首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
M Chen 《Applied microbiology》1987,53(10):2414-2419
Spores, sporeforming vegetative cells, and asporogenous populations were enumerated in two semicontinuous anaerobic fermentors digesting municipal primary sludge at 35 and 55 degrees C for more than 87 days. In the 35 degrees C fermentor, the anaerobic total population was 312.5 X 10(6)/ml, with 25.0 X 10(6)/ml being sporogenous. The populations that digest casein, starch, pectin, and cellulose were 23.1 X 10(6), 59.2 X 10(6), 26.2 X 10(6), and 7.3 X 10(6)/ml, respectively, with 2.8 X 10(6), 6.7 X 10(6), 3.4 X 10(6), and 1.5 X 10(6)/ml being sporogenous, respectively. The sporeformers accounted for 8.0 to 20.0% of each of the respective populations. In the 55 degrees C fermentor, the anaerobic total population was 512.5 X 10(6)/ml, with 336.6 X 10(6)/ml being sporogenous. The populations that digest casein, starch, pectin, and cellulose were 97.7 X 10(6), 190.7 X 10(6), 75.8 X 10(6), and 11.2 X 10(6)/ml, respectively, with 47.8 X 10(6), 110.6 X 10(6), 43.3 X 10(6), and 5.1 X 10(6)/ml, respectively, being sporogenous. The sporeformers represented 45.5 to 65.7% of each of the respective populations. The numbers of thermophilic sporeforming vegetative cells in the 55 degrees C fermentor were 9.0 to 19.8 times higher than their counterparts in the 35 degrees C fermentor. Most sporeformers were in the vegetative state in the 35 and 55 degrees C fermentors. After 18 days of fermentation at 55 degrees C, sporeformers carried out most of the digestion; however, the digestion was shared by both sporeformers and asporogenous bacteria after 87 days of fermentation. In the 35 degrees C fermentor, asporogenous bacteria digested most of the sludge. During the 18- and 87-day experimental periods, sporeformers were never predominant.  相似文献   

2.
A two-stage 68 degrees C/55 degrees C anaerobic degradation process for treatment of cattle manure was studied. In batch experiments, an increase of the specific methane yield, ranging from 24% to 56%, was obtained when cattle manure and its fractions (fibers and liquid) were pretreated at 68 degrees C for periods of 36, 108, and 168 h, and subsequently digested at 55 degrees C. In a lab-scale experiment, the performance of a two-stage reactor system, consisting of a digester operating at 68 degrees C with a hydraulic retention time (HRT) of 3 days, connected to a 55 degrees C reactor with 12-day HRT, was compared with a conventional single-stage reactor running at 55 degrees C with 15-days HRT. When an organic loading of 3 g volatile solids (VS) per liter per day was applied, the two-stage setup had a 6% to 8% higher specific methane yield and a 9% more effective VS-removal than the conventional single-stage reactor. The 68 degrees C reactor generated 7% to 9% of the total amount of methane of the two-stage system and maintained a volatile fatty acids (VFA) concentration of 4.0 to 4.4 g acetate per liter. Population size and activity of aceticlastic methanogens, syntrophic bacteria, and hydrolytic/fermentative bacteria were significantly lower in the 68 degrees C reactor than in the 55 degrees C reactors. The density levels of methanogens utilizing H2/CO2 or formate were, however, in the same range for all reactors, although the degradation of these substrates was significantly lower in the 68 degrees C reactor than in the 55 degrees C reactors. Temporal temperature gradient electrophoresis profiles (TTGE) of the 68 degrees C reactor demonstrated a stable bacterial community along with a less divergent community of archaeal species.  相似文献   

3.
We studied in batch assays the transformation and toxicity of anthraquinone dyes during incubations with anaerobic granular sludge under mesophilic (30 degrees C) and thermophilic (55 degrees C) conditions. Additionally, the electron shuttling capacity of the redox mediator anthraquinone-2-sulfonic acid (AQS) and subsequent increase on decolourisation rates was investigated on anthraquinone dyes. Compared with incubations at 30 degrees C, serum bottles at 55 degrees C presented distinctly higher decolourisation rates not only with an industrial wastewater containing anthraquinone dyes, but also with model compounds. Compared with batch assays at 30 degrees C, the first-order rate constant "k" of the Reactive Blue 5 (RB5) was enhanced 11-fold and 6-fold for bottles at 55 degrees C supplemented and free of AQS, respectively. However, the anthraquinone dye Reactive Blue 19 (RB19) demonstrated a very strong toxic effect on volatile fatty acids (VFA) degradation and methanogenesis at both 30 degrees C and 55 degrees C. The apparent inhibitory concentrations of RB19 exerting 50% reduction in methanogenic activity (IC50-value) were 55 mg l(-1) at 30 degrees C and 45 mg l(-1) at 55 degrees C. Further experiments at both temperatures revealed that RB19 was mainly toxic to methanogens, because the glucose oxidizers including acetogens, propionate-forming, butyrate-forming and ethanol-forming microorganisms were not affected by the dye toxicity.  相似文献   

4.
Thermophilic (50 degrees C) and obligately thermophilic (60 degrees C) anaerobic carbohydrate- and protein-digesting and methanogenic bacterial populations were enumerated in a mesophilic (35 degrees C) fermentor anaerobically digesting municipal primary sludge. Of the total bacterial population in the mesophilic fementor, 9% were thermophiles (36 x 10(6)/ml) and 1% were obligate thermophiles (4.5 x 10(6)/ml). Of these 10%, the percentages of bacteria (thermophiles and obligate thermophiles, respectively) able to use specific substrates were further enumerated as follows: bacteria able to digest albumin, casein, starch, and mono- and disaccharides, 30 and 10%; pectin degraders, 10 and 0.2%; cellulose degraders, 2 and 0.06%; methanogens that grow with H2 and CO2, methanol, and dimethylamine, 9 and 1%; methanogens that grow with formate, 8 and 5%; and methanogens that grow with acetate, 25 and less than 0.8%. Shortly after the temperature was elevated from 35 to 50 or 60 degrees C, the digestion of albumin, casein, starch, and mono- and disaccharides was detected, and methane was produced from H2 and CO2. Methane produced from acetate was not delayed at 50 degrees C, but was delayed by 29 days at 60 degrees C. Methane produced from formate was delayed by 3 days, from methanol by 7 days, and from dimethylamine by 5 days at 50 and 60 degrees C. A 10- and 20-day acclimation period was required for hydrolysis of pectin and cellulose, respectively, at 50 degrees C. Digestion of pectin required 20 days and cellulose longer than 85 days when the temperature was elevated abruptly from 35 to 60 degrees C. The acclimation period for the digestion of pectin and cellulose at 60 degrees C was shortened to 3 and 15 days, respectively, by seeding with a small amount of a culture acclimated to 50 degrees C. The data suggest that enrichment of cellulolytic, pectinolytic, and acetate-utilizing bacteria is crucial for the digestion of sewage sludge at 60 degrees C.  相似文献   

5.
M Chen 《Applied microbiology》1983,45(4):1271-1276
Thermophilic (50 degrees C) and obligately thermophilic (60 degrees C) anaerobic carbohydrate- and protein-digesting and methanogenic bacterial populations were enumerated in a mesophilic (35 degrees C) fermentor anaerobically digesting municipal primary sludge. Of the total bacterial population in the mesophilic fementor, 9% were thermophiles (36 x 10(6)/ml) and 1% were obligate thermophiles (4.5 x 10(6)/ml). Of these 10%, the percentages of bacteria (thermophiles and obligate thermophiles, respectively) able to use specific substrates were further enumerated as follows: bacteria able to digest albumin, casein, starch, and mono- and disaccharides, 30 and 10%; pectin degraders, 10 and 0.2%; cellulose degraders, 2 and 0.06%; methanogens that grow with H2 and CO2, methanol, and dimethylamine, 9 and 1%; methanogens that grow with formate, 8 and 5%; and methanogens that grow with acetate, 25 and less than 0.8%. Shortly after the temperature was elevated from 35 to 50 or 60 degrees C, the digestion of albumin, casein, starch, and mono- and disaccharides was detected, and methane was produced from H2 and CO2. Methane produced from acetate was not delayed at 50 degrees C, but was delayed by 29 days at 60 degrees C. Methane produced from formate was delayed by 3 days, from methanol by 7 days, and from dimethylamine by 5 days at 50 and 60 degrees C. A 10- and 20-day acclimation period was required for hydrolysis of pectin and cellulose, respectively, at 50 degrees C. Digestion of pectin required 20 days and cellulose longer than 85 days when the temperature was elevated abruptly from 35 to 60 degrees C. The acclimation period for the digestion of pectin and cellulose at 60 degrees C was shortened to 3 and 15 days, respectively, by seeding with a small amount of a culture acclimated to 50 degrees C. The data suggest that enrichment of cellulolytic, pectinolytic, and acetate-utilizing bacteria is crucial for the digestion of sewage sludge at 60 degrees C.  相似文献   

6.
The possibility of improving a two-stage (68 degrees C/55 degrees C) anaerobic digestion concept for treatment of cattle manure was studied. In batch experiments, a 10-24% increase of the specific methane yield from cattle manure and its fractions was obtained, when the substrates were inoculated with bacteria of the genus Caldicellusiruptor and Dictyoglomus. In a reactor experiment inoculation of a 68 degrees C pretreatment reactor with Caldicellusiruptor resulted in a 93% increase in the methane yield of the pretreatment reactor for a period of 18 days, but gave only a slight increase in the overall methane yield of the two-stage setup.  相似文献   

7.
In this study, a comparison of the biodegradation of adsorbed organic halogen compounds (AOX) and polychlorinated biphenyls (PCB) in thermophilic and mesophilic anaerobic digestion (seeded with waste activated sludge) at different hydraulic retention times (HRT 18, 22 and 26 days in the mesophilic digester and 8, 12, 18, 22 and 26 days in the thermophilic digester) was performed. Results obtained in this work showed an enhancement of both PCB and AOX biodegradation under thermophilic conditions. The total PCB removal efficiency was in the range of 59.4–83.5% under thermophilic conditions and 33.0–58.0% under mesophilic conditions. HRT played an important role in the digester performance since high working HRTs implied more reduction of the total PCB amount in the sludge. The total PCB content in the treated sludge under thermophilic conditions lied below the cut-off limit proposed in the 3rd draft of Directive presented to the European Commission [CEC, Working Document on Sludge (3rd Draft), Commission of the European Communities Directorate-General Environment, ENV.E.3/LM, Brussels, 27 April 2000]. Besides, a bioaccumulation of lightly chlorinated PCBs was detected in the mesophilic digester, which is in concordance with the theory that the PCBs are anaerobically biodegraded by means of a reductive dechlorination mechanism. On the other hand, the AOX removal efficiency was in the range of 40.4–50.3% for thermophilic conditions and 30.2–43.2% for mesophilic conditions. The AOX content in the treated sludge of both thermophilic and mesophilic digesters did not exceed the cut-off limit proposed in the 3rd draft [CEC, Working Document on Sludge (3rd Draft), Commission of the European Communities Directorate-General Environment, ENV.E.3/LM, Brussels, 27 April 2000]. Moreover, high HRTs promoted an improvement of the AOX removal capacity of the anaerobic digestion.  相似文献   

8.
The occurrence and reactivation of viable but non-culturable (VBNC) Escherichia coli after different anaerobic digestions and the subsequent dewatering and storage were evaluated and compared. Culturable E. coli in digested sludge increased by two to four orders of magnitudes immediately after dewatering. However, counts of both the total and viable E. coli indicated that the increase of E. coli was attributed to its reactivation from the VBNC state to the culturable state. The VBNC pathogen incidences of thermophilic digestion were two to three orders of magnitude higher than those of mesophilic digestion. Accordingly, culturable E. coli in thermophilic, digested sludge after storage were one order of magnitude higher than mesophilic digestion. Anaerobic digestion thus mainly alters the culturable state of pathogens rather than killing them; therefore the biological safety of digested sludge, especially temperature-phased anaerobic digestion, should be carefully assessed.  相似文献   

9.
Summary Estimates of bacterial numbers from raw sewage sludge and sludge treated by thermophilic aerobic digestion were compared with simple indicators of sludge quality and concentrations of potential substrates. Significant differences were found between sludge types for all but one of the variables examined (frequency of dividing cells). During a stable period of digestor operation, the average number of viable obligate thermophiles present in digested sludge (1.63 × 106 ml–1) was approximately 102-fold greater than in feed sludge (1.10 × 104 ml–1). Total numbers of bacteria were slightly greater in digested sludge (3.24 × 1010 ml–1) than in feed sludge (2.39 × 10 ml–10), as were viable counts of bacteria at incubation temperatures of 37°C and 55°C. Significant correlation was found between viable counts of bacteria at 37°C and 55°C for digested sludge, and 65°C and 55°C for feed sludge. The numbers of obligate thermophiles present and the total of bacteria present were related to the temperature and pH of the digested sludge and inversely related to the numbers ofEscherichia coli and coliforms present, which were not detected at temperatures greater than 50°C.  相似文献   

10.
11.
Thermophilic (50 degrees C) anaerobic biodegradation of pentachlorophenol (PCP) was investigated by using different inocula from natural ecosystems and anaerobic digesters. The inocula tested were three freshwater sediments, four anaerobic sewage sludge samples from digesters treating sludge from wastewater plants with various industrial inputs, and digested manure from an anaerobic reactor. Only one digested-sludge sample and the manure sample were from thermophilic environments. The initial PCP concentration was 7.5 or 37.5 microM. After 8 months, PCP had disappeared from the sediment samples and various, less chlorinated intermediates were present. Additions of extra PCP were degraded within 4 weeks, and a maximal observed dechlorination rate of 1.61 mumol/liter/day in the vials with addition of 7.5 microM PCP and 7.50 mumol/liter/day in the vials with addition of 37.5 microM PCP were measured for a freshwater sediment. In contrast, only 2.8 to 17.5% of the initial PCP added had disappeared from the sludge samples after 8 months of incubation. The complex pattern of intermediates formed indicated that the dechlorination of PCP proceeded via different pathways, involving at least two different populations in the dechlorination processes.  相似文献   

12.
The feasibility of thermophilic (55-65 degrees C) and extreme thermophilic (70-80 degrees C) sulfate-reducing processes was investigated in three lab-scale upflow anaerobic sludge bed (UASB) reactors fed with either methanol or formate as the sole substrates and inoculated with mesophilic granular sludge previously not exposed to high temperatures. Full methanol and formate degradation at temperatures up to, respectively, 70 and 75 degrees C, were achieved when operating UASB reactors fed with sulfate rich (COD/SO4(2-)=0.5) synthetic wastewater. Methane-producing archaea (MPA) outcompeted sulfate-reducing bacteria (SRB) in the formate-fed UASB reactor at all temperatures tested (65-75 degrees C). In contrast, SRB outcompeted MPA in methanol-fed UASB reactors at temperatures equal to or exceeding 65 degrees C, whereas strong competition between SRB and MPA was observed in these reactors at 55 degrees C. A short-term (5 days) temperature increase from 55 to 65 degrees C was an effective strategy to suppress methanogenesis in methanol-fed sulfidogenic UASB reactors operated at 55 degrees C. Methanol was found to be a suitable electron donor for sulfate-reducing processes at a maximal temperature of 70 degrees C, with sulfide as the sole mineralization product of methanol degradation at that temperature.  相似文献   

13.
Thermophilic (50 degrees C) anaerobic biodegradation of pentachlorophenol (PCP) was investigated by using different inocula from natural ecosystems and anaerobic digesters. The inocula tested were three freshwater sediments, four anaerobic sewage sludge samples from digesters treating sludge from wastewater plants with various industrial inputs, and digested manure from an anaerobic reactor. Only one digested-sludge sample and the manure sample were from thermophilic environments. The initial PCP concentration was 7.5 or 37.5 microM. After 8 months, PCP had disappeared from the sediment samples and various, less chlorinated intermediates were present. Additions of extra PCP were degraded within 4 weeks, and a maximal observed dechlorination rate of 1.61 mumol/liter/day in the vials with addition of 7.5 microM PCP and 7.50 mumol/liter/day in the vials with addition of 37.5 microM PCP were measured for a freshwater sediment. In contrast, only 2.8 to 17.5% of the initial PCP added had disappeared from the sludge samples after 8 months of incubation. The complex pattern of intermediates formed indicated that the dechlorination of PCP proceeded via different pathways, involving at least two different populations in the dechlorination processes.  相似文献   

14.
15.
The various problems associated with treating sulphate-containing wastewaters stem inherently from successful competitive interactions between sulphate reducing bacteria (SRB) and other bacteria involved in the process, resulting in the formation of H2S. Prevention of in-reactor sulphide generation by use of specific SRB inhibitors presents a potential solution. Nitrite has been reported to be a specific inhibitor of SRB but its possible toxicity to syntrophic and methanogenic members of the anaerobic consortium has not been investigated. In batch activity and toxicity tests, under both mesophilic and thermophilic conditions, nitrite, at concentrations of up to 150 mg L–1, was found to be ineffective as a specific inhibitor of SRB, and was also shown to have an inhibitory effect on the activity of syntrophic and methane-producing bacteria in mesophilic and thermophilic digester sludge samples.  相似文献   

16.
While the use of anaerobic digestion to generate methane as a source of bioenergy is increasing worldwide, our knowledge of the microbial communities that perform biomethanation is very limited. Using next-generation sequencing, bacterial population profiles were determined in three full-scale mesophilic anaerobic digesters operated on dairy farms in the state of Vermont (USA). To our knowledge, this is the first report of a metagenomic analysis on the bacterial population of anaerobic digesters using dairy manure as their main substrate. A total of 20,366 non-chimeric sequence reads, covering the V1-V2 hypervariable regions of the bacterial 16S rRNA gene, were assigned to 2,176 operational taxonomic units (OTUs) at a genetic distance cutoff value of 5 %. Based on their limited sequence identity to validly characterized species, the majority of OTUs identified in our study likely represented novel bacterial species. Using a naïve Bayesian classifier, 1,624 anaerobic digester OTUs could be assigned to 16 bacterial phyla, while 552 OTUs could not be classified and may belong to novel bacterial taxonomic groups that have yet to be described. Firmicutes, Bacteroidetes, and Chloroflexi were the most highly represented bacteria overall, with Bacteroidetes and Chloroflexi showing the least and the most variation in abundance between digesters, respectively. All digesters shared 132 OTUs, which as a “core” group represented 65.4 to 70.6 % of sequences in individual digesters. Our results show that bacterial populations from microbial communities of anaerobic manure digesters can display high levels of diversity despite sharing a common core substrate.  相似文献   

17.
Summary Fast start-up of thermophilic upflow anaerobic sludge bed (UASB) reactors was achieved at process temperatures of 46, 55 and 64° C, using mesophilic granular sludge as inoculum and fatty acid mixtures as feed. The start-up was brought about by increasing the temperature of mesophilic UASB reactors in a single step, which initially led to a sharp drop in the methane production rate. Thereafter, stable thermophilic methanogenesis was achieved within a period of 1 or 2 weeks depending on the temperature of operation. Mesophilic granules functioned initially as effective carrier material for thermophilic organisms. However, long-term operation led to disintegration of the granules, resulting in wash-out of thermophilic biomass. The temperature optima for acetotrophic methanogenic activity of the sludges cultivated at 46, 55 and 64° C, were similar, but differed significantly from the temperature optimum of the mesophilic inoculum. All the sludges examined were dominated by Methanothrix-like rods. These could be distinguished by antigenic fingerprinting into two subpopulations, one predominant at 36° C and the other predominant at 46° C and above. Offprint requests to: J. B. van Lier  相似文献   

18.
Thermophilic (55 degrees C) sulfate reduction in a gas lift reactor fed with CO gas as the sole electron donor was investigated. The reactor was inoculated with mesophilic granular sludge with a high activity of CO conversion to hydrogen and carbon dioxide at 55 degrees C. Strong competition for H(2) was observed between methanogens and sulfate reducers, while the homoacetogens present consumed only small amounts of H(2). The methanogens appeared to be more sensitive to pH and temperature shocks imposed to the reactor, but could not be completely eliminated. The fast growth rates of the methanogens (generation time of 4.5 h) enabled them to recover fast from shocks, and they rapidly consumed more than 90% of the CO-derived H(2). Nevertheless, steep increases in sulfide production in periods with low methane production suggests that once methanogenesis is eliminated, sulfate reduction with CO-rich gas as electron donor has great potential for thermophilic biodesulfurization.  相似文献   

19.
The impact of the process parameters hydraulic retention time (HRT), organic loading rate (OLR) and substrate upon bacterial diversity was analyzed. Therefore, a controlled anaerobic fermentation (1755 days) of beet silage, only initially inoculated with manure, was monitored by the amplified “ribosomal DNA” restriction analysis. More than 85% of detected operational taxonomic units (OTUs) could not be assigned to described Bacteria. In contrast to studies analyzing the digestion of energy crops in the presence of manure, Chloroflexi were detected, whereas Clostridia and Chloroflexi were identified as persistent groups. Both groups are known as potential hydrogen producers or users. Species distribution patterns for Firmicutes, Bacteroidetes, Synergistetes and Thermotogae were not clearly linked to process parameters. The presence of Planctomycetes, Actinobacteria and Alcaligenaceae was related to long HRTs and short OLRs, while Acidobacteria were governed by short HRTs and high OLRs, respectively. The impact of substrate variations on diversity was minute.  相似文献   

20.
The effect of ultrasound and gamma-irradiation used as pre-treatments for the anaerobic digestion of waste activated sludge at both mesophilic and thermophilic temperatures was examined. Untreated activated sludge was also subjected to anaerobic digestion at these temperatures as a control. The sonication time was 90 s using a Soniprep 150 (MSE Scientific Instruments) which operated at 23 kHz and had been adjusted to give an output of 47 W and the gamma-irradiation dose was 500 krad. The digesters were operated in a semi-continuous mode, being fed with fresh sludge every 24 h at hydraulic retention times (HRT) of 8, 10 and 12 days. Over the 24 h period the differences between the digesters, in terms of volatile solids (VS) reductions and biogas production, were not statistically significant for any particular set of conditions. Thermophilic digestion performed better than mesophilic digestion in terms of biogas production, VS reductions (except at HRT of 8 days) and specific methane yields and the optimum retention time was 10 days, at both temperatures. When gas production over the initial eight hours (probably the hydrolytic stage) was examined, it was found that the gas production rates for pre-treated sludges were higher than those for untreated sludges. This was most pronounced at thermophilic temperatures and a HRT of 10 days. Sonication did not affect the numbers of faecal coliforms in the sludge. However, gamma-radiation caused a 3-log reduction and, when coupled with mesophilic digestion, gave a product which contained < 100 g(-1) TS. Thermophilic anaerobic digestion produced sludges which contained < 1 g(-1) TS irrespective of any pre-treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号