首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Abstract:  The study was conducted during 2001 and 2002 in forested areas in Virginia, US to examine the effects of gaps in coverage of pheromone on gypsy moth, Lymantria dispar (L.) (Lep., Lymantriidae), mating disruption. Gypsy moth male moth catches in pheromone-baited traps were significantly reduced in plots treated with the gypsy moth sex pheromone, disparlure, at an overall application rate of 37.5 g of active ingredient (AI)/ha but with untreated gaps of 30 or 90 m between 30-m wide treated swaths. In one of the two plots with 90 m gaps, significantly more males were captured in traps in the untreated areas compared with the treated areas within the plot. However, in another plot, significant differences in trap catches between treated and untreated areas were not observed. No difference in male moth catches in the pheromone-baited traps was observed between treated and untreated areas within the plots treated with 30 m gaps. Female mating success did not differ significantly between treated and untreated areas within the one plot in which it was measured. These results suggest that it may be possible to lower costs associated with gypsy moth mating disruption applications by alternating treated and untreated swaths, which would reduce flight time and fuel costs, without a reduction in efficacy.  相似文献   

2.
Optimization of pheromone dosage for gypsy moth mating disruption   总被引:3,自引:0,他引:3  
The effect of aerial applications of the pheromone disparlure at varying dosages on mating disruption in low‐density gypsy moth, Lymantria dispar (L.) (Lepidoptera: Lymantriidae), populations was determined in field plots in Virginia, USA during 2000 and 2002. Six dosages [0.15, 0.75, 3, 15, 37.5, and 75 g active ingredient (AI)/ha] of disparlure were tested during the 2‐year study. A strongly positive dose–response relationship was observed between pheromone dosages and mating disruption, as measured by the reduction in male moth capture in pheromone‐baited traps and mating successes of females. Dosages of pheromone 15 g AI/ha (15, 37.5, and 75 g AI/ha) reduced the mating success of females by >99% and significantly reduced male moth catches in pheromone‐baited traps compared to untreated plots. Pheromone dosages <15 g AI/ha also reduced trap catch, but to a lesser extent than dosages 15 g AI/ha. Furthermore, the effectiveness of the lower dosage treatments (0.15, 0.75, and 3 g AI/ha) declined over time, so that by the end of the study, male moth catches in traps were significantly lower in plots treated with pheromone dosages 15 g AI/ha. The dosage of 75 g AI/ha was initially replaced by a dosage of 37.5 g AI/ha in the USDA Forest Service Slow‐the‐Spread (STS) of the Gypsy Moth management program, but the program is currently making the transition to a dosage of 15 g AI/ha. These changes in applied dosages have resulted in a reduction in the cost of gypsy moth mating disruption treatments.  相似文献   

3.
Several integrated pest management programs rely on the use of mating disruption tactics to control insect pests. Some programs specifically target non‐native species, such as the gypsy moth, Lymantria dispar (L.) (Lepidoptera: Lymantriidae). We evaluated SPLAT® GM, a new sprayable formulation of the gypsy moth sex pheromone disparlure, for its ability to disrupt gypsy moth mating. The study was conducted in 2006, 2007, and 2008 in forested areas in Virginia, USA. Mating success of gypsy moth females was reduced by >99% and male moth catches in pheromone‐baited traps by >90%, in plots treated with SPLAT® GM at dosages ranging from 15 to 75 g of active ingredient (a.i.) ha?1. Dosage‐response tests conducted in 2008 indicated that SPLAT® GM applied at a dosage of 7.5 g a.i. ha?1 was as effective as a 15 g a.i. ha?1 dosage.  相似文献   

4.
In forest plots treated aerially with a plastic laminated flake formulation (Disrupt® II) of the gypsy moth sex pheromone disparlure to disrupt gypsy moth, Lymantria dispar (L.) (Lepidoptera: Lymantriidae), mating was monitored the year of treatment and 1–2 years after treatment to determine the effects of the treatment on suppression of trap catch and mating success. In the year of treatment, there was a greater than 95% reduction in trap catch and a greater than 98% reduction in mating success compared to controls. One year after treatment at a dosage of 37.5 g active ingredient (a.i.) ha?1, trap catch was reduced by 46–56% and mating success was reduced by 60–79%. Both trap catch and mating success were significantly reduced compared to controls in plots treated 1 year previously at 15 g a.i. ha?1. Trap catch, but not mating success, was significantly reduced 2 years after treatment at 37.5 g a.i. ha?1. The efficacy of mating disruption (MD) treatments in the Slow‐the‐Spread of the Gypsy Moth program was significantly reduced 2 years compared to 1 year after treatment. No such reduction was observed in plots treated with aerial applications of Bacillus thuringiensis kurstaki. The higher apparent efficacy of MD treatments 1 year after application may result to some extent from the suppression of moth capture in pheromone traps from the persistent effects of the previous year's treatment.  相似文献   

5.
1 Mating disruption is the primary tactic used to reduce rates of gypsy moth population spread in the United States Department of Agriculture’s Slow‐the‐Spread of the gypsy moth programme (STS). Because STS targets very low‐density gypsy moth populations within which it is extremely difficult to collect females or egg masses, mating success in native populations cannot be determined. Therefore, the evaluation of mating disruption treatments in field experiments such as those designed to test new formulations and application methods requires deploying and recovering laboratory‐reared female moths to determine mating success. 2 Five methods of deploying females were evaluated for cost, rates of female and egg mass recovery, and female mating success. The deployment methods tested were: modified delta trap, square barrier, single and double trunk bands, and tethered females. 3 Deployment of tethered females had the highest cost and mating success rate, but it did not yield the highest rates of female and egg mass recovery. Deployment of females in delta traps produced the lowest cost and mating success rate, but yielded the highest recovery rate. Neither of these deployment methods is recommended because of unacceptably high cost (tethered female) or low mating success (delta trap). 4 There were no significant differences in cost or mating success among the other three deployment methods. 5 The differences among the square barrier, single trunk band, and double trunk band methods in cost, female and egg mass recovery, and mating success are too small to recommend any one over the others.  相似文献   

6.
The study was conducted during 2000, 2001, 2003 and 2004 in forested areas in Virginia, USA to evaluate the 3M™ MEC-GM Sprayable Pheromone® formulation of the gypsy moth sex pheromone, disparlure, for its ability to disrupt mating in gypsy moth, Lymantria dispar (Lep.: Lymantriidae). Both mating success of gypsy moth females and male moth catches in pheromone-baited traps were significantly reduced in plots treated with the 3M™ MEC-GM formulation at dosages ranging from 15 to 75 g of active ingredient/ha. However, the 3M™ MEC-GM formulation reduced trap catch to a lesser extent than did the currently registered Hercon Disrupt® II plastic flakes used as a positive control and applied at similar or lower dosages. Furthermore, the effectiveness of the 3M™ sprayable formulation declined through time, so that by the end of the male flight season, male moth catches in traps were significantly higher than in plots treated with Hercon plastic flakes. Based on the reported results, 3M™ MEC-GM Sprayable Pheromone® formulation was never integrated into the operational treatment projects of USDA Forest Service Cooperative Slow-the-Spread of the Gypsy Moth management programme.  相似文献   

7.
The effects of aerial applications of the gypsy moth sex pheromone, disparlure, on mating disruption and suppression of growth of populations of the gypsy moth, Lymantria dispar (L.), were investigated. Two formulations of disparlure, plastic laminate flakes applied in a single application and polymethacrylate beads applied in two applications, were compared in two separate tests conducted in 1993 and 1994. The beads were applied in two applications spaced 2 weeks apart because preliminary tests had indicated that they released pheromone too rapidly to maintain adequate emission rates throughout the period of male flight. In 1993, the flakes were applied at a rate of 50 g a.i./ha, and the beads were applied at a rate of 15 g a.i./ha for each application. In 1994, the flakes were applied at a rate of 75 g a.i./ha and the beads were applied at rates of 32.5 and 42.5 g a.i./ha for the two applications. Beads with larger average particle size were used in 1994 to prolong disparlure release. The treatments applied in 1993 resulted in >97% reduction in mating and >82% suppression of population growth in the following year. Because of a 1995 collapse of gypsy moth populations in the vicinity of the tests, reliable population growth data were not available for the treatments applied in 1994, but significant mating disruption did occur under both treatments. Based on measurements of residual disparlure after field aging, the flakes released 32 and 48% of their disparlure content during the 6 weeks of male moth flight in 1993 and 1994, respectively. The smaller beads used in 1993 released 75% of their disparlure content, and the larger beads used in 1994 released 52% of their disparlure content, during the 6 weeks of male flight. The biological efficacy data suggest that the bead and flake formulations, as applied in these tests, have similar effects on gypsy moth mating disruption and subsequent population growth. Based on the observed release rates from both 1993 and 1994, a single application of the beads would provide emission rates equal to or greater than those provided by the flakes when applied at an equal dose.  相似文献   

8.
Pheromone traps can be used for evaluating the success of treatments that are applied to either eradicate or delay the growth of isolated low-density populations of the gypsy moth, Lymantria dispar (L.). We developed an index of treatment success, T, that measures the reduction in moth counts in the block treated adjusted by the change in moth counts in the reference area around it. This index was used to analyze the effectiveness of treatments that were conducted as part of the USDA Forest Service Slow-the-Spread of the gypsy moth project from 1993 to 2001. Out of 556 treatments that were applied during this period, 266 (188,064 ha) were selected for the analysis based on several criteria. They included 173 blocks treated with Bacillus thuringiensis (Berliner) variety kurstaki and 93 blocks treated with racemic disparlure. Analysis using general linear models indicated that disparlure treatments were significantly more effective than B. thuringiensis treatments in reducing moth captures. The frequency of repeated treatments in the same area was higher after B. thuringiensis than after disparlure applications. Treatments were more successful if the pretreatment moth counts outside of the block treated were low compared with moth counts inside the block.  相似文献   

9.
Abstract:  A portable electroantennogram (EAG) sensor was used to measure relative atmospheric pheromone concentration in forest plots treated with aerial and ground applications of gypsy moth, Lymantria dispar (L.) (Lep., Lymantriidae), mating-disruption formulations. Five treatments (Disrupt II flakes with sticker, Disrupt II flakes without sticker, Disrupt II flakes in a sticker slurry, microcapsules and hand-applied Luretape), all applied at 75 g active ingredient per hectare and an untreated control were evaluated. Gypsy moth male catch in pheromone-baited traps and fertilization of deployed females were suppressed in all treatments, and no females deployed in treated plots produced more than 5% fertile eggs. Relative pheromone concentrations were significantly higher in the two treatments in which flakes were aerially applied with sticker and in the microcapsule treatment. Pheromone concentration measurements in the flakes without sticker and hand-applied treatments were not significantly different from those in the control. Mating success was negatively correlated with relative pheromone concentration. The ability of the EAG to detect differences in pheromone concentration that are correlated with mating success suggests that this could be a useful method for predicting the effectiveness of mating-disruption treatments.  相似文献   

10.
The vertical distribution of codling moth,Cydia pomonella (L.) within pheromone-treated and untreated apple and pear orchard canopies was determined using tethered virgin females, unbaited sticky traps, and blacklight observation of released moths. Mating of virgin females tethered at various heights in untreated orchard canopies increased with placement height from 1–4 m. Application of pheromone dispensers for mating disruption at 2 and 4 m above the ground greatly decreased mating. Greatest capture of males and females on unbaited sticky traps occurred at mid- and upper-canopy heights. Total capture of males and females in pheromone-treated plots was not statistically different than in untreated plots. The percentage of mated females captured on sticky traps did not vary with trap height or pheromone treatment. Released moths marked with flourescent powder and observed at dark with a blacklight indicated that moths are primarily distributed high in the canopy. However, males shifted to a position lower in the canopy when pheromone dispensers were placed 2.1 m above the ground. Results suggest that pheromone dispensers be placed in the upper canopy for optimal disruption of codling moth mating.  相似文献   

11.
The gypsy moth, Lymantria dispar (L.) (Lepidoptera: Erebidae), is a non‐native defoliating insect that continues to expand its range in North America and undergo periodic outbreaks. In management efforts to suppress outbreaks, slow its spread and eradicate populations that arrive outside of the invaded range, aerial deployments of mating disruption tactics and pesticides are generally used. However, in some cases, such as in heavily urbanized areas or other landscapes where aerial deployments are not feasible or permitted, ground applications are required. Ground applications tend to be labour‐intensive to ensure adequate coverage. To better inform optimal deployment of ground applications of mating disruption, we measured the effectiveness of a pheromone formulation designed for ground application, SPLAT® GM, in forested areas of Virginia from 2011 to 2014 using different dosages and number of point applications. We observed that SPLAT® GM applied to the tree trunks at the dosages of 49.4 and 123.6 g AI/ha in 11 × 11 systematic grids (i.e., every 11 m) reduced male trap catch by >90% relative to untreated control plots, which based on previous studies corresponds to >95% reduction in gypsy moth mating success. Our observations suggest that ground applications of gypsy moth mating disruption can be a successful management tool when circumstances require it.  相似文献   

12.
Abstract.  1. For insect herbivores the quality of the larval host plant is a key determinant of their fitness. Only little attention, however, has been given to the effects of plants on mating success of males and its consequence for the reproductive output of their mates. In addition, almost all the studies that have investigated the influence of host plants on herbivore fitness components have been done in the laboratory, and less is known of these effects in natural conditions.
2. Using the phytophagous European grapevine moth ( Lobesia botrana Den. & Schiff., Lepidoptera: Tortricidae), we tested the influence of grape cultivars as larval food on the probability of acquiring a mate for both sexes, and on the reproductive output of females and males.
3. Results from this study stress the importance of larval host plants on the reproductive success of both sexes. Larval diet differentially affected mating success and reproductive output of male and female moths. Fecundity, egg size, and egg hatchability were significantly different when larvae were fed on particular grape cultivars.
4. A given cultivar that is of poor quality for females is generally also of poor quality for males. A cultivar, however, could be suitable for females but not for males and vice-versa. Apparently, the nutrients required for adult reproduction are not necessarily the same for males and females.
5. The important conclusion from this study is that evaluating the differential effect of host-plant species on traits associated with reproductive success of herbivores requires that the effects on both sexes be taken into account.  相似文献   

13.
1. Understanding why invading populations sometimes fail to establish is of considerable relevance to the development of strategies for managing biological invasions. 2. Newly arriving populations tend to be sparse and are often influenced by Allee effects. Mating failure is a typical cause of Allee effects in low-density insect populations, and dispersion of individuals in space and time can exacerbate mate-location failure in invading populations. 3. Here we evaluate the relative importance of dispersal and sexual asynchrony as contributors to Allee effects in invading populations by adopting as a case study the gypsy moth (Lymantria dispar L.), an important insect defoliator for which considerable demographic information is available. 4. We used release-recapture experiments to parameterize a model that describes probabilities that males locate females along various spatial and temporal offsets between male and female adult emergence. 5. Based on these experimental results, we developed a generalized model of mating success that demonstrates the existence of an Allee threshold, below which introduced gypsy moth populations are likely to go extinct without any management intervention.  相似文献   

14.
Summary The attractive power of disparlure—the sex attractant of the gypsy moth (Lymantria/Porthetria dispar)—vs. four synthetic analogous epoxides was tested in 1972 in a pine forest near Heidelberg. With two levels of concentration in the traps (2 and 20 g), a total of 1112 nun moths (Lymantria/Porthetria monacha) and 257 gypsy moths were caught in 9 experiments. Approximately equal percentages of the two species were caught with a given compound. Disparlure was by far the most effective attractant. The other substances were between three and twenty times less effective. These experiments support the assumption that disparlure is also at least part of the sexual attractant of the nun moth. In two additional experiments, moth captures by a series of increasing disparlure concentrations (2–100 g/trap) were determined. The catches of both species increased nonlinearly with the bait concentration. The experiments are discussed with respect to new (unpublished) electrophysiological recordings from disparlure receptor cells in both species. Special attention is given to the supposed masking effect of the disparlure precursor (an olefin). This substance is ineffective as an attractant, but has been reported to reduce the attraction of gypsy moth males to disparlure or to live females. However, the olefin elicits excitatory reactions in the same type of receptor cell that responds to disparlure and the related epoxides. Furthermore, no masking of the electrophysiological response was observed with the receptor cells when the olefin was added to disparlure.Supported by the Deutsche Forschungsgemeinschaft.  相似文献   

15.
Abstract. 1. Trapping experiments and observations of sexual behaviour were made on Cephalcia lariciphila in infested larch forests in Hereford and Worcester and Mid-Glamorgan in early May 1977.
2. The results indicated that virgin females and dichloromethane extract of crushed virgin females were highly attractive to males.
3. On 17 May males responded to females throughout the warmest part of the day. First response occurred before 09.00 hours, the last after 17.00 hours and peak activity was from 11.00 to 14.00 hours.
4. Mated females became unattractive to males within 10 min after mating. When mated females or males were paired with virgin females there was no evidence of an anti-attractive pheromone or pheromone mask.
5. A few males dispersed out of larch into adjacent spruce forests and were captured in virgin female-baited traps up to 135 m distant from infested larch. Virgin female-baited traps at 0–0.5 m from the ground captured over seven times the number of males as traps at 1, 2 or 4 m, supporting visual observations that the preferred flight level for males is very near the ground.
6. Horizontal board traps with an acetate surface coated with 'Stikem Special' were superior to Pherocon IC, vertical board and gypsy moth traps in that order.
7. The observations and results suggest that the best applied uses of C. lariciphila pheromone would be in survey and detection, and male disruption techniques.  相似文献   

16.
1 The plastic laminate flake formulation, Disparlure II, is currently the only gypsy moth mating disruption product available for aerial application. The elimination of a sticking agent from the formulation would reduce costs, simplify application, and make it possible to apply the product without specialized equipment. 2 A test was conducted in wooded plots in Virginia during 1997 and 1998 to determine whether a sticking agent is necessary. Treatment effectiveness was assessed from the rates of male moth capture in pheromone‐baited traps and mating success of both laboratory‐reared and wild females. 3 Male moth capture was reduced 75.6 and 92.9% in plots treated with flakes without and with a sticking agent, respectively. The percentage of mated females that produced egg masses with more than 5% fertile eggs was reduced by 86.3 and 99.5% in plots treated with flakes without and with a sticking agent, respectively. 4 Moth capture and mating success of laboratory‐reared females did not differ significantly between plots treated with flakes with and without a sticking agent. However, the consistently greater reduction in mating success in both years provides strong evidence that mating disruption is less effective when flakes are applied without a sticking agent. The proportion of wild egg masses collected in 1998 with more than 5% fertile eggs was significantly higher under the no‐sticking agent treatment. 5 In special situations where the use of a sticking agent may be problematic, such as in residential areas, the data indicate that a high level of mating disruption is likely to occur even without the use of a sticking agent.  相似文献   

17.
1.  Mating behaviour in Daphnia appears to rely on random contact between males and sexual females rather than diffusible pheromones. Males may be able to discriminate sexually receptive females from females in other developmental stages and increase their mating efficiency. Males may also use chemical signals to avoid mating with females from the same clone and avoid the severe inbreeding depression that has been documented for intraclonal mating. The present study used experiments to test for the avoidance of intraclonal mating and assess male mating efficiency in D. pulex .
2.  Three clones were examined for the avoidance of intraclonal mating by providing males with an opportunity to mate with females of the same or two different clones. The proportion of intraclonal matings did not differ from the proportion of interclonal matings, suggesting that D. pulex males do not use kin discrimination to avoid mating with females from the same clone.
3.  The proportion of mated females decreased with increasing numbers and density of sexual females when exposed to a single male. This observation suggests that a male spends more time pursuing and copulating with sexually receptive females than non-receptive females and there is insufficient time to mate with all sexual females. The decrease in proportion of females mated could also be the result of sperm depletion in the male. Sperm depletion is unlikely to occur in nature because sexually receptive females are much rarer than in the experimental conditions.  相似文献   

18.
Abstract.  1. Sexual differences in body size are expected to evolve when selection on female and male sizes favours different optima.
2. Insects have typically female-biased size dimorphism that is usually explained by the strong fecundity advantage of larger size in females. However, numerous exceptions to this general pattern have led to the search for selective pressures favouring larger size in males.
3. In this study, the benefits of large size were investigated in males of four species of ichneumonine wasps, a species-rich group of parasitoids, many representatives of which exhibit male-biased size dimorphism.
4. Mating behaviour of all ichneumonine wasps are characterised by pre-copulatory struggles, in the course of which males attempt to override female reluctance to mate. A series of laboratory trials was conducted to study the determinants of male mating success.
5. A tendency was found for larger males as well as those in better condition to be more successful in achieving copulations. Size dimorphism of the species studied, mostly male-biased in hind tibia length but female-biased in body weight, indicates that sexual selection in males favours longer bodies and appendages rather than larger weight.
6. The qualitative similarity of the mating patterns suggests that sexual selection cannot completely explain the considerable among-species differences in sexual size dimorphism.
7. The present study cautions against using various size indices as equivalents for calculating sexual size dimorphism.
8. It is suggested that female reluctance in ichneumonine wasps functions as a mechanism of female mate assessment.  相似文献   

19.
Stem galls affect oak foliage with potential consequences for herbivory   总被引:1,自引:0,他引:1  
Abstract.   1. On two dates, foliar characteristics of pin oak, Quercus palustris , infested with stem galls caused by the horned oak gall, Callirhytis cornigera , were investigated, and the consequences for subsequent herbivory assessed.
2. Second-instar caterpillars of the gypsy moth, Lymantria dispar , preferred foliage from ungalled trees.
3. Ungalled trees broke bud earlier than their galled counterparts.
4. Galled trees produced denser leaves with higher nitrogen and tannin concentrations, but foliar carbohydrates did not differ among galled and ungalled trees.
5. Concentrations of foliar carbohydrates in both galled and ungalled trees increased uniformly between the two assay dates. Nitrogen concentrations were greater in leaves from galled trees, and decreased uniformly in galled and ungalled trees over time. Foliar tannins were also greater in foliage from galled trees early in the season; however, foliar tannins declined seasonally in galled tissue so that by the second assay date there was no difference in tannin concentrations between galled and ungalled foliage.
6. In spite of differences in foliar characteristics, performance of older, fourth instar gypsy moth caterpillars did not differ between galled and ungalled trees.  相似文献   

20.
Variation in developmental time affects mating success and Allee effects   总被引:4,自引:0,他引:4  
ChristelleRobinet  rewLiebhold  DavidGray 《Oikos》2007,116(7):1227-1237
A fundamental question in biological conservation and invasion biology is why do some populations go extinct? Allee effects, notably those caused by mate location failure, are potentially key factors leading to the extinction of sparse populations. Several previous studies have focused on the inability of males and females to locate each other in space when populations are at low densities but here we investigate the effects of differences in the timing of male and female maturation on mating success. We develop a generalized model to clarify the role of protandry (the appearance of males before female emergence) and variability in adult maturation times. We show that temporal asynchrony can substantially reduce the probability of successful mating. We then apply this generalized model to estimate mating success in invading populations of the gypsy moth in North America in relation to local climate and its associated seasonality. Considerable geographic heterogeneity was observed in simulated mating success and this variability was not correlated with previous evaluations of bioclimatic requirements and habitat suitability. Furthermore, we found that the generalized model of temporal asynchrony provided reliable predictions and that detailed modeling of gypsy moth development was not necessary.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号