首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
The development and starch accumulation of cereal endosperms rely on the sugar supply of leaves, which is subject to diurnal cycles, and the endosperm itself also experiences a light/dark switch. However, revealing how the cereal endosperm responds to diurnal input remains a major challenge. We used comparative proteomic approaches to probe diurnally affected processes in rice endosperm (Oryza sativa) 10 days after flowering under 12-h light/12-h dark. Starch granules in rice endosperm showed a growth ring structure under a normal light/dark cycle but not under constant light. Sucrose showed a high level in light and low level in dark. Two-dimensional (2-D) differential in-gel electrophoresis-based proteomic analysis revealed 101 protein spots diurnally changed and 91 identities, which were involved in diverse processes with preferred distribution in stress response, protein synthesis/destination and metabolism. Proteins involved in cell division showed high expression in light and those in cell enlargement and cell wall synthesis high in dark, while starch synthesis proteins were light-downregulated and dark-upregulated. Redox homeostasis-associated proteins showed in-phase peaks under light and dark. These data demonstrate diurnal input-regulated diverse cellular and metabolic processes in rice endosperm, and coordination among these processes is essential for development and starch accumulation with diurnal input.  相似文献   

2.
3.
4.
We generated random transposon insertion mutants to identify genes involved in light input pathways to the circadian clock of the cyanobacterium Synechococcus elongatus PCC 7942. Two mutants, AMC408-M1 and AMC408-M2, were isolated that responded to a 5-h dark pulse differently from the wild-type strain. The two mutants carried independent transposon insertions in an open reading frame here named ldpA (for light-dependent period). Although the mutants were isolated by a phase shift screening protocol, the actual defect is a conditional alteration in the circadian period. The mutants retain the wild-type ability to phase shift the circadian gene expression (bioluminescent reporter) rhythm if the timing of administration of the dark pulse is corrected for a 1-h shortening of the circadian period in the mutant. Further analysis indicated that the conditional short-period mutant phenotype results from insensitivity to light gradients that normally modulate the circadian period in S. elongatus, lengthening the period at low light intensities. The ldpA gene encodes a polypeptide that predicts a 7Fe-8S cluster-binding motif expected to be involved in redox reactions. We suggest that the LdpA protein modulates the circadian clock as an indirect function of light intensity by sensing changes in cellular physiology.  相似文献   

5.
Root hydraulic conductivity (Lp(r)) and aquaporin amounts change diurnally. Previously, these changes were considered to be spontaneously driven by a circadian rhythm. Here, we evaluated the new hypothesis that diurnal changes could be triggered and enhanced by transpirational demand from shoots. When rice plants were grown under a 12h light/12h dark regime, Lp(r) was low in the dark and high in the light period. Root aquaporin mRNA levels also changed diurnally, but the amplitudes differed among aquaporin isoforms. Aquaporins, such as OsPIP2;1, showed moderate changes, whereas root-specific aquaporins, such as OsPIP2;5, showed temporal and dramatic induction around 2h after light initiation. When darkness was extended for 12h after the usual dark period, no such induction was observed. Furthermore, plants under 100% relative humidity (RH) showed no induction even in the presence of light. These results suggest that transpirational demand triggers a dramatic increase in gene expressions such as OsPIP2;5. Immunocytochemistry showed that OsPIP2;5 accumulated on the proximal end of the endodermis and of the cell surface around xylem. The strong induction by transpirational demand and the polar localization suggest that OsPIP2;5 contributes to fine adjustment of radial water transport in roots to sustain high Lp(r) during the day.  相似文献   

6.
7.
8.
We studied nuclear protein phosphorylation in the rat suprachiasmatic nucleus (SCN) and found that a nuclear fraction of the SCN contained histone H1 kinase activity that periodically fluctuated with a diurnal rhythm, reaching a maximum at the midpoint of the light phase and a minimum at the midpoint of the dark phase. A p13suc1-bound fraction from the SCN nuclear fraction also exhibited diurnally fluctuating histone H1 kinase activity. Using in situ kinase assay, three histone H1 kinases, p45PFK, p100PFK, and p200PFK (termed periodically fluctuating protein kinases, or PFKs) were found in the p13suc1-bound fractions. p45PFK exhibited the highest level of light/dark cycle phosphorylation activity fluctuation. p45PFK highly phosphorylated the Ser-Pro-rich region of CLOCK, the putative physiological target. These results suggest that PFKs, especially p45PFK, are involved in circadian clock-related signal transduction and gene expression, through the phosphorylation of target proteins such as CLOCK.  相似文献   

9.
10.
To further investigate the role of intestinal aplipoprotein A-IV (apo A-IV) in the management of daily food intake, we examined the diurnal patterns in apo A-IV gene and protein expression in freely feeding (FF) and food-restricted (FR; food provided 4 h daily for 4 wk) rats that were killed at 3-h intervals throughout the 24-h diurnal cycle. In FF rats, the intestinal apo A-IV mRNA and protein levels showed a circadian rhythm concomitant with the feeding pattern. The daily pattern of fluctuation of apo A-IV, however, was altered in FR rats, which had a marked increase in intestinal apo A-IV levels during the 4-h feeding period of light phase. In both FF and FR rats, increased plasma corticosterone (Cort) levels temporally coincided with the increasing phase of intestinal apo A-IV mRNA and protein expression. Depletion of Cort by adrenalectomy abolished the diurnal rhythm by decreasing the apo A-IV expression during the dark period but did not change the feeding rhythm. Exposure of adrenalectomized rats to consistent Cort level (50-mg continuous release Cort pellet) resulted in fixed apo A-IV levels throughout the day. These results indicate that intestinal apo A-IV exhibits a diurnal rhythm, which can be regulated by endogenous Cort independently of the light-dark cue. The fact that intestinal apo A-IV levels were consistent with the food intake during the normal diurnal cycle as well as during the cycle of 4-h feeding each day suggests that intestinal apo A-IV is involved in the regulation of daily food intake.  相似文献   

11.
Circadian changes of protein tyrosine phosphorylation in the hypothalamic suprachiasmatic nucleus have been studied using rats maintained under 12-h light/ 12-h dark cycles as well as constant dark conditions. We found that tyrosine phosphorylation of BIT (brain immunoglobulin-like molecule with tyrosine-based activation motifs), a transmembrane glycoprotein of 90-95 kDa, was higher in the light period than in the dark period and was increased after light exposure in the dark period. Similar changes in tyrosine phosphorylation were observed under constant dark conditions, but its amplitude was weaker than that in 12-h light/12-h dark cycles. As the tyrosine-phosphorylated form of BIT is able to bind to the Src homology 2 domain of a protein tyrosine phosphatase, SHP-2, we examined association of these proteins in suprachiasmatic nucleus extracts and found that SHP-2 was coprecipitated with BIT in parallel with its tyrosine phosphorylation. These results suggest that tyrosine phosphorylation of BIT might be involved in light-induced entrainment of the circadian clock.  相似文献   

12.
13.
14.
15.
In mammals, most physiological, biochemical, and behavioral processes show a circadian rhythm. In the present study, we examined the diurnal rhythm of the H+-peptide cotransporter (PEPT1), which transports small peptides and peptide-like drugs in the small intestine and kidney, using rats maintained in a 12-h photoperiod with free access to chow. The transport of [14C]glycylsarcosine (Gly-Sar), a typical substrate for PEPT1 by in situ intestinal loop and everted intestine, was greater in the dark phase than the light phase. PEPT1 protein and mRNA levels varied significantly, with a maximum at 2000 and minimum at 800. Similar functional and expressional diurnal variations were observed in the intestinal Na+-glucose cotransporter (SGLT1). In contrast, renal PEPT1 and SGLT1 showed little diurnal rhythmicity in protein and mRNA expression. These findings indicate that the intestinal PEPT1 undergoes diurnal regulation in its activity and expression, and this could affect the intestinal absorption of dietary protein.  相似文献   

16.
Winter rye plants grown under contrasting environmental conditions or just transiently shifted to varying light and temperature conditions, were studied to elucidate the chloroplast signal involved in regulation of photosynthesis genes in the nucleus. Photosystem II excitation pressure, reflecting the plastoquinone redox state, and the phosphorylation level of thylakoid light-harvesting proteins (LHCII and CP29) were monitored together with changes occurring in the accumulation of lhcb, rbcS and psbA mRNAs. Short-term shifts of plants to changed conditions, from 1 h to 2 d, were postulated to reveal signals crucial for the initiation of the acclimation process. Comparison of these results with those obtained from plants acclimated during several weeks' growth at contrasting temperature and in different light regimes, allow us to make the following conclusions: (1) LHCII protein phosphoylation is a sensitive tool to monitor redox changes in chloroplasts; (2) LHCII protein phosphorylation and lhcb mRNA accumulation occur under similar conditions and are possibly coregulated via an activation state of the same kinase (the LHCII kinase); (3) Maximal accumulation of lhcb mRNA during the diurnal light phase seems to require an active LHCII kinase whereas inactivation of the kinase is accompanied by dampening of the circadian oscillation in the amount of lhcb mRNA; (4) Excitation pressure of photosystem II (reduction state of the plastoquinone pool) is not directly involved in the regulation of lhcb mRNA accumulation. Instead (5) the redox status of the electron acceptors of photosystem I in the stromal compartment seems to be highly regulated and crucial for the regulation of lhcb gene expression in the nucleus.  相似文献   

17.
Light plays an important role in plant growth, development, and response to environmental stresses. To investigate the effects of light on the plant responses to cadmium (Cd) stress, we performed a comparative physiological and proteomic analysis of light‐ and dark‐grown Arabidopsis cells after exposure to Cd. Treatment with different concentrations of Cd resulted in stress‐related phenotypes such as cell growth inhibition and decline of cell viability. Notably, light‐grown cells were more sensitive to heavy metal toxicity than dark‐grown cells, and the basis for this appears to be the elevated Cd accumulation, which is twice as much under light than dark growth conditions. Protein profiles analyzed by 2D DIGE revealed a total of 162 protein spots significantly changing in abundance in response to Cd under at least one of these two growing conditions. One hundred and ten of these differentially expressed protein spots were positively identified by MS/MS and they are involved in multiple cellular responses and metabolic pathways. Sulfur metabolism‐related proteins increased in relative abundance both in light‐ and dark‐grown cells after exposure to Cd. Proteins involved in carbohydrate metabolism, redox homeostasis, and anti‐oxidative processes were decreased both in light‐ and dark‐grown cells, with the decrease being lower in the latter case. Remarkably, proteins associated with cell wall biosynthesis, protein folding, and degradation showed a light‐dependent response to Cd stress, with the expression level increased in darkness but suppressed in light. The possible biological importance of these changes is discussed.  相似文献   

18.
19.
We analyzed the metabolic rhythms and differential gene expression in the unicellular, diazotrophic cyanobacterium Cyanothece sp. strain ATCC 51142 under N(2)-fixing conditions after a shift from normal 12-h light-12-h dark cycles to continuous light. We found that the mRNA levels of approximately 10% of the genes in the genome demonstrated circadian behavior during growth in free-running (continuous light) conditions. The genes for N(2) fixation displayed a strong circadian behavior, whereas photosynthesis and respiration genes were not as tightly regulated. One of our main objectives was to determine the strategies used by these cells to perform N(2) fixation under normal day-night conditions, as well as under the greater stress caused by continuous light. We determined that N(2) fixation cycled in continuous light but with a lower N(2) fixation activity. Glycogen degradation, respiration, and photosynthesis were also lower; nonetheless, O(2) evolution was about 50% of the normal peak. We also demonstrated that nifH (encoding the nitrogenase Fe protein), nifB, and nifX were strongly induced in continuous light; this is consistent with the role of these proteins during the assembly of the enzyme complex and suggested that the decreased N(2) fixation activity was due to protein-level regulation or inhibition. Many soluble electron carriers (e.g., ferredoxins), as well as redox carriers (e.g., thioredoxin and glutathione), were strongly induced during N(2) fixation in continuous light. We suggest that these carriers are required to enhance cyclic electron transport and phosphorylation for energy production and to maintain appropriate redox levels in the presence of elevated O(2), respectively.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号