首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
Recently, it has been demonstrated that TNF-alpha and LPS induce the expression of suppressor of cytokine signaling 3 (SOCS3) and inhibit IL-6-induced STAT3 activation in macrophages. Inhibitor studies suggested that both induction of SOCS3 and inhibition of IL-6-induced STAT3 activation depend on the activation of p38 mitogen-activated protein kinase. Since recruitment of the tyrosine phosphatase Src homology protein tyrosine phosphatase 2 (SHP2) to the signal-transducing receptor subunit gp130 attenuates IL-6-mediated STAT-activation, we were interested in whether TNF-alpha also induces the association of SHP2 to the gp130 receptor subunit. In this study we demonstrate that stimulation of macrophages and fibroblast cell lines with TNF-alpha causes the recruitment of SHP2 to the gp130 signal-transducing subunit and leads to tyrosine phosphorylation of SHP2 and gp130. In this context the cytoplasmic SHP2/SOCS3 recruitment site of gp130 tyrosine 759 is shown to be important for the inhibitory effects of TNF-alpha, since mutation of this residue completely restores IL-6-stimulated activation of STAT3 and, consequently, of a STAT3-dependent promoter. In this respect murine fibroblasts lacking exon 3 of SHP2 are not sensitive to TNF-alpha, indicating that functional SHP2 and its recruitment to gp130 are key events in inhibition of IL-6-dependent STAT activation by TNF-alpha. Furthermore, activation of p38 mitogen-activated protein kinase is shown to be essential for the inhibitory effect of TNF-alpha on IL-6 signaling and TNF-alpha-dependent recruitment of SHP2 to gp130.  相似文献   

6.
7.
8.
9.
10.
11.
Oncostatin M is a differentiation factor for myeloid leukemia cells.   总被引:11,自引:0,他引:11  
Oncostatin M (OSM) is a 28-kDa glycoprotein produced by stimulated macrophages and T lymphocytes that inhibits the proliferation of a number of different cell lines derived from solid tumors. Analysis of both amino acid sequence and gene structure has demonstrated that OSM is a member of a cytokine family that includes leukemia inhibitory factor (LIF), IL-6, and granulocyte colony-stimulating factor (G-CSF). We demonstrate that, like LIF, IL-6 and G-CSF, OSM can induce the differentiation of the myeloblastic M1 murine leukemia cells into macrophage-like cells. The morphologic and functional changes induced by OSM are more similar to those observed with LIF and IL-6 than those induced with G-CSF. OSM can also induce the differentiation of the histiocytic U937 human leukemia cells in the presence of granulocyte-macrophage CSF, a property shared with LIF and IL-6. In murine M1 cells, binding of labeled OSM is completely inhibited by excess LIF or OSM, reflecting the binding of OSM to the high affinity form of the murine LIF receptor. In contrast, the binding of labeled OSM to human U937 leukemia cells is inhibited by OSM, but the inhibition by LIF is significantly less. These results suggest that, in human leukemia cells, OSM may act through the LIF receptor and an OSM-specific receptor. The existence of an OSM-specific receptor was confirmed by both growth inhibition and competition binding assays on A375 human melanoma cells. The growth of human A375 cells was inhibited by OSM and IL-6 but not LIF or G-CSF. Neither LIF, G-CSF, nor IL-6 could compete with the binding of labeled OSM to A375 cells.  相似文献   

12.
Gp130 cytokine receptor is involved in the formation of multimeric functional receptors for interleukin-6 (IL-6), IL-11, leukemia inhibitory factor (LIF), oncostatin M (OSM), ciliary neurotrophic factor, and cardiotrophin-1. Cloning of the epitope recognized by an OSM-neutralizing anti-gp130 monoclonal antibody identified a portion of gp130 receptor localized in the EF loop of the cytokine binding domain. Site-directed mutagenesis of the corresponding region was carried out by alanine substitution of residues 186-198. To generate type 1 or type 2 OSM receptors, gp130 mutants were expressed together with either LIF receptor beta or OSM receptor beta. When positions Val-189/Tyr-190 and Phe-191/Val-192 were alanine-substituted, Scatchard analyses indicated a complete abrogation of OSM binding to both type receptors. Interestingly, binding of LIF to type 1 receptor was not affected, corroborating the notion that in this case gp130 mostly behaves as a converter protein rather than a binding receptor. The present study demonstrates that positions 189-192 of gp130 cytokine binding domain are essential for OSM binding to both gp130/LIF receptor beta and gp130/OSM receptor beta heterocomplexes.  相似文献   

13.
The related cytokines, interleukin-6 (IL-6), oncostatin M (OSM), and leukemia inhibitory factor (LIF) direct the formation of specific heteromeric receptor complexes to achieve signaling. Each complex includes the common signal-transducing subunit gp130. OSM and LIF also recruit the signaling competent, but structurally distinct OSMRbeta and LIFRalpha subunits, respectively. To test the hypothesis that the particularly prominent cell regulation by OSM is due to signals contributed by OSMRbeta, we introduced stable expression of human or mouse OSMRbeta in rat hepatoma cells which have endogenous receptors for IL-6 and LIF, but not OSM. Both mouse and human OSM engaged gp130 with their respective OSMRbeta subunits, but only human OSM also acted through LIFR. Signaling by OSMRbeta-containing receptors was characterized by highest activation of STAT5 and ERK, recruitment of the insulin receptor substrate and Jun-N-terminal kinase pathways, and induction of a characteristic pattern of acute phase proteins. Since LIF together with LIFRalpha appear to form a more stable complex with gp130 than OSM with gp130 and OSMRbeta, co-activation of LIFR and OSMR resulted in a predominant LIF-like response. These results suggest that signaling by IL-6 cytokines is not identical, and that a hierarchical order of cytokine receptor action exists in which LIFR ranks as dominant member.  相似文献   

14.
Members of the interleukin-6 (IL-6) family of cytokines exert their biological effects via binding to their cognate ligand-binding receptor subunit on a target cell. The subsequent recruitment of the common signal transducer glycoprotein 130 and activation of the JAK/STAT and SHP-2/Ras/mitogen-activated protein kinase (MAPK) pathways are responsible for the majority of cellular responses elicited by IL-6 cytokines. Several types of experiments suggest that the Src family of kinases (SFK) also participates in IL-6 family cytokine-mediated signaling events. SYF cells, which lack expression of SFKs Src, Yes, and Fyn, were used to determine the role of SFKs in IL-6 family cytokine signaling and gene induction. SYF and wild type (WT) control fibroblasts displayed similar activation of signaling intermediates following stimulation with leukemia inhibitory factor (LIF). LIF-stimulated tyrosine phosphorylation of SHP-2 and subsequent activation of MAPK in SYF cells were identical to that seen in LIF-stimulated WT cells. Both LIF-stimulated tyrosine phosphorylation of STAT1 and STAT3, as well as LIF-stimulated DNA binding activity of STAT-containing nuclear complexes were indistinguishable when compared in SYF and WT cells. In addition, the phosphatidylinositol 3-kinase-sensitive Akt kinase and p38 MAPK were activated by LIF in both SYF and WT cells. Furthermore, LIF-stimulated expression of c-fos, egr-1, and suppressor of cytokine signaling-3 was retained in SYF cells. The IL-6 family cytokine oncostatin M was also capable of activating MAPK, STAT3, STAT1, Akt, and p38 in both WT and SYF cells. These results demonstrate that IL-6 family cytokines can activate a full repertoire of signaling pathways and induce gene expression independent of SFKs.  相似文献   

15.
16.
17.
18.
19.
20.
Cell type-specific responses to the leukemia inhibitory factor (LIF)/interleukin 6 cytokine family are mediated by dimerization of the LIF receptor alpha-chain (LIFRalpha) with the signal transducer gp130 or of two gp130 molecules followed by activation of the JAK/STAT and Ras/mitogen-activated protein kinase cascades. In order to dissect the contribution of gp130 and LIFRalpha individually, chimeric molecules consisting of the extracellular domain of the granulocyte colony stimulating factor receptor (GCSF-R) and various mutant forms of the cytoplasmic domains of gp130 or LIFRalpha were expressed in embryonic stem (ES) cells to test for suppression of differentiation, or in a factor-dependent plasma cytoma cell line to assess for induction of proliferation. Carboxyl-terminal domains downstream of the phosphatase (SHP2)-binding sites were dispensable for mitogen-activated protein kinase activation and the transduction of proliferative signals. Moreover, carboxyl-terminal truncation mutants which lacked intact Box 3 homology domains showed decreased STAT3 activation, failed to induce Hck kinase activity and suppress ES cell differentiation. Moreover, STAT3 antisense oligonucleotides impaired LIF-dependent inhibition of differentiation. Substitution of the tyrosine residue within the Box 3 region of the GSCF-R abolished receptor-mediated suppression of differentiation without affecting the transduction of proliferative signals. Thus, distinct cytoplasmic domains within the LIFRalpha, gp130, and GCSF-R transduce proliferative and differentiation suppressing signals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号