首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In order to construct a chicken (Gallus gallus) cytogenetic map, we isolated 134 genomic DNA clones as new cytogenetic markers from a chicken cosmid DNA library, and mapped these clones to chicken chromosomes by fluorescence in situ hybridization. Forty-five and 89 out of 134 clones were localized to macrochromosomes and microchromosomes, respectively. The 45 clones, which localized to chicken macrochromosomes (Chromosomes 1-8 and the Z chromosome) were used for comparative mapping of Japanese quail (Coturnix japonica). The chromosome locations of the DNA clones and their gene orders in Japanese quail were quite similar to those of chicken, while Japanese quail differed from chicken in chromosomes 1, 2, 4 and 8. We specified the breakpoints of pericentric inversions in chromosomes 1 and 2 by adding mapping data of 13 functional genes using chicken cDNA clones. The presence of a pericentric inversion was also confirmed in chromosome 8. We speculate that more than two rearrangements are contained in the centromeric region of chromosome 4. All 30 clones that mapped to chicken microchromosomes also localized to Japanese quail microchromosomes, suggesting that chromosome homology is highly conserved between chicken and Japanese quail and that few chromosome rearrangements occurred in the evolution of the two species.  相似文献   

2.
The California condor is the largest flying bird in North America and belongs to a group of New World vultures. Recovering from a near fatal population decline, and currently with only 197 extant individuals, the species remains listed as endangered. Very little genetic information exists for this species, although sexing methods employing chromosome analysis or W-chromosome specific amplification is routinely applied for the management of this monomorphic species. Keeping in mind that genetic conditions like chondrodystrophy have been identified, preliminary steps were undertaken in this study to understand the genome organization of the condor. This included an extensive cytogenetic analysis that provided (i) a chromosome number of 80 (with a likelihood of an extra pair of microchromosomes), and (ii) information on the centromeres, telomeres and nucleolus organizer regions. Further, a comparison between condor and chicken macrochromosomes was obtained by using individual chicken chromosome specific paints 1-9 and Z and W on condor metaphase spreads. Except for chromosomes 4 and Z, each of the chicken (GGA) macrochromosomes painted a single condor (GCA) macrochromosome. GGA4 paint detected complete homology with two condor chromosomes, viz., GCA4 and GCA9 providing additional proof that the latter are ancestral chromosomes in the birds. The chicken Z chromosome showed correspondence with both Z and W in the condor. The homology suggests that the condor sex chromosomes have not completely differentiated during evolution, which is unlike the majority of the non-ratites studied up till now. Overall, the study provides detailed cytogenetic and basic comparative information on condor chromosomes. These findings significantly advance the effort to study the chondrodystrophy that is responsible for over ten percent mortality in the condor.  相似文献   

3.
To define the process of karyotypic evolution in the Galliformes on a molecular basis, we conducted genome-wide comparative chromosome painting for eight species, i.e. silver pheasant (Lophura nycthemera), Lady Amherst's pheasant (Chrysolophus amherstiae), ring-necked pheasant (Phasianus colchicus), turkey (Meleagris gallopavo), Western capercaillie (Tetrao urogallus), Chinese bamboo-partridge (Bambusicola thoracica) and common peafowl (Pavo cristatus) of the Phasianidae, and plain chachalaca (Ortalis vetula) of the Cracidae, with chicken DNA probes of chromosomes 1-9 and Z. Including our previous data from five other species, chicken (Gallus gallus), Japanese quail (Coturnix japonica) and blue-breasted quail (Coturnix chinensis) of the Phasianidae, guinea fowl (Numida meleagris) of the Numididae and California quail (Callipepla californica) of the Odontophoridae, we represented the evolutionary changes of karyotypes in the 13 species of the Galliformes. In addition, we compared the cytogenetic data with the molecular phylogeny of the 13 species constructed with the nucleotide sequences of the mitochondrial cytochrome b gene, and discussed the process of karyotypic evolution in the Galliformes. Comparative chromosome painting confirmed the previous data on chromosome rearrangements obtained by G-banding analysis, and identified several novel chromosome rearrangements. The process of the evolutionary changes of macrochromosomes in the 13 species was in good accordance with the molecular phylogeny, and the ancestral karyotype of the Galliformes is represented.  相似文献   

4.
Coturnix chinensis (blue-breasted quail) has been classically grouped in Galliformes Phasianidae Coturnix, based on morphologic features and biochemical evidence. Since the blue-breasted quail has the smallest body size among the species of Galliformes, in addition to a short generation time and an excellent reproductive performance, it is a possible model fowl for breeding and physiological studies of the Coturnix japonica (Japanese quail) and Gallus gallus domesticus (chicken), which are classified in the same family as blue-breasted quail. However, since its phylogenetic position in the family Phasianidae has not been determined conclusively, the sequence of the entire blue-breasted quail mitochondria (mt) genome was obtained to provide genetic information for phylogenetic analysis in the present study. The blue-breasted quail mtDNA was found to be a circular DNA of 16,687 base pairs (bp) with the same genomic structure as the mtDNAs of Japanese quail and chicken, though it is smaller than Japanese quail and chicken mtDNAs by 10 bp and 88 bp, respectively. The sequence identity of all mitochondrial genes, including those for 12S and 16S ribosomal RNAs, between blue-breasted quail and Japanese quail ranged from 84.5% to 93.5%; between blue-breasted quail and chicken, sequence identity ranged from 78.0% to 89.6%. In order to obtain information on the phylogenetic position of blue-breasted quail in Galliformes Phasianidae, the 2,184 bp sequence comprising NADH dehydrogenase subunit 2 and cytochrome b genes available for eight species in Galliformes [Japanese quail, chicken, Gallus varius (green junglefowl), Bambusicola thoracica (Chinese bamboo partridge), Pavo cristatus (Indian peafowl), Perdix perdix (gray partridge), Phasianus colchicus (ring-neck pheasant), and Tympanchus phasianellus (sharp-tailed grouse)] together with that of Aythya americana (redhead) were examined using a maximum likelihood (ML) method. The ML analyses on the first/second codon positions, the third codon positions, and amino acid sequence consistently demonstrated that blue-breasted quail and Japanese quail are in the same phylogenetic cluster.  相似文献   

5.
A new family of centromeric highly repetitive DNA sequences was isolated from EcoRI-digested genomic DNA of the blue-breasted quail (Coturnix chinensis, Galliformes), and characterized by filter hybridization and chromosome in situ hybridization. The repeated elements were divided into two types by nucleotide length and chromosomal distribution; the 578-bp element predominantly localized to microchromosomes and the 1,524-bp element localized to chromosomes 1 and 2. The 578-bp element represented tandem arrays and did not hybridize to genomic DNAs of other Galliformes species, chicken (Gallus gallus), Japanese quail (Coturnix japonica) and guinea fowl (Numida meleagris). On the other hand, the 1,524-bp element was not organized in tandem arrays, and did hybridize to the genomic DNAs of three other Galliformes species, suggesting that the 1,524-bp element is highly conserved in the Galliformes. The 578-bp element was composed of basic 20-bp internal repeats, and the consensus nucleotide sequence of the internal repeats had homologies to the 41-42 bp CNM repeat and the XHOI family repeat of chicken. Our data suggest that the microchromosome-specific highly repetitive sequences of the blue-breasted quail and chicken were derived from a common ancestral sequence, and that they are one of the major and essential components of chromosomal heterochromatin in Galliformes species.  相似文献   

6.
Giant lampbrush chromosomes, which are characteristic of the diplotene stage of prophase I during avian oogenesis, represent a very promising system for precise physical gene mapping. We applied 35 chicken BAC and 4 PAC clones to both mitotic metaphase chromosomes and meiotic lampbrush chromosomes of chicken (Gallus gallus domesticus) and Japanese quail (Coturnix coturnix japonica). Fluorescence in situ hybridization (FISH) mapping on lampbrush chromosomes allowed us to distinguish closely located probes and revealed gene order more precisely. Our data extended the data earlier obtained using FISH to chicken and quail metaphase chromosomes 1–6 and Z. Extremely low levels of inter- and intra-chromosomal rearrangements in the chicken and Japanese quail were demonstrated again. Moreover, we did not confirm the presence of a pericentric inversion in Japanese quail chromosome 4 as compared to chicken chromosome 4. Twelve BAC clones specific for chicken chromosome 4p and 4q showed the same order in quail as in chicken when FISH was performed on lampbrush chromosomes. The centromeres of chicken and quail chromosomes 4 seem to have formed independently after centric fusion of ancestral chromosome 4 and a microchromosome.  相似文献   

7.
A novel satellite DNA sequence of Japanese quail (Coturnix coturnix japonica) was isolated from genomic DNA digested with restriction endonuclease, Bg/II. Sequence analysis of three different-size clones revealed the presence of a tandem array of a GC-rich 41 bp repeated element. This sequence was localized by fluorescence in situ hybridization (FISH) primarily to microchromosomes of Japanese quail (2n = 78); approximately 50 of the 66 microchromosomes showed positive signals, although hybridization signals were also detected on chromosomes 4 and W. This satellite DNA did not cross-hybridize with genomic DNA of chicken (Gallus gallus) and Chinese painted quail (Excalfactoria chinensis) under moderately stringent conditions, suggesting that this class of repetitive DNA sequences was species specific and fairly divergent in Galliformes species.  相似文献   

8.
The divergence of lineages leading to extant squamate reptiles (lizards, snakes, and amphisbaenians) and birds occurred about 275 million years ago. Birds, unlike squamates, have karyotypes that are typified by the presence of a number of very small chromosomes. Hence, a number of chromosome rearrangements might be expected between bird and squamate genomes. We used chromosome-specific DNA from flow-sorted chicken (Gallus gallus) Z sex chromosomes as a probe in cross-species hybridization to metaphase spreads of 28 species from 17 families representing most main squamate lineages and single species of crocodiles and turtles. In all but one case, the Z chromosome was conserved intact despite very ancient divergence of sauropsid lineages. Furthermore, the probe painted an autosomal region in seven species from our sample with characterized sex chromosomes, and this provides evidence against an ancestral avian-like system of sex determination in Squamata. The avian Z chromosome synteny is, therefore, conserved albeit it is not a sex chromosome in these squamate species.  相似文献   

9.
Chromosome homology between chicken (Gallus gallus) and guinea fowl (Numida meleagris) was investigated by comparative chromosome painting with chicken whole chromosome paints for chromosomes 1-9 and Z and by comparative mapping of 38 macrochromosome-specific (chromosomes 1-8 and Z) and 30 microchromosome-specific chicken cosmid DNA clones. The comparative chromosome analysis revealed that the homology of macrochromosomes is highly conserved between the two species except for two inter-chromosomal rearrangements. Guinea fowl chromosome 4 represented the centric fusion of chicken chromosome 9 with the q arm of chicken chromosome 4. Guinea fowl chromosome 5 resulted from the fusion of chicken chromosomes 6 and 7. A pericentric inversion was found in guinea fowl chromosome 7, which corresponded to chicken chromosome 8. All the chicken microchromosome-specific DNA clones were also localized to microchromosomes of guinea fowl except for several clones localized to the short arm of chromosome 4. These results suggest that the cytogenetic genome organization is highly conserved between chicken and guinea fowl.  相似文献   

10.
Chromosome-specific paints from macrochromosomes 1-9 and Z of the chicken were hybridised to metaphases of the red-legged partridge and revealed no inter-chromosomal rearrangements. The results from chromosome painting are similar to previous studies on the Japanese quail but different from findings in guinea fowl and several species of pheasant. The difference in centromere position in chicken and partridge chromosome 4, previously assumed to be the result of an inversion, was confirmed. However, FISH mapping of BAC clones from chicken chromosome 4 revealed that the order of loci was the same in both species, indicating the occurrence of a neocentromere during divergence.  相似文献   

11.
In a Zoo-FISH study chicken autosomal chromosome paints 1 to 9 (GGA1-GGA9) were hybridized to metaphase spreads of nine diverse birds belonging to primitive and modern orders. This comparative approach allows tracing of chromosomal rearrangements that occurred during bird evolution. Striking homologies in the chromosomes of the different species were noted, indicating a high degree of evolutionary conservation in avian karyotypes. In two species, the quail and the goose, all chicken paints specifically labeled their corresponding chromosomes. In three pheasant species as well as in the American rhea and blackbird, GGA4 hybridized to chromosome 4 and additionally to a single pair of microchromosomes. Furthermore, in the pheasants fission of the ancestral galliform chromosome 2 could be documented. Hybridization of various chicken probes to two different chromosomes or to only the short or long chromosome arm of one chromosome pair in the species representing the orders Passeriformes, Strigiformes, and Columbiformes revealed translocations and chromosome fissions during species radiation. Thus comparative analysis with chicken chromosome-specific painting probes proves to be a rapid and comprehensive approach to elucidate the chromosomal relationships of the extant birds.  相似文献   

12.
The distribution of various isochore families on mitotic chromosomes of domestic chicken and Japanese quail was studied by the method of fluorescence in situ DNA--DNA hybridization (FISH). DNA of various isochore families was shown to be distributed irregularly and similarly on chromosomes of domestic chicken and Japanese quail. The GC-rich isochore families (H2, H3, and H4) hybridized mainly to microchromosomes and a majority of macrochromosome telomeric regions. In chicken, an intense fluorescence was also in a structural heterochromatin region of the Z chromosome long arm. In some regions of the quail macrochromosome arms, hybridization was also with isochore families H3 and H4. On macrochromosomes of both species, the pattern of hybridization with isochores of the H2 and H3 families resembled R-banding. The light isochores (L1 and L2 families) are mostly detected within macrochromosome internal regions corresponding to G bands, whereas microchromosomes lack light isochores. Although mammalian and avian karyotypes differ significantly in organization, the isochore distribution in genomes of these two lineages of the warm-blooded animals is similar in principle. On macrochromosomes of the two avian species studied, a pattern of isochore distribution resembled that of mammalian chromosomes. The main specific feature of the avian genome, a great number of microchromosomes (about 30% of the genome), determines a compositional specialization of the latter. This suggests the existence of not only structural but also functional compartmentalization of the avian genome.  相似文献   

13.
Using direct R-banding fluorescence in situ hybridization, we assigned five functional genes-growth hormone receptor (GHR), prolactin receptor (PRLR), spleen tyrosine kinase (SYK), aldolase B (ALDOB), and muscle skeletal receptor tyrosine kinase (MUSK)-to the chicken Z chromosome. SYK and MUSK were newly localized to the chicken Z chromosome in this study. GHR and PRLR were situated close to each other on the short arm of the chicken Z chromosome, as are their counterparts on human chromosome 5. SYK, MUSK, and ALDOB, which have been mapped to human chromosome 9, were localized to the long arm of the chicken Z chromosome. Thus, the present results indicate the presence of conserved synteny between the chicken Z chromosome and human chromosomes 5 and 9. Using the same method, four of the genes (GHR, PRLR, ALDOB, and MUSK) were assigned to the Japanese quail Z chromosome. The locations of these four Z-linked genes were conserved between chicken and Japanese quail. The results support the notion that the avian Z chromosome and the mammalian X chromosome did not evolve from a common ancestral linkage group.  相似文献   

14.
We have characterized 17 rob(13q14q) Robertsonian translocations, using six molecular probes that hybridize to the repetitive sequences of the centromeric and shortarm regions of the five acrocentric chromosomes by FISH. The rearrangements include six de novo rearrangements and the chromosomally normal parents, five maternally and three paternally inherited translocations, and three translocations of unknown origin. The D21Z1/D13Z1 and D14Z1/D22Z1 centromeric alpha-satellite DNA probes showed all rob(13q14q) chromosomes to be dicentric. The rDNA probes did not show hybridization on any of the 17 cases studied. The pTRS-47 satellite III DNA probe specific for chromosomes 14 and 22 was retained around the breakpoints in all cases. However, the pTRS-63 satellite III DNA probe specific for chromosome 14 did not show any signals on the translocation chromosomes examined. In 16 of 17 translocations studied, strong hybridization signals on the translocations were detected with the pTRI-6 satellite I DNA probe specific for chromosome 13. All parents of the six de novo rob(13q14q), including one whose pTRI-6 sequence was lost, showed strong positive hybridization signals on each pair of chromosomes 14 and 13, with pTRS-47, pTRS-63, and pTRI-6. Therefore, the translocation breakpoints in the majority of rob(13q14q) are between the pTRS-47 and pTRS-63 sequences in the p11 region of chromosome 14 and between the pTRI-6 and rDNA sequences within the p11 region of chromosome 13.  相似文献   

15.
The karyotypes of most birds consist of a small number of macrochromosomes and numerous microchromosomes. Intriguingly, most accipitrids which include hawks, eagles, kites, and Old World vultures (Falconiformes) show a sharp contrast to this basic avian karyotype. They exhibit strikingly few microchromosomes and appear to have been drastically restructured during evolution. Chromosome paints specific to the chicken (GGA) macrochromosomes 1-10 were hybridized to metaphase spreads of three species of Old World vultures (Gyps rueppelli, Gyps fulvus, Gypaetus barbatus). Paints of GGA chromosomes 6-10 hybridize only to single chromosomes or large chromosome segments, illustrating the existence of high chromosome homology. In contrast, paints of the large macrochromosomes 1-5 show split hybridization signals on the chromosomes of the accipitrids, disclosing excessive chromosome rearrangements which is in clear contrast to the high degree of chromosome conservation substantiated from comparative chromosome painting in other birds. Furthermore, the GGA chromosome paint hybridization patterns reveal remarkable interchromosomal conservation among the two species of the genus Gyps.  相似文献   

16.
Karyotype, sex chromosome system and cytogenetics characteristics of an unidentified species of the genus Apareiodon originating from Piquiri River (Paraná State, Brazil) were investigated using differential staining techniques (C-banding and Ag-staining) and fluorescent in situ hybridization (FISH) with 5S and 18S rDNA probes. The diploid chromosome number was 2n = 54 with 25 pairs of meta- (m) to submetacentric (sm) and 2 pairs of subtelocentric (st) chromosomes. The major ribosomal rDNA sites as revealed by Ag-staining and FISH with 18S rDNA probe were found in distal region of longer arm of st chromosome pair 26, while minor 5S sites were observed in the interstitial sites on chromosome pairs 2 (smaller cluster) and 7 (larger one). The C-positive heterochromatin had pericentromeric and telomeric distribution. The heteromorphic sex chromosome system consisted of male ZZ (pair 21) and female middle-sized m/st Z/W chromosomes. The pericentric inversion of heterochromatinized short arm of ancestral Z followed by multiplication of heterochromatin segments is hypothesized for origin of W chromosome. The observed karyotype and chromosomal markers corresponded to those found in other species of the genus.  相似文献   

17.
For the purpose of comparative mapping of quail (Coturnix c. japonica) and human (Homo sapiens) genomes, DNA fragments from human chromosome 3 (HSA3p14-21 and HSA3q13-23) were localized on quail mitotic chromosomes. Using the method of double-color fluorescence DNA-DNA in situ hybridization, these fragments were mapped to two different microchromosomes. Earlier, similar studies were performed using chicken mitotic chromosomes. There it was demonstrated that the clones of interest were distributed among three microchromosomes (GGA12, GGA14, and GGA15). Thus, interspecific difference in the location of human chromosome 3 DNA fragments in the genomes of closely related avian species was discovered. A new confirmation of the hypothesis on the preferable localization of the gene-rich human chromosome regions on avian microchromosomes was obtained. At the same time, a suggestion on the localization of some orthologous genes in the genome of the organism under study was made: ARF4, SCN5A, PHF7, ABHD6, ZDHHC3, MAPKAPK3, ADSYNA (homolog of chicken chromosome 12), DRD2, PP2C-ETA, RAB7, CCKAR, and PKD1 (homolog of chicken chromosome 15). However, localization of the corresponding quail genes needs to be confirmed, as far as the sequences used were only the orthologs of the corresponding chicken genes.  相似文献   

18.
The minilibrary containing DNA sequences from the diffuse pericentric heterochromatin from the right arm of Anopheles atroparvus V. Tiel (Culicidae, Diptera) chromosome 2 (2R) was generated by use of chromosome microdissection technique. Southern-blot hybridization of the minilibrary fragments with the labeled genomic DNA of A. atroparvus and analysis of their primary structure showed that this heterochromatin region contained repeated DNA sequences differed by their primary structure and the number of copies. These were mostly AT-rich sequences harboring the features characteristic of the S/MAR regions. Based on the clones homology to the sequences from the An. gambiae and Drosophila melanogaster genomes, it was demonstrated that the pericentric heterochromatin from the right arm of An. atroparvus chromosome 2 contained gypsy-like transposable elements, as well as the sequences homologous to the structural genes. In situ hybridization with the chromosomes of A. atroparvus and of the two representatives of the Anopheles maculipennis species complex, A. messeae and A. beklemishevi, showed that pericentric regions of all these chromosomes contained DNA sequences homologous to the sequences from the region-specific minilibrary. Cloned fragments of conserved repetitive DNA revealed upon interspecific Southern-blot hybridization of the clones with the labeled genomic DNA of A. messeae can be utilized in further investigations of evolutionary rearrangements of the pericentric heterochromatin within the Anopheles maculipennis species complex.  相似文献   

19.
《Gene》1998,222(1):107-117
The genus Leishmania can be taxonomically separated into three main groups: the Old World subgenus L. (Leishmania), the New World subgenus L. (Leishmania) and the New World subgenus L. (Viannia). The haploid genome of Old World Leishmania species has been shown to contain 36 chromosomes defined as physical linkage groups; the latter were found entirely conserved across species. In the present study, we tried to verify whether this conservation of the genome structure extends to the New World species of Leishmania. 300 loci were explored by hybridization on optimized pulsed field gel electrophoresis separations of the chromosomes of polymorphic strains of the six main pathogenic Leishmania species of the New World. When comparing these New World karyotypes with their Old World counterparts, 32 out of 36 linkage groups were found conserved among all species. Four chromosomal rearrangements were found. All species belonging to the L. (Viannia) subgenus were characterized by the presence (i) of a short sequence exchange between chromosomes 26 and 35, and (ii) more importantly, of a fused version of chromosomes 20 and 34 which are separated in all Old World species. 69 additional markers were isolated from a plasmid library specifically constructed from the rearranged chromosomes 20+34 in an attempt to detect mechanisms other than a fusion or breakage: only two markers out of 40 did not belong to the linkage groups 20 and 34. On the other hand, all strains belonging to the New World subgenus L. (Leishmania) were characterized by two different chromosomal rearrangements of the same type (fusion/breakage) as above as compared with Old World species: chromosomes 8+29 and 20+36. Consequently, these two groups of species have 35 and 34 heterologous chromosomes, respectively. Overall, these results show that large-scale chromosomal rearrangements occurred during the evolution of the genus Leishmania, and that the three main groups of pathogenic species are characterized by different chromosome numbers. Nevertheless, translocations seem particularly rare, and the conservation of the major linkage groups should be an essential feature for the compared genetics between species of this parasite.  相似文献   

20.
Chromosome banding and DNA replication patterns in bird karyotypes   总被引:3,自引:0,他引:3  
The karyotypes of the domestic chicken (Gallus domesticus), Japanese quail (Coturnix coturnix), and griffon vulture (Gyps fulvus) were studied with a variety of banding techniques. The DNA replication patterns of bird chromosomes, analyzed by incorporation of 5-bromodeoxyuridine (BrdU) and deoxythymidine (dT), are presented here for the first time. In particular, the time sequence of replication of the ZZ/ZW sex chromosomes throughout the S-phase was meticulously analyzed. BrdU and dT incorporation are very useful methods to identify homoeologies between karyotypes, as well as rearrangements that occurred in the macroautosomes during speciation. The Z chromosomes of the three birds displayed the same replication patterns, indicating a high degree of evolutionary conservation. In the homogametic male, BrdU and dT incorporation revealed no evidence of asynchronous replication between euchromatic bands in the ZZ pair. The same was true of the three Z chromosomes in a triploid-diploid chimeric chicken embryo. Minor replication asynchronies between the homologous ZZ or ZZZ chromosomes were restricted to heterochromatic C-bands. These results confirm that, in the ZZ male/ZW female sex-determining system of birds, dosage compensation for Z-linked genes does not occur by inactivation of one of the two Z chromosomes in the homogametic male. The heterochromatic W chromosomes of the three species showed bright labeling with distamycin A/mithramycin counterstain-enhanced fluorescence and exhibited significantly delayed DNA replication. The nucleolus organizers of birds, frequently located in microchromosomes, were also distinguished by bright distamycin A/mithramycin fluorescence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号