首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Urodilatin (ANF-(95-126] and beta-ANF, the antiparallel dimer of ANF-(99-126), are naturally occurring members of the ANF family. We studied their receptor binding properties in human platelets and Triton-solubilized membranes from bovine adrenal cortex and their ability to activate particulate guanylate cyclase in bovine adrenal cortex. In human platelets containing R2-receptors not coupled to particulate guanylate cyclase urodilatin binds with similar affinity as ANF-(99-126) (KD: 55 pM), whereas beta-ANF has an affinity lower than the truncated ANF-(103-123) (KD: 295 pM and 154 pM). Scatchard analysis indicates one binding site for urodilatin as well as for beta-ANF. In adrenal cortex containing predominantly R1-receptors coupled to particulate guanylate cyclase, urodilatin binds with a higher affinity (KD: 30 pM) than ANF-(99-126) (KD: 52 pM) and stimulates to a similar extent to ANF-(99-126) (about two fold at 1 muM), whereas beta-ANF has a smaller affinity (KD: 120 pM) and stimulates particulate guanylate cyclase to a lower extent than ANF-(99-126). The data from platelets and adrenal cortex show that beta-ANF has low binding affinities but stimulates particulate guanylate cyclase, whereas urodilatin appears to be a physiological R1-agonist.  相似文献   

2.
A single class of saturable, specific binding sites for the circulating form of atrial natriuretic peptides, ANP(99-126), was identified in rat thymus and spleen and in isolated thymocytes and spleen cells using quantitative autoradiographic techniques. In the thymus, the relative potency of ANP analogs to inhibit [125I] ANP(99-126) binding was ANP(99-126) = ANP(103-126) greater than ANP(111-126) greater than ANP(103-125). ANP(103-123) could not displace [125I]ANP(99-126) binding. Addition of ANP(99-126) stimulated the formation of cyclic GMP in isolated thymocytes and spleen cells in a dose-dependent manner. Our results indicate that immune cells have specific ANP receptors which could be coupled to guanylate cyclase activation and may play a role in the regulation of the immune response.  相似文献   

3.
The differences in biological functions between alpha-human atrial natriuretic polypeptide (alpha-hANP) and its oxidized analog, MetSO-alpha-hANP, have been investigated. Analysis of the ANP receptor subtypes by affinity labeling has shown that a bovine pulmonary aortic endothelial cell line (CPAE cells) primarily expresses ANP-R1 (R, receptor) coupled to particulate guanylate cyclase, while Hela cells from human cervical carcinoma predominantly express ANP-R2, which lacks a guanylate cyclase. alpha-hANP could bind to both ANP receptor subtypes with high affinity, while MetSO-alpha-hANP showed more selective binding to ANP-R2 than to ANP-R1. The activity of MetSO-alpha-hANP for stimulation of guanylate cyclase coupled to ANP-R1 was about 520-fold less than that of alpha-hANP (median effective dose = 2.5 nM for alpha-hANP, 1.3 microM for MetSO-alpha-hANP), indicating that MetSO-alpha-hANP was a partial agonist for this receptor. While this oxidized analog could inhibit the cAMP production through ANP-R2, with 0.15 times the activity of alpha-hANP (median concentration = 0.31 nM for alpha-hANP, 2.0 nM for MetSO-alpha-hANP). In in vivo studies, the diuretic activity of MetSO-alpha-hANP was 25-100-fold less than that of alpha-hANP. In addition, MetSO-alpha-hANP could potentiate the diuretic activity of alpha-hANP that was also caused by C-ANF4-23, a specific agonist for ANP-R2. These results demonstrate that MetSO-alpha-hANP can act as an agonist more selective for ANP-R2 than for ANP-R1, both in vivo and in vitro. The relationship between receptor selectivities and the conformation of alpha-hANP or MetSO-alpha-hANP was also discussed.  相似文献   

4.
5.
Natriuretic peptide receptor-C signaling and regulation   总被引:10,自引:0,他引:10  
Anand-Srivastava MB 《Peptides》2005,26(6):1044-1059
The natriuretic peptides (NP) are a family of three polypeptide hormones termed atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP), and C-type natriuretic peptide (CNP). ANP regulates a variety of physiological parameters by interacting with its receptors present on the plasma membrane. These are of three subtypes NPR-A, NPR-B, and NPR-C. NPR-A and NPR-B are guanylyl cyclase receptors, whereas NPR-C is non-guanylyl cyclase receptor and is coupled to adenylyl cyclase inhibition or phospholipase C activation through inhibitory guanine nucleotide regulatory protein (Gi). ANP, BNP, CNP, as well as C-ANP(4-23), a ring deleted peptide that specifically interacts with NPR-C receptor inhibit adenylyl cyclase activity through Gi protein. Unlike other G-protein-coupled receptors, NPR-C receptors have a single transmembrane domain and a short cytoplasmic domain of 37 amino acids, which has a structural specificity like those of other single transmembrane domain receptors. A 37 amino acid cytoplasmic peptide is sufficient to inhibit adenylyl cyclase activity with an apparent Ki similar to that of ANP(99-126) or C-ANP(4-23). In addition, C-ANP(4-23) also stimulates phosphatidyl inositol (PI) turnover in vascular smooth muscle cells (VSMC) which is attenuated by dbcAMP and cAMP-stimulatory agonists, suggesting that NPR-C receptor-mediated inhibition of adenylyl cyclase and resultant decreased levels of cAMP may be responsible for NPR-C-mediated stimulation of PI turnover. Furthermore, the activation of NPR-C receptor by C-ANP(4-23) and CNP inhibits the mitogen-activated protein kinase activity stimulated by endothelin-3, platelet-derived growth factor, phorbol-12 myristate 13-acetate, suggesting that NPR-C receptor might also be coupled to other signal transduction system or that there may be an interaction of the NPR-C receptor and some other signaling pathways. In this review article, NPR-C receptor coupling to different signaling pathways and their regulation will be discussed.  相似文献   

6.
Atrial natriuretic peptide (ANP) contains a disulfide which is generally considered to be required for biological activity. A truncated linear ANP analog, des-Cys105,Cys121-ANP-(104-126) (referred to as analog I), that lacks the 2 cysteine residues of the parent peptide was synthesized. In competition binding studies using rabbit lung membranes, ANP-(103-126) and analog I displaced bound 125I-ANP-(103-126) from specific ANP binding sites 100 and 73%, respectively. The concentrations of ANP-(103-126) and analog I that produced 50% inhibition of radioligand binding to the membranes were 0.26 +/- 0.07 and 0.31 +/- 0.09 nM, respectively. Radioiodinated ANP-(103-126) and analog I were chemically cross-linked to binding sites on rabbit lung membranes, and the labeled membrane proteins were analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and autoradiography. 125I-Analog I specifically labeled a 65,000-dalton protein and a 135,000-dalton protein which, under reducing conditions, dissociated into 65,000-dalton subunits. In contrast, 125I-ANP-(103-126) labeled specifically a nonreducible 135,000-dalton protein, in addition to the 65,000-dalton species and the reducible 135,000-dalton species. ANP-(103-126) (100 nM) stimulated rabbit lung particulate guanylate cyclase activity, whereas analog I, at the same concentration, had no effect on cyclic GMP production and did not antagonize the effect of ANP-(103-126). From these observations, we conclude that analog I is a selective ligand which binds to approximately 73% of the total ANP binding sites present in rabbit lung membranes. Unlike ANP-(103-126), analog I does not bind to the remaining 27% of the binding sites and does not activate guanylate cyclase. Binding to the cyclase-linked ANP receptor correlates with the specific labeling by 125I-ANP-(103-126) of the nonreducible 135,000-dalton membrane protein.  相似文献   

7.
Potentiation of platelet aggregation by atrial natriuretic peptide   总被引:1,自引:0,他引:1  
A L Loeb  A R Gear 《Life sciences》1988,43(9):731-738
Atrial natriuretic peptide (ANP) has binding sites on a variety of tissues, including human platelets. We have used a new, quenched-flow approach coupled to single-particle counting to investigate the effects of ANP (rat, 1-28) on the initial events (within the first several seconds) following human platelet activation. While ANP alone (1 pM-100 nM) had no effect, ANP significantly potentiated thrombin (0.4 units/ml)-, epinephrine (15 microM)- and ADP (2 or 10 microM)-induced aggregation. Maximum stimulation occurred between 10 to 100 pM. ANP had no influence on the thrombin or ADP-induced increase in platelet volume associated with the "shape change." Since ANP receptors are coupled to a particulate guanylate cyclase and some ANP-induced effects may be mediated through cyclic GMP, we studied how another activator of platelet guanylate cyclase, sodium nitroprusside, affected platelet activation and cyclic nucleotide levels. Sodium nitroprusside (1 microM) inhibited ADP, but not thrombin or epinephrine-induced aggregation. Both sodium nitroprusside (1 microM) and ANP (10 nM) increased cyclic GMP levels by 80% and 37%, respectively, within 60 sec in washed platelets. ANP had no effect on platelet cyclic AMP, while sodium nitroprusside induced a 77% increase. These data suggest that the platelet ANP receptor may be coupled to guanylate cyclase and the rise in cyclic GMP may potentiate platelet function.  相似文献   

8.
The stimulation of cyclic GMP accumulation and particulate guanylate cyclase activity by atrial natriuretic peptide (ANP) was compared to the affinity and number of ANP receptors in eight cultured cell types. At 100 nM, ANP increased cyclic GMP by 13-fold in bovine adrenal cortical, 35-fold in human lung fibroblast, 58-fold in canine kidney epithelial, 60-fold in bovine aortic smooth muscle, 120-fold in rat mammary epithelial, 260-fold in rat Leydig, 300-fold in bovine kidney epithelial, and 475-fold in bovine aortic endothelial cells. ANP (1 microM) increased particulate guanylate cyclase activity by 1.5-, 2.5-, 3.1-, 3.2-, 5.0-, 7.0-, 7.8-, and 8.0-fold in bovine adrenal cortical, bovine aortic smooth muscle, human lung fibroblast, canine kidney epithelial, rat mammary epithelial, rat Leydig, bovine kidney epithelial, and bovine aortic endothelial cells, respectively. Specific 125I-ANP binding to intact rat Leydig (3,000 sites/cell; Kd = 0.11 nM), bovine aortic endothelial (14,000 sites/cell; Kd = 0.09 nM), bovine adrenal cortical (50,000 sites/cell; Kd = 0.12 nM), human lung fibroblast (80,000 sites/cell; Kd = 0.32 nM), and bovine aortic smooth muscle (310,000 sites/cell; Kd = 0.82 nM) cells was saturable and high affinity. No specific and saturable ANP binding was detected in bovine and canine kidney epithelial and rat mammary epithelial cells. Two ANP-binding sites of 66,000 and 130,000 daltons were specifically labeled by 125I-ANP after cross-linking with disuccinimidyl suberate. The 130,000-dalton ANP-binding sites bound to a GTP-agarose affinity column, and the specific activity of guanylate cyclase was increased by 90-fold in this fraction. Our results demonstrate that the increase in cyclic GMP accumulation and particulate guanylate cyclase activity by ANP does not correlate with the affinity and number of ANP-binding sites. These results suggest that multiple populations of ANP receptors exist in these cells and that only one receptor subtype (130,000 daltons) is associated with particulate guanylate cyclase activity.  相似文献   

9.
Receptors for atrial natriuretic peptide (ANP) are heterogeneous: an approximately 140-kDa receptor exhibits ANP-stimulated guanylate cyclase activity whereas an approximately 65-kDa receptor is thought to act only as a clearance-storage protein. We have used photoaffinity labeling techniques to show that the human cell line, HeLa, contains predominantly the approximately 140-kDa ANP receptor. In contrast, several other cell lines contain primarily the approximately 65-kDa receptor. In HeLa cells, ANP bound specifically to high affinity binding sites (Kd approximately 2 nM) and stimulated a rapid, dose-dependent accumulation of cGMP. These cell lines can thus provide useful models to study the multiple mechanisms of ANP action.  相似文献   

10.
Binding sites of atrial natriuretic peptide in tree shrew adrenal gland   总被引:1,自引:0,他引:1  
Adrenal gland binding sites for atrial natriuretic peptide-(99-126) (ANP) were quantitated in tree shrew (Tupaia belangeri) by incubation of adrenal sections with (3-[125I]-iodotyrosyl28) atrial natriuretic peptide-(99-126), followed by autoradiography with computerized microdensitometry. In the adrenal glands, there are three types of ANP binding sites. One is located in the zona glomerulosa (BMax 84 +/- 6 fmol/mg protein; Kd 122 +/- 9 pM); the second in the zona fasciculata and reticularis (BMax 29 +/- 2 fmol/mg protein; Kd 153 +/- 6 pM) and the third in the adrenal medulla (BMax 179 +/- 1 fmol/mg protein; Kd 70 +/- 2 pM). Besides the influence of ANP on the regulation of adrenocortical mineralcorticoid and glucocorticoid secretion our findings raise the possibility for a local site of action of atrial natriuretic peptide in the regulation of adrenomedullary catecholamines in the tree shrew, primates and man.  相似文献   

11.
Atrial natriuretic factor (ANF) receptors with and without guanylate cyclase activity were simultaneously purified to apparent homogeneity from bovine adrenal zona glomerulosa cell membrane fractions. The particulate guanylate cyclase which co-purified with the ANF receptor showed one of the highest specific activity reported. The receptors with or without the guanylate cyclase activity showed high affinities to ANF (99-126). The receptor without the cyclase showed a high affinity to truncated ANF analogs, ANF (103-123) and ANF (105-121), whereas the cyclase-linked receptor had a much lower affinity to these analogs. Both of the receptors migrated as a single band with a molecular weight of 135,000 daltons on SDS-gel electrophoresis under non-reducing conditions. The 135,000 daltons band of the receptor without the cyclase was shifted to a 62,000 daltons band under reducing conditions, but the band for the cyclase-linked receptor was not shifted. These results demonstrated the presence of two subtypes of ANF receptor in bovine adrenal cortex and indicate two different modes of intracellular action of ANF.  相似文献   

12.
Coupling of the atrial natriuretic peptide (ANP) receptor to particulate guanylate cyclase has been demonstrated kinetically and chromatographically using bovine lung plasma membranes and their detergent extracts. Addition of ANP to the membrane suspension stimulated guanylate cyclase activity 2-5-fold indicating the presence of ANP-sensitive particulate guanylate cyclase. The enzyme retained the ability to respond to ANP even after solubilization with digitonin. Characterization of the solubilized enzyme by gel filtration and affinity chromatography revealed that the ANP receptor and particulate guanylate cyclase exist as a functionally but not covalently linked stable complex.  相似文献   

13.
A linear decapeptide, [cyclohexylalanine 106]ANP-(105-114)NH2 (1), where ANP is atrial natriuretic peptide, was prepared by solid phase synthesis and purified by reverse-phase liquid chromatography. This novel peptide was found to bind to ANP receptors in rabbit lung membranes, to stimulate cGMP production in various tissues, and to fully relax precontracted rabbit aorta in a dose-dependent fashion. The potency of 1 in the various in vitro assays varies between one-twentieth and one-eightieth of the potency of the reference peptide, the 24-mer rat ANP-(103-126). The linear decapeptide 1, which encompasses amino acid residues from the rat ANP sequence (105-114), features a cyclohexylalanine residue instead of the phenylalanine 106 residue in the hormone sequence, a free sulfhydryl function at the N-terminal cysteine 105, and a carboxamide C terminus. Its disulfide dimer 6 was active in the rabbit aorta assay while the S-methyl cysteine 7 analogue was not active in the same assay at similar concentrations. The decapeptide 1 is of particular significance because it is the shortest analogue reported to date endowed with agonistic activity at the guanylate cyclase-coupled ANP receptor. In particular, it is interesting to compare its structure to the structures of other short linear analogues of ANP which are totally devoid of the ability to stimulate particulate guanylate cyclase activity.  相似文献   

14.
Abstract

ANP receptor binding and desensitization were demonstrated in the A10 vascular smooth muscle cell (VSMC) line. Concomitantly, the ANP receptor coupled guanylate cyclase activity was reduced by the receptor down-regulation with ANP. The ANP stimulated cGMP accumulation is modulated by arginine-vasopressin, while the arginine-vasopressin mediated cAMP system remained unaffected by ANP. Results suggest negative coupling of arginine-vaso-pressin receptors to the guanylate cyclase activity, and indicate that the vasorelaxant activity of ANP might be regulated in part by arginine-vasopressin via specific receptor sites.  相似文献   

15.
Atrial natriuretic peptide (ANP) binding and ANP-induced increases in cyclic guanosine monophosphate (cGMP) levels have been observed in brain microvessels (Chabrier et al., 1987; Steardo and Nathanson, 1987), suggesting that this fluid-regulating hormone may play a role in the fluid homeostasis of the brain. This study was initiated to characterize the ANP receptors in primary cultures of brain microvessel endothelial cells (BMECs). The apparent equilibrium dissociation constant, Kd, for ANP increased from 0.25 nM to 2.5 nM, and the number of ANP binding sites as determined by Scatchard analysis increased from 7,100 to 170,000 sites/cell between 2 and 10 days of culture following monolayer formation. Time- and concentration-dependent studies on the stimulation of cGMP levels by ANP indicated that guanylate cyclase-linked ANP receptors were present in BMECs. The relative abilities of ANP, brain natriuretic peptide (BNP), and a truncated analog of ANP containing amino acids 5-27 (ANP 5-27) to modulate the accumulation of cGMP was found to be ANP greater than BNP much greater than ANP 5-27. Affinity cross-linking with disuccinimidyl suberate and radiolabeled ANP followed by gel electrophoresis under reducing conditions demonstrated a single band corresponding to the 60-70 kD receptor, indicating the presence of the nonguanylate cyclase-linked ANP receptor. Radiolabeled ANP binding was examined in the presence of various concentrations of either ANP, BNP, or ANP 5-27 and suggested that a large proportion of the ANP receptors present in blood-brain barrier endothelial cells bind all of these ligands similarly. These data indicate both guanylate cyclase linked and nonguanylate cyclase linked receptors are present on BMECs and that a higher proportion of the nonguanylate cyclase linked receptors is expressed. This in vitro culture system may provide a valuable tool for the examination of ANP receptor expression and function in blood-brain barrier endothelial cells.  相似文献   

16.
The atrial natriuretic factor (ANF) receptor of bovine adrenal cortex was solubilized with Triton X-100 and purified by sequential chromatography on ANF-(99-126)-agarose, GTP-agarose, and wheat germ agglutinin-Sepharose. Two subtypes of ANF receptors were isolated, both of which showed specific ANF binding, whereas one of the ANF receptor subtypes also possessed significant cyclase activity. Both of the receptors showed high capacities (Bmax = 5.7-6.8 nmol/mg of protein) and high affinities (Kd = 54-68 pM) for ANF-(99-126). The cyclase-free receptor had high affinity (Ki = 150-220 pM) to C-terminal truncated ANF analogs, whereas the cyclase-containing receptor had a much weaker affinity (Ki = 10(6)-10(7) pM). When treated with dithiothreitol, the purified cyclase-containing and cyclase-free ANF receptors migrated as a single band at Mr 135,000 and 62,000, respectively, in sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The purified cyclase-free receptor is not a product derived from the cyclase-containing receptor because (i) two proteins with Mr of 135,000 and 62,000 were specifically labeled with 4-azidobenzoyl 125I-ANF-(102-126) in nonsolubilized intact membranes; (ii) the truncated ANF analogs (10(4) pM) prevented the photolabeling of the 62,000-dalton protein but not that of the 135,000-dalton protein; and (iii) two-dimensional peptide mapping showed more than 90% difference between the profiles of the two purified ANF receptor subtypes. This study provides first direct evidence for the existence of two distinct ANF receptors which are different not only in their pharmacological properties but also in their primary structure.  相似文献   

17.
The guanylate cyclase/receptor family of proteins   总被引:5,自引:0,他引:5  
Guanylate cyclase, which catalyzes the formation of cGMP from GTP, exists in both the soluble and particulate fractions of cells. At least two different cellular compartments for the particulate enzyme exist: the plasma membrane and cytoskeleton. The enzyme form found in the soluble fraction is a heterodimer that can be regulated by free radicals and nitrovasodilators, whereas the membrane form exists as a single-chain polypeptide that can be regulated by various peptides. These peptides include resact and speract obtained from eggs and atrial natriuretic peptides (ANP). The species of guanylate cyclase present in cytoskeletal fractions resists solubilization with non-ionic detergents; its structural properties are not yet known. cDNAs encoding the membrane form of guanylate cyclase have been isolated from different tissues and species, and in all cases the DNA sequences predict a protein containing a single transmembrane domain. The carboxyl (intracellular) domain is highly conserved from sea urchins through mammals, whereas the extracellular domain (amino terminus) varies considerably. The predicted amino acid sequences demonstrate that the membrane form of guanylate cyclase is a member of a diverse and complex family of proteins that includes a low molecular weight ANP receptor, protein kinases, and the cytoplasmic form of guanylate cyclase. cDNA encoding a membrane form of the enzyme from mammalian tissues has been expressed in cultured cells, and the expressed guanylate cyclase specifically binds ANP and is activated by ANP. The membrane form of guanylate cyclase, then, serves as a cell surface receptor, representing the first recognized protein to directly catalyze formation of a low molecular weight second messenger in response to ligand binding.  相似文献   

18.
The effect of synthetic porcine brain natriuretic peptide (pBNP), a novel brain peptide with sequence homology to alpha-human atrial natriuretic peptide (hANP), on receptor binding and cGMP generation, was studied in cultured rat vascular smooth muscle cells (VSMC) and compared with that of alpha-hANP. 125I-pBNP bound to the cells in a time-dependent manner similar to that of 125I-alpha-hANP. Scatchard analysis indicated a single class of binding sites for pBNP with affinity and capacity identical to those of alpha-hANP. pBNP and alpha-hANP were almost equipotent in inhibiting the binding of either radioligand and stimulating intracellular cGMP generation. These data indicate that BNP and ANP interact with the same receptor sites to activate guanylate cyclase in rat VSMC.  相似文献   

19.
Two classes of atrial natriuretic peptide (ANP) receptors are present in purified sarcolemmal membrane fractions isolated from rat ventricle. Scatchard analysis using [125I]-ANP reveals high affinity (Kd approximately 10(-11) M) and low affinity (Kd approximately 10(-9) M) binding sites. Basal guanylate cyclase activities associated with these membrane fractions range from 3.2 +/- 1.3 pmol/min/mg protein in the presence of Mg2+ to 129 +/- 17 pmol/min/mg protein in the presence of Mn2+. Millimolar concentrations of adenosine triphosphate (ATP) potentiates Mg2+- but not Mn2+-supported activity. Binding of ANP to the low affinity site but not the high affinity site results in a maximum 2-fold activation of Mn2+- and up to 6-fold activation of Mg2+/ATP supported guanylate cyclase activities.  相似文献   

20.
The characteristics of atrial natriuretic factor (ANF) receptors where studied in rat retinal particulate preparations. Specific 125I-ANF binding to retinal particulate preparations was greater than 90% of total binding and saturable at a density (Bmax) of 40 +/- 8 fmol/mg protein with an apparent dissociation constant (Kd) of 6.0 +/- 2.0 pM (n = 3). Apparent equilibrium conditions were established within 30 min. The Kd value of 125I-ANF binding calculated by kinetic analysis was 4.0 pM. The Bmax of 60 +/- 10 fmol/mg protein and the Kd of 5 +/- 2 pM, calculated by competition analysis, were in close agreement with the values obtained from Scatchard plots or kinetic analysis. The 125I-ANF binding to retinal particulate preparations was not inhibited by 1 microM concentration of somatostatin, vasopressin, vasoactive intestinal peptide, adrenocorticotropin, thyrotropin releasing hormone, or leu-enkephalin. The rank order of potency of the unlabelled atrial natriuretic peptides for competing with specific 125I-ANF (101-126) binding sites was rANF (92-126) greater than rANF (101-126) greater than rANF (99-126) greater than rANF (103-126) greater than Tyro-Atriopeptin I greater than hANF (105-126) greater than rANF (1-126). Similar results have been obtained in peripheral tissues and mammalian brain, indicating that central and peripheral ANF-binding sites have somewhat similar structural requirements. Affinity cross-linking of 125I-ANF to retinal particulate preparations resulted in the labelling of two sites of molecular weight 140 and 66 kDa, respectively. This demonstration of specific high-affinity ANF receptors suggests that the peptide may act as a neurotransmitter or neuromodulator in the retina.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号