy. The six mammalian Peroxiredoxins (PRDXs) comprise a novel family of antioxidative proteins that negatively regulate oxidative stress-induced apoptosis by controlling reactive oxygen species (ROS) levels.Main methodsSprague–Dawley rats were used to detect the retinal expressions of PRDXs1–6. Pig pericytes cultured in high-glucose medium were used to monitor the protective effect of PRDX5 and 6 against high-glucose-associated change. Recombinant PRDX5 and 6 proteins were linked to the Trans-Activating Transduction (TAT) domain from HIV-1 TAT protein for their efficient delivery into cells/tissues.Key findingsWe found higher expression of PRDX5 and 6 mRNAs and PRDX5 and 6 proteins in retina than the other Prdxs (Prdx1–4). Western blotting affirmed the intracellular presence of TAT-linked proteins and revealed the efficient transduction of TAT-HA-PRDX5 and 6 in these cells. Extrinsic supply of TAT-HA-PRDX5 and 6 proteins inhibited the oxidative stress-induced DNA damage after high-glucose exposure in pig pericytes. The cell survival and apoptosis assay revealed that extrinsic supply of TAT-HA-PRDX5 and 6 proteins was responsible for inhibiting hyperglycemia-induced pericyte apoptosis.SignificanceResults suggest that delivery of PRDX5 and 6 might protect hyperglycemia-induced pericyte loss to inhibit oxidative stress.  相似文献   

12.
13.
14.
Endoplasmic reticulum (ER) oxidation 1 (ERO1) transfers disulfides to protein disulfide isomerase (PDI) and is essential for oxidative protein folding in simple eukaryotes such as yeast and worms. Surprisingly, ERO1-deficient mammalian cells exhibit only a modest delay in disulfide bond formation. To identify ERO1-independent pathways to disulfide bond formation, we purified PDI oxidants with a trapping mutant of PDI. Peroxiredoxin IV (PRDX4) stood out in this list, as the related cytosolic peroxiredoxins are known to form disulfides in the presence of hydroperoxides. Mouse embryo fibroblasts lacking ERO1 were intolerant of PRDX4 knockdown. Introduction of wild-type mammalian PRDX4 into the ER rescued the temperature-sensitive phenotype of an ero1 yeast mutation. In the presence of an H(2)O(2)-generating system, purified PRDX4 oxidized PDI and reconstituted oxidative folding of RNase A. These observations implicate ER-localized PRDX4 in a previously unanticipated, parallel, ERO1-independent pathway that couples hydroperoxide production to oxidative protein folding in mammalian cells.  相似文献   

15.
Proteinuria is an independent risk factor for progression of renal diseases. Glia maturation factor-beta (GMF-beta), a 17-kDa brain-specific protein originally purified as a neurotrophic factor from brain, was induced in renal proximal tubular (PT) cells by proteinuria. To examine the role of GMF-beta in PT cells, we constructed PT cell lines continuously expressing GMF-beta. The PT cells overexpressing GMF-beta acquired susceptibility to cell death upon stimulation with tumor necrosis factor-alpha and angiotensin II, both of which are reported to cause oxidative stress. GMF-beta overexpression also promoted oxidative insults by H2O2, leading to the reorganization of F-actin as well as apoptosis in non-brain cells (not only PT cells, but also NIH 3T3 cells). The measurement of intracellular reactive oxygen species in the GMF-beta-overexpressing cells showed a sustained increase in H2O2 in response to tumor necrosis factor-alpha, angiotensin II, and H2O2 stimuli. The sustained increase in H2O2 was caused by an increase in the activity of the H2O2-producing enzyme copper/zinc-superoxide dismutase, a decrease in the activities of the H2O2-reducing enzymes catalase and glutathione peroxidase, and a depletion of the content of the cellular glutathione peroxidase substrate GSH. The p38 pathway was significantly involved in the sustained oxidative stress to the cells. Taken together, the alteration of the antioxidant enzyme activities, in particular the peroxide-scavenging deficit, underlies the susceptibility to cell death in GMF-beta-overexpressing cells. In conclusion, we suggest that the proteinuria induction of GMF-beta in renal PT cells may play a critical role in the progression of renal diseases by enhancing oxidative injuries.  相似文献   

16.
17.
Dopamine, via activation of D1-like receptors, inhibits Na,K-ATPase and Na,H-exchanger in renal proximal tubules and promotes sodium excretion. This effect of dopamine is not seen in conditions associated with oxidative stress such as hypertension, diabetes, and aging due to uncoupling of D1-like receptors from G proteins. To identify the role of oxidative stress in uncoupling of the D1-like receptors, we utilized primary cultures from rat renal proximal tubules. Hydrogen peroxide (H2O2), an oxidant, treatment to the cell cultures increased the level of malondialdehyde, a marker of oxidative damage. Further, H2O2 decreased membranous D1-like receptor numbers and proteins, D1-like agonist (SKF 38393)-mediated [35S]GTPgammaS binding and SKF 38393-mediated inhibition of Na,K-ATPase. Moreover, H2O2 treatment to the cultures caused membranous translocation of G-protein-coupled receptor kinase 2 (GRK 2) and increased serine phosphorylation of D1A receptors accompanied by an increase in protein kinase C (PKC) activity. Interestingly, PKC inhibitors blocked the H2O2-mediated stimulation of GRK 2 and serine phosphorylation of D1A receptors. Further, GRK 2 antisense but not scrambled oligonucleotides attenuated the effect of H2O2 on membranous expression of GRK 2. Moreover, direct activation of PKC with phorbol ester (PMA) resulted in reduction of SKF 38393-mediated [35S]GTPgammaS binding. We conclude that H2O2 stimulates PKC leading to the activation of GRK 2, which causes serine phopshorylation of D1A receptors and receptor G-protein uncoupling in these cells, resulting in impairment in D1-like receptor function.  相似文献   

18.
Liang G  Liao X  Du G  Chen J 《Bioresource technology》2009,100(1):350-355
Effect of H(2)O(2)-induced oxidative stress on glutathione (GSH) production in Candida utilis was investigated. Based on the results that H(2)O(2) can effectively stimulate GSH accumulation but inhibit cell growth simultaneously, a novel strategy of multiple H(2)O(2) stresses with different concentrations (1 mmol/L at 4h, 2 mmol/L at 8h, and 4 mmol/L at 12h) were developed to maximize GSH production. As a result, a maximal GSH yield of 218 mg/L was achieved and a corresponding intracellular GSH content was 2.15%, which were 54.6% and 58.1% higher than the control. By further applying this strategy to 7 L fermentor, GSH yield and intracellular GSH content were 328 mg/L and 2.30%. Moreover, increased activities of catalase (CAT) and GSH reductase (GR) indicated that GSH and CAT were directly involved in protecting cell against oxidative stress by H(2)O(2).  相似文献   

19.
Protein cysteines can form transient disulfides with glutathione (GSH), resulting in the production of glutathionylated proteins, and this process is regarded as a mechanism by which the redox state of the cell can regulate protein function. Most studies on redox regulation of immunity have focused on intracellular proteins. In this study we have used redox proteomics to identify those proteins released in glutathionylated form by macrophages stimulated with lipopolysaccharide (LPS) after pre-loading the cells with biotinylated GSH. Of the several proteins identified in the redox secretome, we have selected a number for validation. Proteomic analysis indicated that LPS stimulated the release of peroxiredoxin (PRDX) 1, PRDX2, vimentin (VIM), profilin1 (PFN1) and thioredoxin 1 (TXN1). For PRDX1 and TXN1, we were able to confirm that the released protein is glutathionylated. PRDX1, PRDX2 and TXN1 were also released by the human pulmonary epithelial cell line, A549, infected with influenza virus. The release of the proteins identified was inhibited by the anti-inflammatory glucocorticoid, dexamethasone (DEX), which also inhibited tumor necrosis factor (TNF)-α release, and by thiol antioxidants (N-butanoyl GSH derivative, GSH-C4, and N-acetylcysteine (NAC), which did not affect TNF-α production. The proteins identified could be useful as biomarkers of oxidative stress associated with inflammation, and further studies will be required to investigate if the extracellular forms of these proteins has immunoregulatory functions.  相似文献   

20.
Bcl-2 family proteins protect against a variety of forms of cell death, including acute oxidative stress. Previous studies have shown that overexpression of the antiapoptotic protein Bcl-2 increases cellular redox capacity. Here we report that cell lines transfected with Bcl-2 paradoxically exhibit increased rates of mitochondrial H(2)O(2) generation. Using isolated mitochondria, we determined that increased H(2)O(2) release results from the oxidation of reduced nicotinamide adenine dinucleotide-linked substrates. Antiapoptotic Bcl-2 family proteins Bcl-xL and Mcl-1 also increase mitochondrial H(2)O(2) release when overexpressed. Chronic exposure of cells to low levels of the mitochondrial uncoupler carbonyl cyanide 4-(triflouromethoxy)phenylhydrazone reduced the rate of H(2)O(2) production by Bcl-xL overexpressing cells, resulting in a decreased ability to remove exogenous H(2)O(2) and enhanced cell death under conditions of acute oxidative stress. Our results indicate that chronic and mild elevations in H(2)O(2) release from Bcl-2, Bcl-xL, and Mcl-1 overexpressing mitochondria lead to enhanced cellular antioxidant defense and protection against death caused by acute oxidative stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号